Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Recent evidences suggested that cyclic guanosine monophosphate-specific phosphodiesterase 5 (PDE5) inhibitor represents an important therapeutic target for cardiovascular diseases. Whether and how it ameliorates cardiac fibrosis, a major cause of diastolic dysfunction and heart failure, is unknown. The purpose of this study was to investigate the effects of PDE5 inhibitor on cardiac fibrosis. We assessed cardiac fibrosis and pathology in mice subjected to transverse aortic constriction (TAC). Oral sildenafil, a PDE5 inhibitor, was administered in the therapy group. In control mice, 4 weeks of TAC induced significant cardiac dysfunction, cardiac fibrosis, and cardiac fibroblast activation (proliferation and transformation to myofibroblasts). Sildenafil treatment markedly prevented TAC-induced cardiac dysfunction, cardiac fibrosis and cardiac fibroblast activation but did not block TAC-induced transforming growth factor-β1 (TGF-β1) production and phosphorylation of Smad2/3. In isolated cardiac fibroblasts, sildenafil blocked TGF-β1-induced cardiac fibroblast transformation, proliferation and collagen synthesis. Furthermore, we found that sildenafil induced phosphorylated cAMP response element binding protein (CREB) and reduced CREB-binding protein 1 (CBP1) recruitment to Smad transcriptional complexes. PDE5 inhibition prevents cardiac fibrosis by reducing CBP1 recruitment to Smad transcriptional complexes through CREB activation in cardiac fibroblasts.
Kai H, Kuwahara F, Tokuda K, Imaizumi T. Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 2005; 28(6): 483–490
https://doi.org/10.1291/hypres.28.483
pmid: 16231753
6
Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation2002; 106(1): 130–135
https://doi.org/10.1161/01.CIR.0000020689.12472.E0
pmid: 12093782
7
Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res2008; 102(2): 185–192
https://doi.org/10.1161/CIRCRESAHA.107.157677
pmid: 17991884
8
Shi X, Yang X, Chen D, Chang Z, Cao X. Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J Biol Chem1999; 274(19): 13711–13717
https://doi.org/10.1074/jbc.274.19.13711
pmid: 10224145
Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med2005; 11(2): 214–222
https://doi.org/10.1038/nm1175
pmid: 15665834
12
Hassan MA, Ketat AF. Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol2005; 5(1): 10
https://doi.org/10.1186/1471-2210-5-10
pmid: 15813973
13
Pérez NG, Piaggio MR, Ennis IL, Garciarena CD, Morales C, Escudero EM, Cingolani OH, Chiappe de Cingolani G, Yang XP, Cingolani HE. Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension2007; 49(5): 1095–1103
https://doi.org/10.1161/HYPERTENSIONAHA.107.087759
pmid: 17339532
14
Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation2007; 116(3): 238–248
https://doi.org/10.1161/CIRCULATIONAHA.106.655266
pmid: 17606845
15
Pokreisz P, Vandenwijngaert S, Bito V, Van den Bergh A, Lenaerts I, Busch C, Marsboom G, Gheysens O, Vermeersch P, Biesmans L, Liu X, Gillijns H, Pellens M, Van Lommel A, Buys E, Schoonjans L, Vanhaecke J, Verbeken E, Sipido K, Herijgers P, Bloch KD, Janssens SP. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation2009; 119(3): 408–416
https://doi.org/10.1161/CIRCULATIONAHA.108.822072
pmid: 19139381
16
deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp2010; (38): e1729
pmid: 20410870
17
Ni L, Zhou C, Duan Q, Lv J, Fu X, Xia Y, Wang DW. β-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS ONE2011; 6(11): e27294
https://doi.org/10.1371/journal.pone.0027294
pmid: 22073308
18
Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation1993; 88(6): 2849–2861
https://doi.org/10.1161/01.CIR.88.6.2849
pmid: 8252698
19
Wang H, Lin L, Jiang J, Wang Y, Lu ZY, Bradbury JA, Lih FB, Wang DW, Zeldin DC. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther2003; 307(2): 753–764
https://doi.org/10.1124/jpet.103.052787
pmid: 12975498
20
Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol2005; 45(4): 608–616
https://doi.org/10.1016/j.jacc.2004.10.067
pmid: 15708711
21
Hammermeister KE, DeRouen TA, Dodge HT. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation1979; 59(3): 421–430
https://doi.org/10.1161/01.CIR.59.3.421
pmid: 761323
Isono M, Chen S, Hong SW, Iglesias-de la Cruz MC, Ziyadeh FN. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun2002; 296(5): 1356–1365
https://doi.org/10.1016/S0006-291X(02)02084-3
pmid: 12207925
25
Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J1998; 17(11): 3091–3100
https://doi.org/10.1093/emboj/17.11.3091
pmid: 9606191
Buxton IL, Duan D. Cyclic GMP/protein kinase G phosphorylation of Smad3 blocks transforming growth factor-beta-induced nuclear Smad translocation: a key antifibrogenic mechanism of atrial natriuretic peptide. Circ Res2008; 102(2): 151–153
https://doi.org/10.1161/CIRCRESAHA.107.170217
pmid: 18239144
30
Lu Z, Xu X, Hu X, Lee S, Traverse JH, Zhu G, Fassett J, Tao Y, Zhang P, dos Remedios C, Pritzker M, Hall JL, Garry DJ, Chen Y. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation2010; 121(13): 1474–1483
https://doi.org/10.1161/CIRCULATIONAHA.109.906818
pmid: 20308615
31
Nagayama T, Hsu S, Zhang M, Koitabashi N, Bedja D, Gabrielson KL, Takimoto E, Kass DA. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol2009; 53(2): 207–215
https://doi.org/10.1016/j.jacc.2008.08.069
pmid: 19130990
32
Hsu S, Nagayama T, Koitabashi N, Zhang M, Zhou L, Bedja D, Gabrielson KL, Molkentin JD, Kass DA, Takimoto E. Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovasc Res2009; 81(2): 301–309
https://doi.org/10.1093/cvr/cvn324
pmid: 19029137
33
Schiller M, Verrecchia F, Mauviel A. Cyclic adenosine 3′,5′-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Oncogene2003; 22(55): 8881–8890
https://doi.org/10.1038/sj.onc.1206871
pmid: 14654784
34
Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell1989; 59(4): 675–680
https://doi.org/10.1016/0092-8674(89)90013-5
pmid: 2573431
35
Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W 3rd, Vale WW, Montminy MR. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature1989; 337(6209): 749–752
https://doi.org/10.1038/337749a0
pmid: 2521922
36
Liu X, Sun SQ, Hassid A, Ostrom RS. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol2006; 70(6): 1992–2003
https://doi.org/10.1124/mol.106.028951
pmid: 16959941
37
Zhang X, Yan G, Ji J, Wu J, Sun X, Shen J, Jiang H, Wang H. PDE5 inhibitor promotes melanin synthesis through the PKG pathway in B16 melanoma cells. J Cell Biochem2012; 113(8): 2738–2743
https://doi.org/10.1002/jcb.24147
pmid: 22441938