1. Shanghai Diabetes Institute; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai Clinical Center for Diabetes, Shanghai 200233, China; 2. Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China; 3. Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
The high prevalence of diabetes and diabetic complications has caused a huge burden on the modern society. Although scientific advances have led to effective strategies for preventing and treating diabetes over the past several decades, little progress has been made toward curing the disease or even getting it under control, from a public health and overall societal standpoint. There is still a lack of reliable biomarkers indicative of metabolic alterations associated with diabetes and different drug responses, highlighting the need for the development of early diagnostic and prognostic markers for diabetes and diabetic complications. The emergence of metabolomics has allowed researchers to systemically measure the small molecule metabolites, which are sensitive to the changes of both environmental and genetic factors and therefore, could be regarded as the link between genotypes and phenotypes. During the last decade, the progression made in metabolomics has provided insightful information on disease development and disease onset prediction. Recent studies using metabolomics approach coupled with statistical tools to predict incident diabetes revealed a number of metabolites that are significantly altered, including branched-chain and aromatic amino acids, such as isoleucine, leucine, valine, tyrosine and phenylalanine, as diagnostic or highly-significant predictors of future diabetes. This review summarizes the current findings of metabolomic studies in human investigations with the most common form of diabetes, type 2 diabetes.
. Metabolomics in human type 2 diabetes research[J]. Frontiers of Medicine, 2013, 7(1): 4-13.
Jingyi Lu, Guoxiang Xie, Weiping Jia, Wei Jia. Metabolomics in human type 2 diabetes research. Front Med, 2013, 7(1): 4-13.
World Health Organization. Diabetes: Fact sheet N°312 . 2011
2
National Diabetes Information Clearinghouse (NDIC). Complications of Diabetes . 2012
3
Friedrich N. Metabolomics in diabetes research. J Endocrinol 2012; 215(1): 29-42 doi: 10.1530/JOE-12-0120 pmid:22718433
4
Pal A, McCarthy M . The genetics of type 2 diabetes and its clinical relevance. Clin Genet 2012 Nov 20 . [Epub ahead of print] doi: 10.1111/cge.12055 pmid:10.1111/cge.1205523167659" target="blank"> doi: 10.1111/cge.1205523167659
5
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Bostr?m K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, J?rgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proen?a C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Spars? T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI ; MAGIC investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42(7): 579-589 doi: 10.1038/ng.609 pmid:20581827
6
Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2001; 2(3): 155-168 doi: 10.1002/cfg.82 pmid:18628911
7
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181-1189 doi: 10.1080/004982599238047 pmid:10598751
8
Lucio M, Fekete A, Weigert C, W?gele B, Zhao X, Chen J, Fritsche A, H?ring HU, Schleicher ED, Xu G, Schmitt-Kopplin P, Lehmann R. Insulin sensitivity is reflected by characteristic metabolic fingerprints—a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS ONE 2010; 5(10): e13317 doi: 10.1371/journal.pone.0013317 pmid:20976215
9
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311-326 doi: 10.1016/j.cmet.2009.02.002 pmid:19356713
10
Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 2009; 8(10): 4844-4850 doi: 10.1021/pr9004162 pmid:19678709
11
Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 2010; 5(5): e10538 doi: 10.1371/journal.pone.0010538 pmid:20479934
12
Bernini P, Bertini I, Luchinat C, Tenori L, Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res 2011; 10(11): 4983-4992 doi: 10.1021/pr200452j pmid:21902250
13
Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125-133 doi: 10.1021/pr900333h pmid:19476335
14
Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, Su M, Xu LX, Yen Y, Liu P, Jia W. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics 2011;10(7):M110.004945 doi: 10.1074/mcp.M110.004945 pmid:21518826
15
Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res 2007; 6(2): 443-458 doi: 10.1021/pr0605217 pmid:17269702
16
Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2007; 2(11): 2692-2703 doi: 10.1038/nprot.2007.376 pmid:18007604
17
Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IK, Brown IJ, de Iorio M, Daviglus ML, Holmes E, Stamler J, Nicholson JK, Elliott P. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol 2010; 63(9): 970-979 doi: 10.1016/j.jclinepi.2009.10.001 pmid:20056386
18
Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 2009; 81(6): 2135-2143 doi: 10.1021/ac8022857 pmid:19236023
19
Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 2011; 29(6): 267-275 doi: 10.1016/j.tibtech.2011.02.001 pmid:21435731
20
Blumich B. Essential NMR: For Scientists and Engineers. Springer-Verlag Berlin and Heidelberg GmbH & Co. K , 2005
21
Lu J, Zhou J, Bao Y, Chen T, Zhang Y, Zhao A, Qiu Y, Xie G, Wang C, Jia W, Jia W. Serum metabolic signatures of fulminant type 1 diabetes. J Proteome Res 2012; 11(9): 4705-4711 doi: 10.1021/pr300523x pmid:22894710
22
Messana I, Forni F, Ferrari F, Rossi C, Giardina B, Zuppi C. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin Chem 1998; 44(7): 1529-1534 pmid:9665433
23
Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007; 29(2): 99-108 doi: 10.1152/physiolgenomics.00194.2006 pmid:17190852
24
Yamanouchi T, Tachibana Y, Akanuma H, Minoda S, Shinohara T, Moromizato H, Miyashita H, Akaoka I. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am J Physiol 1992; 263(2 Pt 1): E268-E273 pmid:1514606
25
Yamanouchi T, Akanuma H, Asano T, Konishi C, Akaoka I, Akanuma Y. Reduction and recovery of plasma 1,5-anhydro-D-glucitol level in diabetes mellitus. Diabetes 1987; 36(6): 709-715 doi: 10.2337/diabetes.36.6.709 pmid:3569670
26
Dungan KM, Buse JB, Largay J, Kelly MM, Button EA, Kato S, Wittlin S. 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care 2006; 29(6): 1214-1219 doi: 10.2337/dc06-1910 pmid:16731998
27
Yamanouchi T, Inoue T, Ogata E, Kashiwabara A, Ogata N, Sekino N, Yoshimura T, Ichiyanagi K, Kawasaki T. Post-load glucose measurements in oral glucose tolerance tests correlate well with 1,5-anhydroglucitol, an indicator of overall glycaemic state, in subjects with impaired glucose tolerance. Clin Sci (Lond) 2001; 101(3): 227-233 doi: 10.1042/CS20000319 pmid:11524039
28
Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, Akaoka L, Miyashita H. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet 1996; 347(9014): 1514-1518 doi: 10.1016/S0140-6736(96)90672-8 pmid:8684103
29
Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996; 39(12): 1577-1583 doi: 10.1007/s001250050617 pmid:8960845
30
Muggeo M, Zoppini G, Bonora E, Brun E, Bonadonna RC, Moghetti P, Verlato G. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care 2000; 23(1): 45-50 doi: 10.2337/diacare.23.1.45 pmid:10857967
31
Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 2000; 23(12): 1830-1834 doi: 10.2337/diacare.23.12.1830 pmid:11128361
32
Erlinger TP, Brancati FL. Postchallenge hyperglycemia in a national sample of U.S. adults with type 2 diabetes. Diabetes Care 2001; 24(10): 1734-1738 doi: 10.2337/diacare.24.10.1734 pmid:11574434
33
Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 1985; 110(5): 1100-1107 doi: 10.1016/0002-8703(85)90224-8 pmid:4061265
34
Krauss RM, Siri PW. Dyslipidemia in type 2 diabetes. Med Clin North Am 2004; 88(4): 897-909, x doi: 10.1016/j.mcna.2004.04.004 pmid:15308384
35
Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46(6): 733-749 doi: 10.1007/s00125-003-1111-y pmid:12774165
36
Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE 2010; 5(12): e15234 doi: 10.1371/journal.pone.0015234 pmid:21170321
37
Balasse EO, Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev 1989; 5(3): 247-270 doi: 10.1002/dmr.5610050304 pmid:2656155
38
Suhre K, Meisinger C, D?ring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabé de Angelis M, Wichmann HE, Kronenberg F, Adamski J, Illig T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 2010; 5(11): e13953 doi: 10.1371/journal.pone.0013953 pmid:21085649
39
Blaak EE, van Aggel-Leijssen DP, Wagenmakers AJ, Saris WH, van Baak MA. Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise. Diabetes 2000; 49(12): 2102-2107 doi: 10.2337/diabetes.49.12.2102 pmid:11118013
40
Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest 2005; 115(7): 1699-1702 doi: 10.1172/JCI25758 pmid:16007246
41
Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277(6 Pt 1): E1130-E1141 pmid:10600804
42
Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 2009; 139(6): 1073-1081 doi: 10.3945/jn.108.103754 pmid:19369366
Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14(3-4): 222-231 doi: 10.2119/2007-00119.Tilg pmid:18235842
45
Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, DeLany JP. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring) 2010; 18(9): 1695-1700 doi: 10.1038/oby.2009.510 pmid:20111019
46
Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf) 2012; 76(5): 674-682 doi: 10.1111/j.1365-2265.2011.04244.x pmid:21958081
47
Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, DeJesus VR, Vockley J, Arslanian SA. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 2012; 35(3): 605-611 doi: 10.2337/DC11-1577 pmid:22266733
48
Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2012; 1821(5): 754-761 doi: 10.1016/j.bbalip.2011.09.009 pmid:21979151
49
Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, H?ring HU, Hrabe de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach. Diabetes 2012 Oct 4. [Epub ahead of print] doi: 10.2337/db12-0495 pmid:10.2337/db12-049523043162" target="blank"> doi: 10.2337/db12-049523043162
50
Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, D?ring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost HG, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615 doi: 10.1038/msb.2012.43 pmid:23010998
51
Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 1969; 281(15): 811-816 doi: 10.1056/NEJM196910092811503 pmid:5809519
52
Felig P, Wahren J, Hendler R, Brundin T. Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 1974; 53(2): 582-590 doi: 10.1172/JCI107593 pmid:11344573
53
Luetscher JA Jr. The Metabolism of Amino Acids in Diabetes Mellitus. J Clin Invest 1942; 21(3): 275-279 doi: 10.1172/JCI101300 pmid:16694912
54
Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678-1683 doi: 10.2337/dc08-2075 pmid:19502541
55
Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, Ilkayeva OR, Wenner BR, Bain JR, Lee JJ, Lim SC, Khoo CM, Shah SH, Newgard CB. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010; 53(4): 757-767 doi: 10.1007/s00125-009-1637-8 pmid:20076942
56
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17(4): 448-453 doi: 10.1038/nm.2307 pmid:21423183
57
Zhang X, Wang Y, Hao F, Zhou X, Han X, Tang H, Ji L. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J Proteome Res 2009; 8(11): 5188-5195 doi: 10.1021/pr900524z pmid:19697961
58
Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 2009; 8(4): 1623-1630 doi: 10.1021/pr800643w pmid:19714868
59
Mochida T, Tanaka T, Shiraki Y, Tajiri H, Matsumoto S, Shimbo K, Ando T, Nakamura K, Okamoto M, Endo F. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol Genet Metab 2011; 103(4): 406-409 doi: 10.1016/j.ymgme.2011.05.002 pmid:21636301
60
Phillips JD, Kushner JP. Fast track to the porphyrias. Nat Med 2005; 11(10): 1049-1050 doi: 10.1038/nm1005-1049 pmid:16211036
61
Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, Ryals JA, Milburn MV, Nannipieri M, Camastra S, Natali A, Ferrannini E;βRISC Study Group. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 2010; 5(5): e10883 doi: 10.1371/journal.pone.0010883 pmid:20526369
62
Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal Chim Acta 2009; 633(2): 257-262 doi: 10.1016/j.aca.2008.11.058 pmid:19166731
63
Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 2000; 39(42): 13005-13011 doi: 10.1021/bi001088w pmid:11041866
64
Persa C, Pierce A, Ma Z, Kabil O, Lou MF. The presence of a transsulfuration pathway in the lens: a new oxidative stress defense system. Exp Eye Res 2004; 79(6): 875-886 doi: 10.1016/j.exer.2004.06.029 pmid:15642325
65
Kostolanská J, Jakus V, Barák L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab ; 22(5): 433-442 doi: 10.1515/JPEM.2009.22.5.433 pmid:19618662
66
Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977; 296(24): 1365-1371 doi: 10.1056/NEJM197706162962401 pmid:870827
67
Schwartz SL, Lai YL, Xu J, Abby SL, Misir S, Jones MR, Nagendran S. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab Syndr Relat Disord 2010; 8(2): 179-188 doi: 10.1089/met.2009.0049 pmid:20059361
68
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63 doi: 10.1038/nature09922 pmid:21475195
69
McGill HC Jr, McMahan CA. Determinants of atherosclerosis in the young. Am J Cardiol 1998; 82(10B): 30T-36T doi: 10.1016/S0002-9149(98)00720-6 pmid:9860371
70
Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-1847 doi: 10.1161/01.CIR.97.18.1837 pmid:9603539
71
al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135-136 doi: 10.1016/0026-0495(92)90140-6 pmid:1736035
72
Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4523-4530 doi: 10.1073/pnas.1006734107 pmid:20837534
73
Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005; 3(5): 431-438 doi: 10.1038/nrmicro1152 pmid:15821725
74
Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010; 8(4): 435-454 doi: 10.1586/eri.10.14 pmid:20377338