The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia
The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia
Jessica Fredericks, Ruibao Ren()
State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
BCR/ABL is the causative agent of chronic myelogenous leukemia (CML). Through structure/function analysis, several protein motifs have been determined to be important for the development of leukemogenesis. Tyrosine177 of BCR is a Grb2 binding site required for BCR/ABL-induced CML in mice. In the current study, we use a mouse bone marrow transduction/transplantation system to demonstrate that addition of oncogenic NRAS (NRASG12D) to a vector containing a BCR/ABLY177F mutant “rescues” the CML phenotype rapidly and efficiently. To further narrow down the pathways downstream of RAS that are responsible for this rescue effect, we utilize well-characterized RAS effector loop mutants and determine that the RAL pathway is important for rapid induction of CML. Inhibition of this pathway by a dominant negative RAL is capable of delaying disease progression. Results from the present study support the notion of RAL inhibition as a potential therapy for BCR/ABL-induced CML.
. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia[J]. Frontiers of Medicine, 2013, 7(4): 452-461.
Jessica Fredericks, Ruibao Ren. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia. Front Med, 2013, 7(4): 452-461.
Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243(5405): 290-293 doi: 10.1038/243290a0 pmid:4126434
2
Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36(1): 93-99 doi: 10.1016/0092-8674(84)90077-1 pmid:6319012
3
McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13(12): 7587-7595 pmid:8246975
4
Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21(3): 840-853 doi: 10.1128/MCB.21.3.840-853.2001 pmid:11154271
5
Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995; 15(10): 5531-5541 pmid:7565705
6
Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247(4946): 1079-1082 doi: 2408149" target="_blank">10.1126/science. pmid:2408149 pmid:2408149
7
He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99(8): 2957-2968 doi: 10.1182/blood.V99.8.2957 pmid:11929787
8
Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA. A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase. Mol Cell Biol 2004; 24(11): 4685-4695 doi: 10.1128/MCB.24.11.4685-4695.2004 pmid:15143164
9
Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1(5): 479-492 doi: 10.1016/S1535-6108(02)00074-0 pmid:12124177
10
Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995; 82(6): 981-988 doi: 10.1016/0092-8674(95)90277-5 pmid:7553858
11
Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96(2): 664-670 pmid:10887132
12
Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene 1998; 17(11 11 Reviews): 1395-1413 doi: 10.1038/sj.onc.1202174 pmid:9779987
13
Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000; 96(10): 3343-3356 pmid:11071626
14
White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler MH. Multiple Ras functions can contribute to mammalian cell transformation. Cell 1995; 80(4): 533-541 doi: 10.1016/0092-8674(95)90507-3 pmid:7867061
15
Campbell PM, Singh A, Williams FJ, Frantz K, Ulkü AS, Kelley GG, Der CJ. Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis. Methods Enzymol 2006; 407: 195-217 doi: 10.1016/S0076-6879(05)07017-5 pmid:16757325
16
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 2007; 1773(8): 1196-1212 doi: 10.1016/j.bbamcr.2007.05.001 pmid:17555829
17
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26(22): 3291-3310 doi: 10.1038/sj.onc.1210422 pmid:17496923
18
Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89(3): 457-467 doi: 10.1016/S0092-8674(00)80226-3 pmid:9150145
19
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3(1): 11-22 doi: 10.1038/nrc969 pmid:12509763
20
Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 1993; 12(1): 339-347 pmid:8094051
White MA, Vale T, Camonis JH, Schaefer E, Wigler MH. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 1996; 271(28): 16439-16442 doi: 10.1074/jbc.271.28.16439 pmid:8663585
23
Urano T, Emkey R, Feig LA. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J 1996; 15(4): 810-816 pmid:8631302
24
Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM. Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 2006; 16(24): 2385-2394 doi: 10.1016/j.cub.2006.10.023 pmid:17174914
25
Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 2005; 7(6): 533-545 doi: 10.1016/j.ccr.2005.04.030 pmid:15950903
26
Chien Y, White MA. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 2003; 4(8): 800-806 doi: 10.1038/sj.embor.embor899 pmid:12856001
27
Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 2006; 108(7): 2349-2357 doi: 10.1182/blood-2004-08-009498 pmid:16763213
28
Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92(10): 3829-3840 pmid:9808576
29
Tchevkina E, Agapova L, Dyakova N, Martinjuk A, Komelkov A, Tatosyan A. The small G-protein RalA stimulates metastasis of transformed cells. Oncogene 2005; 24(3): 329-335 doi: 10.1038/sj.onc.1208094 pmid:15467745
30
Omidvar N, Pearn L, Burnett AK, Darley RL. Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras. Mol Cell Biol 2006; 26(10): 3966-3975 doi: 10.1128/MCB.26.10.3966-3975.2006 pmid:16648489
31
Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90(18): 8392-8396 doi: 10.1073/pnas.90.18.8392 pmid:7690960
32
Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy. Mol Cell Biol 1999; 19(10): 6918-6928 pmid:10490629
33
Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92(10): 3780-3792 pmid:9808572
34
Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247(4944): 824-830 doi: 2406902" target="_blank">10.1126/science. pmid:2406902 pmid:2406902
35
Joneson T, White MA, Wigler MH, Bar-Sagi D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 1996; 271(5250): 810-812 doi: 10.1126/science.271.5250.810 pmid:8628998
36
Hinoi T, Kishida S, Koyama S, Ikeda M, Matsuura Y, Kikuchi A. Post-translational modifications of Ras and Ral are important for the action of Ral GDP dissociation stimulator. J Biol Chem 1996; 271(33): 19710-19716 doi: 10.1074/jbc.271.33.19710 pmid:8702675
37
Matsubara K, Kishida S, Matsuura Y, Kitayama H, Noda M, Kikuchi A. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 1999; 18(6): 1303-1312 doi: 10.1038/sj.onc.1202425 pmid:10022812
38
Plett PA, Frankovitz SM, Orschell CM. Distribution of marrow repopulating cells between bone marrow and spleen early after transplantation. Blood 2003; 102(6): 2285-2291 doi: 10.1182/blood-2002-12-3742 pmid:12775569
39
Fei J, Li Y, Zhu X, Luo X. miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS ONE 2012; 7(3): e32834 doi: 10.1371/journal.pone.0032834 pmid:22442671
40
Zhu X, Li Y, Luo X, Fei J. Inhibition of small GTPase RalA regulates growth and arsenic-induced apoptosis in chronic myeloid leukemia (CML) cells. Cell Signal 2012; 24(6): 1134-1140 doi: 10.1016/j.cellsig.2012.01.016 pmid:22330069
41
Chu S, Li L, Singh H, Bhatia R. BCR-tyrosine 177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in chronic myelogenous leukemia. Cancer Res 2007; 67(14): 7045-7053 doi: 10.1158/0008-5472.CAN-06-4312 pmid:17638918
42
de Bruyn KM, de Rooij J, Wolthuis RM, Rehmann H, Wesenbeek J, Cool RH, Wittinghofer AH, Bos JL. RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J Biol Chem 2000; 275(38): 29761-29766 doi: 10.1074/jbc.M001160200 pmid:10889189
43
Shao H, Andres DA. A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. J Biol Chem 2000; 275(35): 26914-26924 pmid:10869344
44
Wolthuis RM, Bos JL. Ras caught in another affair: the exchange factors for Ral. Curr Opin Genet Dev 1999; 9(1): 112-117 doi: 10.1016/S0959-437X(99)80016-1 pmid:10072355
45
González-García A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 2005; 7(3): 219-226 doi: 10.1016/j.ccr.2005.01.029 pmid:15766660