Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Front. Med.  2009, Vol. 3 Issue (4): 384-389   https://doi.org/10.1007/s11684-009-0070-1
  Research articles 本期目录
The role of CDK1 siRNA interference in cell cycle and cell apoptosis
The role of CDK1 siRNA interference in cell cycle and cell apoptosis
Hui XIAO PhD,Ming TIAN MM,Junna GE MM,Xin Wei MD,Zhaoming LI MM,Xiaolan LI MS,Deding TAO PhD,Junbo HU MD,Jianping GONG MD,
Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
 全文: PDF(212 KB)  
Abstract:In the present report, cyclin-dependent kinase1 (CDK1) siRNA was transfected into cells to silence the CDK1 gene expression and study its role in the cell cycle and cell apoptosis. The siRNA targeting CDK1 gene was chemically synthesized and transfected into Hela cells by lipofectamine 2000. The expression levels of CDK1 gene and protein were examined by real-time quantitative polymerase chain reaction (PCR) and Western blot, respectively. The cell cycle was analyzed by using DNA content analysis by flow cytometry. Cell apoptosis was detected by the Annexin V/PI method. The morphological changes of transfected cells were examined under the microscopy by Wright-Giemsa stain. CDK1 gene was successfully silenced by its siRNA, and the CDK1 protein expression level was decreased significantly, especially from 48thh to 60thh after transfection. The DNA content analysis showed that transfection of CDK1 siRNA led to cells accumulating in G2/M phase. There was no significant difference in the apoptotic rate between transfected cells and the control cells after transfection of CDK1 siRNA for 48 or 60h. More double nucleus or multinucleus cells could be seen under the microscopy among the transfected cells. The decreased CDK1 expression by siRNA silencing gave rise to cell cycle arrest in G2/M phase but did not induce apoptosis.
Key wordscyclin-dependent kinase1    siRNA interference    cell cycle    apoptosis
出版日期: 2009-12-05
 引用本文:   
. The role of CDK1 siRNA interference in cell cycle and cell apoptosis[J]. Front. Med., 2009, 3(4): 384-389.
Hui XIAO PhD, Ming TIAN MM, Junna GE MM, Xin Wei MD, Zhaoming LI MM, Xiaolan LI MS, Deding TAO PhD, Junbo HU MD, Jianping GONG MD, . The role of CDK1 siRNA interference in cell cycle and cell apoptosis. Front. Med., 2009, 3(4): 384-389.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-009-0070-1
https://academic.hep.com.cn/fmd/CN/Y2009/V3/I4/384
Evan G I, Vousden K H. Proliferation, cell cycleand apoptosis in cancer. Nature, 2001, 411(6835): 342―349

doi: 10.1038/35077213
Blagosklonny M V. Apoptosis, proliferation, differentiation: in search of the order. Semin Cancer Biol, 2003, 13(2): 97―105

doi: 10.1016/S1044-579X(02)00127-X
Park M T, Lee S J. Cell cycle and cancer. J Biochem Mol Biol, 2003, 36(1): 60―65
Karin M, Lin A. NF-κB at the crossroadsof life and death. Nat Immunol, 2002, 3(3): 221―227

doi: 10.1038/ni0302-221
Vermeulen K, Berneman Z N, Van Bockstaele D R. Cell cycle and apoptosis. Cell Prolif, 2003, 36(3): 165―175

doi: 10.1046/j.1365-2184.2003.00267.x
Maddika S, Ande S R, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda K D, Wiechec E, Los M. Cell survival,cell death and cell cycle pathways are interconnected: implicationsfor cancer therapy. Drug Resist Updat, 2007, 10(1,2): 13―29
Morgam D O. Principles of CDK regulation. Nature, 1995, 374(6518): 131―134

doi: 10.1038/374131a0
Nurse P. Universalcontrol mechanism regulating onset of M phase. Nature, 1990, 344(6266): 503―508

doi: 10.1038/344503a0
Hunter T. Brakingthe cycle. Cell, 1993, 75(5): 839―841

doi: 10.1016/0092-8674(93)90528-X
Harlow E, Lane D. Antibodies: A LaboratoryManual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1988, 450
Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F. Functions of transforminggrowth factor-beta family type I receptors and Smad proteins in thehypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem, 2002, 277(37): 33545―33558

