c-Fos expression in rat brainstem following intake of sucrose or saccharin
c-Fos expression in rat brainstem following intake of sucrose or saccharin
Ke Chen1, Jianqun Yan1,2(), Jinrong Li1, Bo Lv1, Xiaolin Zhao1
1. Department of Physiology and Pathophysiology, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China; 2. Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China
To examine whether the activation of brainstem neurons during intake of a sweet tastant is due to orosensory signals or post-ingestive factors, we compared the distribution of c-Fos-like immunoreactivity (c-FLI) in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) of brainstem following ingestion of 0.25 M sucrose or 0.005 M saccharin solutions. Immunopositive neurons were localized mainly in the middle zone of the PBN and four rostral-caudal subregions of the NST. Intake of sucrose increased the number of FLI neurons in almost every subnucleus of the PBN (F(2,13) = 7.610, P = 0.023), in addition to the caudal NST at the level of the area postrema (F(2,13) = 10.777, P = 0.003) and the NST intermediate zone (F(2,13) = 7.193, P = 0.014). No significant increase in the number of c-Fos positive neurons was detected in response to saccharin ingestion, although there was a trend towards a modest increase in a few select NST and PBN nuclei. These results suggest that the PBN and NST may be involved in sweet taste perception and modulation of sweet tastant intake, but the significantly enhanced intensity of Fos expression induced by sucrose indicates that PBN/NST neuronal activity is driven by the integrated effects of sweet taste sensation and post-ingestive signals.
Corresponding Author(s):
Yan Jianqun,Email:jqyan810@gmail.com
引用本文:
. c-Fos expression in rat brainstem following intake of sucrose or saccharin[J]. Frontiers of Medicine, 2011, 5(3): 294-301.
Ke Chen, Jianqun Yan, Jinrong Li, Bo Lv, Xiaolin Zhao. c-Fos expression in rat brainstem following intake of sucrose or saccharin. Front Med, 2011, 5(3): 294-301.
Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 1988; 240(4857): 1328-1331 doi: 3131879" target="_blank">10.1126/science. pmid:3131879 pmid:3131879
2
Harrer MI, Travers SP. Topographic organization of Fos-like immunoreactivity in the rostral nucleus of the solitary tract evoked by gustatory stimulation with sucrose and quinine. Brain Res 1996; 711(1-2): 125-137 doi: 10.1016/0006-8993(95)01410-1 pmid:8680855
3
King CT, Travers SP, Rowland NE, Garcea M, Spector AC. Glossopharyngeal nerve transection eliminates quinine-stimulated fos-like immunoreactivity in the nucleus of the solitary tract: implications for a functional topography of gustatory nerve input in rats. J Neurosci 1999; 19(8): 3107-3121 pmid:10191326
4
Travers JB, Urbanek K, Grill HJ. Fos-like immunoreactivity in the brain stem following oral quinine stimulation in decerebrate rats. Am J Physiol 1999; 277(2 Pt 2): R384-R394 pmid:10444544
5
Yamamoto T, Shimura T, Sako N, Sakai N, Tanimizu T, Wakisaka S. c-Fos expression in the parabrachial nucleus after ingestion of sodium chloride in the rat. Neuroreport 1993; 4(11): 1223-1226 doi: 10.1097/00001756-199309000-00003 pmid:8219018
6
Yamamoto T, Shimura T, Sakai N, Ozaki N. Representation of hedonics and quality of taste stimuli in the parabrachial nucleus of the rat. Physiol Behav 1994; 56(6): 1197-1202 doi: 10.1016/0031-9384(94)90366-2 pmid:7878091
7
Yamamoto T, Sako N, Sakai N, Iwafune A. Gustatory and visceral inputs to the amygdala of the rat: conditioned taste aversion and induction of c-fos-like immunoreactivity. Neurosci Lett 1997; 226(2): 127-130 doi: 10.1016/S0304-3940(97)00265-6 pmid:9159506
8
Yamamoto T, Sawa K. c-Fos-like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 2000; 866(1-2): 135-143 doi: 10.1016/S0006-8993(00)02241-1 pmid:10825489
9
Kobashi M, Ichikawa H, Sugimoto T, Adachi A. Response of neurons in the solitary tract nucleus, area postrema and lateral parabrachial nucleus to gastric load of hypertonic saline. Neurosci Lett 1993; 158(1): 47-50 doi: 10.1016/0304-3940(93)90609-O pmid:8233072
10
?gmo A, Marroquin E. Role of gustatory and postingestive actions of sweeteners in the generation of positive affect as evaluated by place preference conditioning. Appetite 1997; 29(3): 269-289 doi: 10.1006/appe.1997.0101 pmid:9468761
11
Kushner LR, Mook DG. Behavioral correlates of oral and postingestive satiety in the rat. Physiol Behav 1984; 33(5): 713-718 doi: 10.1016/0031-9384(84)90036-2 pmid:6522491
12
Yamamoto T, Sawa K. Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats. Brain Res 2000; 866(1-2): 144-151 doi: 10.1016/S0006-8993(00)02242-3 pmid:10825490
13
Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 1984;7(3):229-259 doi: 10.1016/0165-0173(84)90012-2 pmid:6478256
Chen K, Yan J, Suo Y, Li J, Wang Q, Lv B.Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. Brain Res 2010; 1325:53-62 doi: 10.1016/j.brainres.2010.02.026 pmid:20156422
16
Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 2007; 104(38): 15075-15080 doi: 10.1073/pnas.0706678104 pmid:17724332
17
Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I.Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 2009 ; 4(4): e5106 doi: 10.1371/journal.pone.0005106 pmid: 19352508
18
Mungarndee SS, Lundy RF Jr, Norgren R. Expression of Fos during sham sucrose intake in rats with central gustatory lesions. Am J Physiol Regul Integr Comp Physiol 2008; 295(3): R751-R763 doi: 10.1152/ajpregu.90344.2008 pmid:18635449
19
Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol 1984; 222(4): 560-577 doi: 10.1002/cne.902220408 pmid:6199385
20
Halsell CB, Travers SP, Travers JB. Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations. Neuroscience 1996; 72(1): 185-197 doi: 10.1016/0306-4522(95)00528-5 pmid:8730716
21
Travers JB. Efferent projections from the anterior nucleus of the solitary tract of the hamster. Brain Res 1988; 457(1): 1-11 doi: 10.1016/0006-8993(88)90051-0 pmid:3167557
22
Halsell CB, Travers SP. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J Neurophysiol 1997; 78(2): 920-938 pmid:9307125
23
Karimnamazi H, Travers SP, Travers JB. Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 2002; 957(2): 193-206 doi: 10.1016/S0006-8993(02)03438-8 pmid:12445962
24
Yamamoto T. Brain mechanisms of sweetness and palatability of sugars. Nutr Rev 2003; 61(Supplement s5): S5-S9 doi: 10.1301/nr.2003.may.S5-S9 pmid:12828186
25
Streefland C, Farkas E, Maes FW, Bohus B. c-fos expression in the brainstem after voluntary ingestion of sucrose in the rat. Neurobiology (Bp) 1996; 4(1-2): 85-102 pmid:9116697
26
Travers SP, Norgren R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J Neurophysiol 1995; 73(6): 2144-2162 pmid:7666129
27
Whitehead MC, Frank ME. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve. J Comp Neurol 1983; 220(4): 378-395 doi: 10.1002/cne.902200403 pmid:6643734
28
Schwarz J, Burguet J, Rampin O, Fromentin G, Andrey P, Tomé D, Maurin Y, Darcel N. Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem. PLoS ONE 2010; 5(2): e8974 doi: 10.1371/journal.pone.0008974 pmid:20126542
Tokita K, Shimura T, Nakamura S, Inoue T, Yamamoto T. Involvement of forebrain in parabrachial neuronal activation induced by aversively conditioned taste stimuli in the rat. Brain Res 2007; 1141:188-196 doi: 10.1016/j.brainres.2007.01.023 pmid:17276421
31
Geran LC, Travers SP. Bitter-responsive gustatory neurons in the rat parabrachial nucleus. J Neurophysiol 2009; 101(3): 1598-1612 doi: 10.1152/jn.91168.2008 pmid:19129294
32
Yamamoto T. Neural substrates for the processing of cognitive and affective aspects of taste in the brain. Arch Histol Cytol 2006; 69(4): 243-255 doi: 10.1679/aohc.69.243 pmid:17287579
33
Norgren R, Smith GP. Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 1988; 273(2): 207-223 doi: 10.1002/cne.902730206 pmid:3417902
34
Sakai N, Yamamoto T. Conditioned taste aversion and c-fos expression in the rat brainstem after administration of various USs. Neuroreport 1997; 8(9-10): 2215-2220 doi: 10.1097/00001756-199707070-00025 pmid:9243614