Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2015, Vol. 9 Issue (3): 312-321   https://doi.org/10.1007/s11684-015-0401-3
  本期目录
Disabled homolog 2 is required for migration and invasion of prostate cancer cells
Yinyin Xie1,Yuanliang Zhang1,Lu Jiang1,Mengmeng Zhang1,Zhiwei Chen1,Dan Liu2,Qiuhua Huang1,*()
1. State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1815 KB)   HTML
Abstract

Disabled homolog 2 (DAB2) is frequently deleted or epigenetically silenced in many human cancer cells. Therefore, DAB2 has always been regarded as a tumor suppressor gene. However, the role of DAB2 in tumor progression and metastasis remains unclear. In this study, DAB2 expression was upregulated along with human prostate cancer (PCa) progression. DAB2 overexpression or knockdown effects in LNCaP and PC3 cell lines were verified to address the biological functions of DAB2 in PCa progression and metastasis. LNCaP and PC3 cell lines were generated from human PCa cells with low and high metastatic potentials, respectively. The results showed that DAB2 shRNA knockdown can inhibit the migratory and invasive abilities of PC3 cells, as well as the tumorigenicity, whereas DAB2 overexpression enhanced LNCaP cell migration and invasion. Further investigation showed that DAB2 regulated the cell migration associated genes in PC3 cells, and the differential DAB2 expression between LNCaP and PC3 cells was partly regulated by histone 4 acetylation. Therefore, DAB2 may play an important role in PCa progression and metastasis.

Key wordsDAB2    prostate cancer    migration    invasion    acetylation
收稿日期: 2015-03-20      出版日期: 2015-08-26
Corresponding Author(s): Qiuhua Huang   
 引用本文:   
. [J]. Frontiers of Medicine, 2015, 9(3): 312-321.
Yinyin Xie,Yuanliang Zhang,Lu Jiang,Mengmeng Zhang,Zhiwei Chen,Dan Liu,Qiuhua Huang. Disabled homolog 2 is required for migration and invasion of prostate cancer cells. Front. Med., 2015, 9(3): 312-321.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-015-0401-3
https://academic.hep.com.cn/fmd/CN/Y2015/V9/I3/312
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69–90
https://doi.org/10.3322/caac.20107 pmid: 21296855
2 Jilg CA, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, Drendel V, Imhof A, Jung M, Franz H, H?lz S, Kr?nig M, Müller JM, Schüle R. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget 2014; 5(24): 12646–12664
pmid: 25504435
3 Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, Rao JS. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 2005; 280(43): 36529–36540
https://doi.org/10.1074/jbc.M503111200 pmid: 16127174
4 Xie S, Xie Y, Zhang Y, Huang Q. Effects of miR-145 on the migration and invasion of prostate cancer PC3 cells by targeting DAB2. Hereditas (Beijing) (Yi Chuan)2014; 36(1): 50–57 (in Chinese)
https://doi.org/10.3724/SP.J.1005.2014.00050 pmid: 24846918
5 Mok SC, Wong KK, Chan RK, Lau CC, Tsao SW, Knapp RC, Berkowitz RS. Molecular cloning of differentially expressed genes in human epithelial ovarian cancer. Gynecol Oncol 1994; 52(2): 247–252
https://doi.org/10.1006/gyno.1994.1040 pmid: 8314147
6 Fu L, Rab A, Tang LP, Rowe SM, Bebok Z, Collawn JF. Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator. Biochem J 2012; 441(2): 633–643
https://doi.org/10.1042/BJ20111566 pmid: 21995445
7 Moore R, Cai KQ, Tao W, Smith ER, Xu XX. Differential requirement for Dab2 in the development of embryonic and extra-embryonic tissues. BMC Dev Biol 2013; 13(1): 39
https://doi.org/10.1186/1471-213X-13-39 pmid: 24168030
8 Jiang Y, Luo W, Howe PH. Dab2 stabilizes Axin and attenuates Wnt/β-catenin signaling by preventing protein phosphatase 1 (PP1)-Axin interactions. Oncogene 2009; 28(33): 2999–3007
https://doi.org/10.1038/onc.2009.157 pmid: 19581931
9 Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010; 12(3): 286–293
pmid: 20154680
10 Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890
https://doi.org/10.1016/j.cell.2009.11.007 pmid: 19945376
11 Zhang Z, Chen Y, Tang J, Xie X. Frequent loss expression of dab2 and promotor hypermethylation in human cancers: a meta-analysis and systematic review. Pak J Med Sci 2014; 30(2): 432–437
pmid: 24772157
12 Mok SC, Chan WY, Wong KK, Cheung KK, Lau CC, Ng SW, Baldini A, Colitti CV, Rock CO, Berkowitz RS. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene 1998; 16(18): 2381–2387
https://doi.org/10.1038/sj.onc.1201769 pmid: 9620555