doi: 10.1074/jbc.M202086200
Kirou K A, Lee C, George S, Louca K, Papagiannis I G, Peterson M G, Ly N, Woodward R N, Fry K E, Lau A Y, Prentice J G, Wohlgemuth J G, Crow M K. Coordinateoverexpression of interferon-alpha-induce- genes in systemic lupuserythematosus. Arthritis Rheum, 2004, 50(12): 3958―3967

doi: 10.1002/art.20798
Kirou K A, Lee C, Crow M K. Measurement of cytokines in autoimmune disease. Methods Mol Med, 2004, 102: 129―154
Koopman G, Reutelingsperger C P, Kuijten G A, Keehnen R M, Pals S T, van Oers M H. Annexin V for flow cytometricdetection of phosphatidylserine expression of B cells undergoing apoptosis. Blood, 1994, 84(5): 1415―1420
Fadok V A, Voelker D R, Cammpbell P A, Cohen J J, Bratton D L, Henson P M. Exposure of phosphatidylserine on the surface of apoptoticlymphocytes triggers specific recognition and removal by macrophages. J Immunol, 1992, 148(7): 2207―2216
Bühler M, Moazed D. Transcription and RNAi inheterochromatic gene silencing. Nat StructMol Biol, 2007, 14(11): 1041―1048

doi: 10.1038/nsmb1315
Scoazec J Y. The RNA revolution. Ann Pathol, 2006, 26(4): 2752―2780
Tachikawa K, Briggs S P. Targeting the human genome. Curr Opin Biotechnol, 2006, 17(6): 659―665

doi: 10.1016/j.copbio.2006.10.010
Ying S Y, Chang D C, Miller J D, Lin S L. The microRNA:overview of the RNA gene that modulates gene functions. Methods Mol Biol, 2006, 342: 1―18
Zender L, Kubicka S. SiRNA based strategies forinhibition of apoptotic pathways in vivo-analytical and therapeuticimplications. Apoptosis, 2004, 9(1): 51―54

doi: 10.1023/B:APPT.0000012121.52210.23
Roberts J M. Evolving ideas about cyclins. Cell, 1999, 98(2): 129―132

doi: 10.1016/S0092-8674(00)81007-7
Nasmyth K. Viewpoint:putting the cell cycle in order. Science, 1996, 274(5293): 1643―1645

doi: 10.1126/science.274.5293.1643
Shi L, Nishioka W K, Th'ng J, Bradbury E M, Litchfield D W, Greenbergl A H. Premature p34cdc2 activation required for apoptosis. Science, 1994, 263(5150): 1143―1145

doi: 10.1126/science.8108732
Hahntow I N, Schneller F, Oelsner M, Weick K, Ringshausen I, Fend F, Peschel C, Decker T. Cyclin-dependent kinase inhibitorroscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia, 2004, 18(4): 747―755

doi: 10.1038/sj.leu.2403295
Golsteyn R M. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis:a role beyond the cell cycle. Cancer Lett, 2005, 217(2): 129―138

doi: 10.1016/j.canlet.2004.08.005
Rideout H J, Wang Q, Park D S, Stefanis L. Cyclin-dependentkinase activity is required for apoptotic death but not inclusionformation in cortical neurons after proteasomal inhibition. J Neurosci, 2003, 23(4): 1237―1245
Gartel A L. The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res, 2005, 29(11): 1237―1238

doi: 10.1016/j.leukres.2005.04.023
Davido D J, Leib D A, Schaffer P A. The cyclin-dependent kinase inhibitor roscovitine inhibitsthe transactivating activity and alters the posttranslational modificationof herpes simplex virus type 1 ICP0. JVirol, 2002, 76(3): 1077―1088
Edamatsu H, Gau C L, Nemoto T, Tamanoi F. Cdkinhibitors, roscovitine and olomoucine, synergize with farnesyltransferaseinhibitor (FTI) to induce efficient apoptosis of human cancer celllines. Oncogene, 2000, 19(27): 3059―3068

doi: 10.1038/sj.onc.1203625
Alvi A J, Austen B, Weston V J, Fegan C, Maccallum D, Gianella-Borradori A, Lane D P, Hubank M, Powell J E, Wei W, Taylor A M, Moss P A, Stankovic T. A novel CDK inhibitor, CYC202(R-roscovitine), overcomes the defect in p53-dependent apoptosis inB-CLL by down-regulation of genes involved in transcription regulationand survival. Blood, 2005, 105(11): 4484―4491

doi: 10.1182/blood-2004-07-2713
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed