Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese
population
Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese
population
Dian-Ke YU PhD,Chen WU MD,Wen TAN MD,Dong-Xin LIN MD,
State Key Laboratory
of Molecular Oncology and Department of Etiology & Carcinogenesis,
Cancer Institute & Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100210, China;
Abstract:Variation of individuals’ DNA repair capacity has been linked to cancer susceptibility. The xeroderma pigmentsum group F (XPF) plays a pivotal role in nucleotide-excision repair (NER) pathway. This study was to examine the functional significance of XPF promoter polymorphisms and their association with lung cancer risk. The function of XPF promoter polymorphisms was tested by a set of biochemical assays, and their effects on lung cancer risk were determined by a case-control analysis of 988 patients with lung cancer and 986 controls. The XPF−673T allele showed a significantly higher transcriptional activity as compared with the −673C allele. The −673TT genotype was associated with a decreased risk of lung cancer compared with the CC genotype (adjusted OR=0.62, 95% CI=0.42–0.91; P=0.015) and this effect was more significant among males (adjusted OR=0.55, 95% CI=0.35–0.86; P=0.009), elder subjects (adjusted OR=0.51, 95% CI=0.30–0.86; P=0.012), and light smokers (adjusted OR=0.35, 95% CI=0.14–0.88; P=0.026). These findings suggest that functional polymorphisms influencing DNA repair capacity may confer susceptibility to lung cancer.
. Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese
population[J]. Front. Med., 2010, 4(1): 82-89.
Dian-Ke YU PhD, Chen WU MD, Wen TAN MD, Dong-Xin LIN MD, . Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese
population. Front. Med., 2010, 4(1): 82-89.
Herbst R S, Heymach J V, Lippman S M. Lung cancer. N Engl J Med, 2008, 359(13): 1367―1380 doi: 10.1056/NEJMra0802714
Duarte R L, Paschoal M E. Molecular markers in lung cancer: prognostic role and relationshipto smoking. J Bras Pneumol, 2006, 32(1): 56―65
Friedberg E C. How nucleotide excision repair protects against cancer. Nat Rev Cancer, 2001, 1(1): 22―33 doi: 10.1038/35094000
Tsodikov O V, Enzlin J H, Scharer O D, Ellenberger T. Crystal structure and DNA binding functions of ERCC1,a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA, 2005, 102(32): 11236―11241 doi: 10.1073/pnas.0504341102
Choi Y J, Ryu K S, Ko Y M, Chae Y K, Pelton J G, Wemmer D E, Choi B S. Biophysicalcharacterization of the interaction domains and mapping of the contactresidues in the XPF-ERCC1 complex. J BiolChem, 2005, 280(31): 28644―28652 doi: 10.1074/jbc.M501083200
Gaillard P H, Wood R D. Activityof individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res, 2001, 29(4): 872―879 doi: 10.1093/nar/29.4.872
Niedernhofer L J, Odijk H, Budzowska M, van Drunen E, Maas A, Theil A F, de Wit J, Jaspers N G, Beverloo H B, Hoeijmakers J H, Kanaar R. The structure-specific endonucleaseErcc1-Xpf is required to resolve DNA interstrand cross-link-induceddouble-strand breaks. Mol Cell Biol, 2004, 24(13): 5776―5787 doi: 10.1128/MCB.24.13.5776-5787.2004
Niedernhofer L J, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M, Odijk H, Hoeijmakers J H, Kanaar R. The structure-specific endonucleaseErcc1-Xpf is required for targeted gene replacement in embryonic stemcells. EMBO J, 2001, 20(22): 6540―6549 doi: 10.1093/emboj/20.22.6540
Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T. ERCC1/XPF removes the 3'overhang from uncapped telomeres and represses formation of telomericDNA-containing double minute chromosomes. Mol Cell, 2003, 12(6): 1489―1498 doi: 10.1016/S1097-2765(03)00478-7
McWilliams R R, Bamlet W R, Cunningham J M, Goode E L, de Andrade M, Boardman L A, Petersen G M. Polymorphisms in DNA repair genes, smoking, and pancreaticadenocarcinoma risk. Cancer Res, 2008, 68(12): 4928―4935 doi: 10.1158/0008-5472.CAN-07-5539
Shao M, Ma H, Wang Y, Xu L, Yuan J, Wang Y, Hu Z, Yang L, Wang F, Liu H, Qian J, Xun P, Chen W, Yuan W, Jing G, Chen F, Jin L, Wei Q, Wu T, Shen H, Huang W, Lu D. Polymorphismsin excision repair cross-complementing group 4 (ERCC4) and susceptibilityto primary lung cancer in a Chinese Han population. Lung Cancer, 2008, 60(3): 332―339 doi: 10.1016/j.lungcan.2007.10.023
Milne R L, Ribas G, Gonzalez-Neira A, Fagerholm R, Salas A, Gonzalez E, Dopazo J, Nevanlinna H, Robledo M, Benitez J. ERCC4 associated with breast cancer risk: a two-stage case-controlstudy using high-throughput genotyping. Cancer Res, 2006, 66(19): 9420―9427 doi: 10.1158/0008-5472.CAN-06-1418
Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, Phillips D H, Canzian F, Haugen A. Polymorphisms of DNA repair genes and risk of non-smallcell lung cancer. Carcinogenesis, 2006, 27(3): 560―567 doi: 10.1093/carcin/bgi232
Abbasi R, Ramroth H, Becher H, Dietz A, Schmezer P, Popanda O. Laryngeal cancer risk associatedwith smoking and alcohol consumption is modified by genetic polymorphismsin ERCC5, ERCC6 and RAD23B but not by polymorphisms in five othernucleotide excision repair genes. Int JCancer, 2009, 125(6): 1431―1439 doi: 10.1002/ijc.24442
Shen M, Berndt S I, Rothman N, Demarini D M, Mumford J L, He X, Bonner M R, Tian L, Yeager M, Welch R, Chanock S, Zheng T, Caporaso N, Lan Q. Polymorphismsin the DNA nucleotide excision repair genes and lung cancer risk inXuan Wei, China. Int J Cancer, 2005, 116(5): 768―773 doi: 10.1002/ijc.21117
Zhang X, Miao X, Liang G, Hao B, Wang Y, Tan W, Li Y, Guo Y, He F, Wei Q, Lin D. Polymorphisms in DNA base excision repair genes ADPRTand XRCC1 and risk of lung cancer. CancerRes, 2005, 65(3): 722―726
Liang G, Xing D, Miao X, Tan W, Yu C, Lu W, Lin D. Sequence variationsin the DNA repair gene XPD and risk of lung cancer in a Chinese population. Int J Cancer, 2003, 105(5): 669―673 doi: 10.1002/ijc.11136
International HapMapConsortium. The International HapMap Project. Nature, 2003, 426(6968): 789―796 doi: 10.1038/nature02168
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21(2): 263―265 doi: 10.1093/bioinformatics/bth457
Lehmann U, Kreipe H. Real-timePCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embeddedbiopsies. Methods, 2001, 25(4): 409―418 doi: 10.1006/meth.2001.1263
Drablos F, Feyzi E, Aas P A, Vaagbo C B, Kavli B, Bratlie M S, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan H E. Alkylationdamage in DNA and RNA―repair mechanisms and medical significance. DNA Repair, 2004, 3(11): 1389―1407 doi: 10.1016/j.dnarep.2004.05.004
Yu D, Zhang X, Liu J, Yuan P, Tan W, Guo Y, Sun T, Zhao D, Yang M, Liu J, Xu B, Lin D. Characterizationof functional excision repair cross-complementation group 1 variantsand their association with lung cancer risk and prognosis. Clin Cancer Res, 2008, 14(9): 2878–2886 doi: 10.1158/1078-0432.CCR-07-1612
Zhou W, Liu G, Miller D P, Thurston S W, Xu L L, Wain, J C, Lynch T J, Su L, Christiani D C. Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, andlung cancer risk. Cancer Epidemiol BiomarkersPrev, 2003, 12(4): 359―365
Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D. Polymorphisms of death pathway genes FAS and FASL inesophageal squamous-cell carcinoma. J NatlCancer Inst, 2004, 96(13): 1030―1036
Hao B, Miao X, Li Y, Zhang X, Sun T, Liang G, Zhao Y, Zhou Y, Wang H, Chen X, Zhang L, Tan W, Wei Q, Lin D, He F. A novel T-77C polymorphismin DNA repair gene XRCC1 contributes to diminished promoter activityand increased risk of non-small cell lung cancer. Oncogene, 2006, 25(25): 3613―3620 doi: 10.1038/sj.onc.1209355