13 Sheng Z, Sun W, Smith E, Cohen C, Sheng Z, Xu XX. Restoration of positioning cintrol following disabled-2 expression in ovarian and breast tumor cells. Oncogene 2000; 19(42): 4847–4854
pmid: 11039902
14 Chao A, Lin CY, Lee YS, Tsai CL, Wei PC, Hsueh S, Wu TI, Tsai CN, Wang CJ, Chao AS, Wang TH, Lai CH. Regulation of ovarian cancer progression by microRNA-187 through targeting disabled homolog-2. Oncogene 2012; 31(6): 764–775
https://doi.org/10.1038/onc.2011.269 pmid: 21725366
15 Teckchandani A, Toida N, Goodchild J, Henderson C, Watts J, Wollscheid B, Cooper JA. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration. J Cell Biol 2009; 186(1): 99–111
https://doi.org/10.1083/jcb.200812160 pmid: 19581412
16 Chetrit D, Ziv N, Ehrlich M. Dab2 regulates clathrin assembly and cell spreading. Biochem J 2009; 418(3): 701–715
https://doi.org/10.1042/BJ20081288 pmid: 19000037
17 Orlandini M, Nucciotti S, Galvagni F, Bardelli M, Rocchigiani M, Petraglia F, Oliviero S. Morphogenesis of human endothelial cells is inhibited by DAB2 via Src. FEBS Lett 2008; 582(17): 2542– 2548
https://doi.org/10.1016/j.febslet.2008.06.025 pmid: 18582465
18 Zhang Y, Xie S, Zhou Y, Xie Y, Liu P, Sun M, Xiao H, Jin Y, Sun X, Chen Z, Huang Q, Chen S. H3K36 histone methyltransferase Setd2 is required for murine embryonic stem cell differentiation toward endoderm. Cell Reports 2014; 8(6): 1989–2002
https://doi.org/10.1016/j.celrep.2014.08.031 pmid: 25242323
19 Liu Y, Song N, Ren K, Meng S, Xie Y, Long Q, Chen X, Zhao X. Expression loss and revivification of RhoB gene in ovary carcinoma carcinogenesis and development. PLoS ONE 2013; 8(11): e78417
https://doi.org/10.1371/journal.pone.0078417 pmid: 24223801
20 Hanker LC, Karn T, Holtrich U, Graeser M, Becker S, Reinhard J, Ruckh?berle E, Gevensleben H, Rody A. Prognostic impact of fascin-1 (FSCN1) in epithelial ovarian cancer. Anticancer Res 2013; 33(2): 371–377
pmid: 23393326
21 Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Naya Y, Ichikawa T, Seki N. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 2011; 38(4): 1093–1101
pmid: 21258769
22 Fu H, Wen JF, Hu ZL, Luo GQ, Ren HZ. Knockdown of fascin1 expression suppresses the proliferation and metastasis of gastric cancer cells. Pathology 2009; 41(7): 655–660
https://doi.org/10.3109/00313020903273100 pmid: 20001345
23 Murray MY, Birkland TP, Howe JD, Rowan AD, Fidock M, Parks WC, Gavrilovic J. Macrophage migration and invasion is regulated by MMP10 expression. PLoS ONE 2013; 8(5): e63555
https://doi.org/10.1371/journal.pone.0063555 pmid: 23691065
24 Xie XM, Zhang ZY, Yang LH, Yang DL, Tang N, Zhao HY, Xu HT, Li QC, Wang EH. Aberrant hypermethylation and reduced expression of disabled-2 promote the development of lung cancers. Int J Oncol 2013; 43(5): 1636–1642
pmid: 24002585
25 Prunier C, Howe PH. Disabled-2 (Dab2) is required for transforming growth factor β-induced epithelial to mesenchymal transition (EMT). J Biol Chem 2005; 280(17): 17540–17548
https://doi.org/10.1074/jbc.M500974200 pmid: 15734730
26 Smith ER, Capo-chichi CD, He J, Smedberg JL, Yang DH, Prowse AH, Godwin AK, Hamilton TC, Xu XX. Disabled-2 mediates c-Fos suppression and the cell growth regulatory activity of retinonic acid in embryonic carcinoma cells. J Biol Chem 2001; 276(50): 47303–47310
https://doi.org/10.1074/jbc.M106158200 pmid: 11577091
27 Morris SM, Cooper JA. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2001; 2(2): 111–123
https://doi.org/10.1034/j.1600-0854.2001.020206.x pmid: 11247302
28 Xu XX, Yi T, Tang B, Lambeth JD. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene 1998; 16(12): 1561–1569
https://doi.org/10.1038/sj.onc.1201678 pmid: 9569023
29 Hocevar BA, Prunier C, Howe PH. Disabled-2 (Dab2) mediates transforming growth factor β (TGFβ)-stimulated fibronectin synthesis through TGFβ-activated kinase 1 and activation of the JNK pathway. J Biol Chem 2005; 280(27): 25920–25927
https://doi.org/10.1074/jbc.M501150200 pmid: 15894542
30 Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci 2004; 117( 20): 4619–4628
https://doi.org/10.1242/jcs.01481 pmid: 15371522
31 Hocevar BA, Smine A, Xu XX, Howe PH. The adaptor molecule disabled-2 links the transforming growth factor b receptors to the Smad pathway. EMBO J 2001; 20(11): 2789–2801
https://doi.org/10.1093/emboj/20.11.2789 pmid: 11387212
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed