Hyperthermia is a condition characterized by increased body temperature as a consequence of failed thermoregulation. Hyperthermia occurs when a body produces or absorbs more heat than it dissipates. Hyperthermia also elicits various effects on the physiology of living cells. For instance, fever-range temperature (39β°C to 40β°C) can modulate the activities of immune cells, including antigen-presenting cells, T cells, and natural killer cells. Heat shock temperature (41β°C to 43β°C) can increase the immunogenicity of tumor cells. Cytotoxic temperature (>43β°C) can create an antigen source to induce an anti-tumor immune response. The immunomodulatory effect of hyperthermia has promoted an interest in hyperthermia-aided immunotherapy, particularly against tumors. Hyperthermia has also been used to treat deep fungal, bacterial, and viral skin infections. We conducted a series of open or controlled trials to treat skin human papillomavirus infection by inducing local hyperthermia. More than half of the patients were significantly cured compared with those in the control trial. A series of challenging clinical cases, such as large lesions in pregnant patients or patients with diabetes mellitus, were also successfully and safely managed using the proposed method. However, further studies should be conducted to clarify the underlying mechanisms and promote the clinical applications of hyperthermia.
. [J]. Frontiers of Medicine, 2014, 8(1): 1-5.
Xinghua Gao, Hongduo Chen. Hyperthermia on skin immune system and its application in the treatment of human papillomavirus-infected skin diseases. Front. Med., 2014, 8(1): 1-5.
Fever-range (39β°C to 40β°C) and heat shock (41β°C to 43β°C) temperatureIncreases antigen uptake and phagocytosis by DCs and macrophagesStimulates antigen processing by increasing the expression of immunoproteasome, lmp2, and lmp7Augments cross-presentation in DCs and primes naive CD8+ T cells to form CTLsInduces DC activation and maturationEnhances the migration of DCs to draining lymph nodesIncreases the expression of TLR4Upregulates the expression of MHC class II, CD80, CD86, and CD40 in DCsPromotes lymphocyte trafficking to lymphoid and tumor tissueRegulates lymphocyte survival and persistence in peripheral tissue by inducing c-FLIP degradationEnhances the effector T cell function: increased expression of CD95L in CTLs and augment NK cell migration and lysisIncreases class I MHC expression on tumor cell surfaceUpregulates the expression of tumor antigensInduces expression of HSPs that provide “danger signal” for DC activationEnhances the susceptibility of tumor cells to CTL-mediated lysis
Cytotoxic temperature (>43β°C)Creates an antigen source to induce an anti-tumor immune response
Tab.2
1
Gao XH, Chen HD. Hyperthermia: recognition, prevention and treatment. New York: Nova publishers, 2012
2
Horowitz M. Genomics and proteomics of heat acclimation. Front Biosci 2010; 2(1): 1068-1080 doi: 10.2741/S118 pmid:20515841
3
Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature 2005; 438(7066): 310-317 doi: 10.1038/nature04188 pmid:16292302
4
Rowlands DJ, Frame DJ, Ackerley D, Aina T, Booth BBB, Christensen C, Collins M, Faull N, Forest CE, Grandey BS, Gryspeerdt E, Highwood EJ, Ingram WJ, Knight S, Lopez A, Massey N, McNamara F, Meinshausen N, Piani C, Rosier SM, Sanderson BM, Smith LA, Stone DA, Thurston M, Yamazaki K, Hiro Yamazaki Y, Allen MR. Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nat Geosci 2012; 5(4): 256-260 doi: 10.1038/ngeo1430
5
Bouchama A, Knochel JP. Heat stroke. N Engl J Med 2002; 346(25): 1978-1988 doi: 10.1056/NEJMra011089 pmid:12075060
6
Zhang HG, Mehta K, Cohen P, Guha C. Hyperthermia on immune regulation: a temperature’s story. Cancer Lett 2008; 271(2): 191-204 doi: 10.1016/j.canlet.2008.05.026 pmid:18597930
7
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002; 43(1): 33-56 doi: 10.1016/S1040-8428(01)00179-2 pmid:12098606
8
Kourtis N, Nikoletopoulou V, Tavernarakis N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 2012; 490(7419): 213-218 doi: 10.1038/nature11417 pmid:22972192
9
Kus-Li?kiewicz M, Polańska J, Korfanty J, Olbryt M, Vydra N, Toma A, Wid?ak W. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 2013; 14(1): 456 doi: 10.1186/1471-2164-14-456 pmid:23834426
10
Sugimoto N, Shido O, Matsuzaki K, Ohno-Shosaku T, Hitomi Y, Tanaka M, Sawaki T, Fujita Y, Kawanami T, Masaki Y, Okazaki T, Nakamura H, Koizumi S, Yachie A, Umehara H. Cellular heat acclimation regulates cell growth, cell morphology, mitogen-activated protein kinase activation, and expression of aquaporins in mouse fibroblast cells. Cell Physiol Biochem 2012; 30(2): 450-457 doi: 10.1159/000339038 pmid:22814242
11
Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 2004; 64(4): 442-451 doi: 10.1111/j.1399-0039.2004.00299.x pmid:15361121
12
Chen W, Syldath U, Bellmann K, Burkart V, Kolb H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999; 162(6): 3212-3219 pmid:10092772
13
Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 2002; 168(6): 2997-3003 pmid:11884472
14
Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, van der Zee R. Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 2000; 30(2): 594-603 doi: 10.1002/1521-4141(200002)30:2<594::AID-IMMU594>3.0.CO;2-1 pmid:10671216
15
Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturationsignal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2002; 12(11): 1539-1546 doi: 10.1093/intimm/12.11.1539
16
Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 2000; 30(8): 2211-2215 doi: 10.1002/1521-4141(2000)30:8<2211::AID-IMMU2211>3.0.CO;2-0 pmid:10940912
17
Binder RJ, Anderson KM, Basu S, Srivastava PK. Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 2000; 165(11): 6029-6035 pmid:11086034
18
Wells AD, Malkovsky M. Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 2000; 21(3): 129-132 doi: 10.1016/S0167-5699(99)01558-3 pmid: PMID:10689300
19
Jones EL, Samulski TV, Vujaskovic Z, Prosnitz LR, Dewhirst MW. In: Halperin EC, Perez CA, Brady LW. Principles and Practice of Radiation Oncology. Philadelphia: Lippincott Williams & Wilkins, 2008: 637-668
20
Sneed PK, Hsu IC. Hyperthermia. In: Ko AH, Dollinger M, Rosenbaum EH. Everyone’s Guide to Cancer Therapy: How Cancer is Diagnosed, Treated, and Managed Day to Day . Kansas: Andrews McMeel Publishing, 2008: 98-100
21
Bicher JI, Al-Bussam N, Wolfstein RS. Thermoradiotherapy with curative intent—breast, head, neck and prostate tumors. Dtsch Z Onkol 2006; 38(3): 116-122 doi: 10.1055/s-2006-952049
Li X, Gao XH, Jin L, Wang Y, Hong Y, McHepange UO, Wang X, Jiang Y, Wei H, Chen HD. Local hyperthermia could induce migrational maturation of Langerhans cells in condyloma acuminatum. J Dermatol Sci 2009; 54(2): 121-123 doi: 10.1016/j.jdermsci.2008.12.004 pmid:19155157
24
Wang X, Gao XH, Li X, Hong Y, Qi R, Chen HD, Zhang L, Wei H. Local hyperthermia induces apoptosis of keratinocytes in both normal skin and condyloma acuminata via different pathways. Apoptosis 2009; 14(5): 721-728 doi: 10.1007/s10495-009-0344-8 pmid:19363704
25
Zhu LL, Gao XH, Qi R, Hong Y, Li X, Wang X, McHepange UO, Zhang L, Wei H, Chen HD. Local hyperthermia could induce endogenous interferons gene expression via JAK-STATs signaling pathway in condyloma acuminate. Antiviral Res 2010; 88(2): 187-192 doi: 10.1016/j.antiviral.2010.08.012 pmid:20797409
26
Huo W, Li GH, Qi RQ, Zhang L, Yan XX, Chen HD, Gao XH. Clinical and immunologic results of local hyperthermia at 44 °C for extensive genital warts in patients with diabetes mellitus. Int J Hyperthermia 2013; 29(1): 17-20 doi: 10.3109/02656736.2012.758874 pmid:23311375
27
Zhang L, Wang YR, Hong YX, Xu YQ, Zhang L, Li XD, Xiao T, Lu DQ, Chen HD, Gao XH. Temporal effect of local hyperthermia on murine contact hypersensitivity. Chin Med J (Engl) 2013; 126(8): 1555-1559 pmid:23595394
28
zur Hausen H. Papillomaviruses—to vaccination and beyond. Biochemistry (Mosc) 2008; 73(5): 498-503 doi: 10.1134/S0006297908050027 pmid:18605974
29
Huo W, Gao XH, Sun XP, Qi RQ, Hong Y, Mchepange UO, Li XD, Xiao BH, Lin JP, Jiang Y, Zhang L, Li YH, Xiao T, Chen JZ, Chen HD. Local hyperthermia at 44 °C for the treatment of plantar warts: a randomized, patient-blinded, placebo-controlled trial. J Infect Dis 2010; 201(8): 1169-1172 doi: 10.1086/651506 pmid:20199243
30
Li XD, Zhang C, Hong YX, Zhang DS, Wei HC, Chen HD, Gao XH. Local hyperthermia treatment of extensive viral warts in Darier disease: a case report and literature review. Int J Hyperthermia 2012; 28(5): 451-455 doi: 10.3109/02656736.2012.677929 pmid:22690793
31
Ma Y, Huo W, Hong YX, Chen HD, Gao XH. Successful clearance of facial warts with local hyperthermia. Dermatol Ther 2012; 25(4): 386-388 doi: 10.1111/j.1529-8019.2012.01470.x pmid:22950567
32
Huo W, Di ZH, Xiao BH, Qi RQ, Weiland M, Gao XH. Clearance of genital warts in pregnant women. Dermatol Ther 2013 (Epub ahead of print).