Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine in China  2010, Vol. 4 Issue (3): 329-335   https://doi.org/10.1007/s11684-010-0091-9
  RESEARCH ARTICLE 本期目录
Effects of resistin on skeletal glucose metabolism
Effects of resistin on skeletal glucose metabolism
Fang-Ping LI(), Zhi-Zhen LI, Miao ZHANG, Li YAN, Zu-Zhi FU
Department of Endocrinology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China
 全文: PDF(201 KB)   HTML
Abstract

Resistin is an adipokine highly related to insulin resistance (IR). The purpose of our research was to investigate how resistin influences skeletal glucose metabolism and explore its mechanisms. We constructed the recombinant plasmid pcDNA3.1 expressing resistin and then transfected it into C2C12 myocytes. The expression of resistin in C2C12 myocytes was detected by Western blotting. Glucose uptake was measured by 3H labeled glucose; glucose oxidation and glycogen synthesis was detected with 14C-labeled glucose. GLUT4 mRNA was measured by reverse transcription polymerase chain reaction (RT-PCR). We observed that resistin was expressed in transfected myocytes, and resistin decreased insulin induced glucose uptake rate by 28%–31% and inhibited the expression of GLUT4 mRNA. However, there was no significant difference in basal glucose uptake, and glucose oxidation and glycogen synthesis remained unchanged in all groups. It is concluded that resistin inhibits insulin induced glucose uptake in myocytes by downregulating the expression of GLUT4 and it has no effects on glucose oxidation and glycogen synthesis. Our findings may provide a clue to understand the roles of resistin in the pathogenesis of skeletal IR.

Key wordsresistin    insulin resistance    skeletal muscle
收稿日期: 2010-01-16      出版日期: 2010-09-05
Corresponding Author(s): LI Fang-Ping,Email:amiy36@hotmail.com   
 引用本文:   
. Effects of resistin on skeletal glucose metabolism[J]. Frontiers of Medicine in China, 2010, 4(3): 329-335.
Fang-Ping LI, Zhi-Zhen LI, Miao ZHANG, Li YAN, Zu-Zhi FU. Effects of resistin on skeletal glucose metabolism. Front Med Chin, 2010, 4(3): 329-335.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-010-0091-9
https://academic.hep.com.cn/fmd/CN/Y2010/V4/I3/329
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
glucose uptake (pmol/106 cells·10 min)
groupsbaselineinsulin
control4.0±0.337.81±0.87
transient3.85±0.375.63±1.56
vector4.20±0.237.88±1.50
stable4.21±0.685.79±1.26
P value0.4540.011
Tab.1  
glucose oxidation (pmol/h·106 cells)
groupsbaselineinsulin
control0.89±0.194.25±1.71
transient1.16±0.725.19±1.35
vector1.18±0.814.72±0.82
stable0.74±0.434.52±2.20
P value0.5190.781
Tab.2  
glycogen synthesis (pmol/h·106cells)
groupsbaselineinsulin
control 1.09±0.672.44±0.43
transient0.89±0.351.99±0.50
vector1.06±0.452.80±0.21
stable0.89±0.232.49±0.82
P value0.5820.218
Tab.3  
Fig.7  
groupsGLUT4 mRNA
control0.73±0.11
transient0.53±0.16
vector0.69±0.08
stable0.49±0.09
P value0.041
Tab.4  
1 Steppan C M, Bailey S T, Bhat S, Brown E J, Banerjee R R, Wright C M, Patel H R, Ahima R S, Lazar M A. The hormone resistin links obesity to diabetes. Nature , 2001, 409(6818): 307–312
2 Petersen K F, Dufour S, Savage D B, Bilz S, Solomon G, Yonemitsu S, Cline G W, Befroy D, Zemany L, Kahn B B, Papademetris X, Rothman D L, Shulman G I. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A , 2007, 104(31): 12587–12594
3 Hausdorff S F, Fingar D C, Morioka K, Garza L A, Whiteman E L, Summers S A, Birnbaum M J. Identification of wortmannin sensitive targets in 3T3–L1adipocytes. J Biol Chem , 1999, 274(35): 24677–24684
4 Lassar A B, Skapek S X, Novitch B, Lassar A B, Skapek S K, Novitch B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol , 1994, 6(6): 788–794
5 Moon B, Kwan J J, Duddy N, Sweeney G, Begum N. Resistin inhibits glucose uptake in L6 skeletal muscle cells independent of changes in insulin signaling components and Glut-4 translocation. Am J Physiol Endocrinol Metab , 2003, 285(1): E106–E115
6 Fan H Q, Gu N, Liu F, Fei L, Pan X Q, Guo M, Chen R H, Guo X R. Prolonged exposure to resistin inhibits glucose uptake in rat skeletal muscles. Acta Pharmacol Sin , 2007, 28(3): 410–416
7 Palanivel R, Maida A, Liu Y, Sweeney G. Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia , 2006, 49(1): 183–190
8 Pravenec M, Kazdová L, Landa V, Zidek V, Mlejnek P, Jansa P, Wang J, Qi N, Kurtz T W. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J Biol Chem , 2003, 278(46): 45209–45215
9 Dietze D, Koenen M, R?hrig K, Horikoshi H, Hauner H, Eckel J. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes , 2002, 51(8): 2369–2376
10 Savage D B, Sewter C P, Klenk E S, Segal D G, Vidal-Puig A, Considine R V, O’Rahilly S. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes , 2001, 50(10): 2199–2202
11 Patel L, Buckels A C, Kinghorn I J, Murdock P R, Holbrook J D, Plumpton C, Macphee C H, Smith S A. Resistin is expressed in human macrophages and directly regulated by PPAR γ activators. Biochem Biophys Res Commun , 2003, 300(2): 472–476
12 Yang R Z, Huang Q, Xu A, McLenithan J C, Eisen J A, Shuldiner A R, Alkan S, Gong D W, Eison J A. Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem Biophys Res Commun , 2003, 310(3): 927–935
13 Qi Y, Nie Z, Lee Y S, Singhal N S, Scherer P E, Lazar M A, Ahima R S. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes , 2006, 55(11): 3083–3090
14 Ke Z, Zhou F, Wang L, Chen S, Liu F, Fan X, Tang F, Liu D, Zhao G. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to differentiate into hepatocytes. Biochem Biophys Res Commun , 2008, 367(2): 342–348
15 Banerjee R R, Rangwala S M, Shapiro J S, Rich A S, Rhoades B, Qi Y, Wang J, Rajala M W, Pocai A, Scherer P E, Steppan C M, Ahima R S, Obici S, Rossetti L, Lazar M A. Regulation of fasted blood glucose by resistin. Science , 2004, 303(5661): 1195–1198
16 Muse E D, Obici S, Bhanot S, Monia B P, McKay R A, Rajala M W, Scherer P E, Rossetti L. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest , 2004, 114(2): 232–239
17 Satoh H, Nguyen M T, Miles P D, Imamura T, Usui I, Olefsky J M. Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J Clin Invest , 2004, 114(2): 224–231
18 Li F P, He J, Li Z Z, Luo Z F, Yan L, Li Y. Effects of resistin expression on glucose metabolism and hepatic insulin resistance. Endocrine , 2009, 35(2): 243–251
doi: 10.1007/s12020-009-9148-4
19 Curat C A, Wegner V, Sengenès C, Miranville A, Tonus C, Busse R, Bouloumié A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia , 2006, 49(4): 744–747
doi: 10.1007/s00125-006-0173-z
20 Axelsson J, Bergsten A, Qureshi A R, Heimbürger O, Bárány P, L?nnqvist F, Lindholm B, Nordfors L, Alvestrand A, Stenvinkel P. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int , 2006, 69(3): 596–604
doi: 10.1038/sj.ki.5000089
21 Reilly M P, Lehrke M, Wolfe M L, Rohatgi A, Lazar M A, Rader D J. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation , 2005, 111(7): 932–939
doi: 10.1161/01.CIR.0000155620.10387.43
22 Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol , 2005, 174(9): 5789–5795
23 Silswal N, Singh A K, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham N Z. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun , 2005, 334(4): 1092–1101
doi: 10.1016/j.bbrc.2005.06.202
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed