1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China 2. Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial–mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte–endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Xiao J, Liu D, Jiao W , Guo J, Wang X, Zhang X , Lu S, Zhao Z. Effects of microRNA-346 on epithelial-mesenchymal transition in mouse podocytes. Gene 2015; 560(2): 195–199 https://doi.org/10.1016/j.gene.2015.02.001
pmid: 25661065
103
Zhang Y, Xiao HQ, Wang Y , Yang ZS , Dai LJ, Xu YC. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice. Exp Ther Med 2015; 10(1): 106–112
pmid: 26170919
104
Puthanveetil P, Chen S, Feng B , Gautam A , Chakrabarti S . Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 2015; 19(6): 1418–1425 https://doi.org/10.1111/jcmm.12576
pmid: 25787249
105
Alvarez ML, Khosroheidari M, Eddy E , Kiefer J . Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 2013; 8(10): e77468 https://doi.org/10.1371/journal.pone.0077468
pmid: 24204837
106
Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 2011; 6(4): e18671 https://doi.org/10.1371/journal.pone.0018671
pmid: 21526116
Sapienza C, Lee J, Powell J , Erinle O , Yafai F , Reichert J , Siraj ES , Madaio M . DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 2011; 6(1): 20–28 https://doi.org/10.4161/epi.6.1.13362
pmid: 21150313
Haider DG, Peric S, Friedl A , Fuhrmann V , Wolzt M , Hörl WH , Soleiman A . Kidney biopsy in patients with diabetes mellitus. Clin Nephrol 2011; 76(3): 180–185 https://doi.org/10.5414/CN106955
pmid: 21888854
4
Tervaert TW, Mooyaart AL, Amann K , Cohen AH , Cook HT , Drachenberg CB , Ferrario F , Fogo AB , Haas M, de Heer E, Joh K , Noël LH , Radhakrishnan J , Seshan SV , Bajema IM , Bruijn JA; Renal Pathology Society. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010; 21(4): 556–563 https://doi.org/10.1681/ASN.2010010010
pmid: 20167701
5
Zhang L, Long J, Jiang W , Shi Y, He X, Zhou Z , Li Y, Yeung RO, Wang J , Matsushita K , Coresh J , Zhao MH , Wang H. Trends in chronic kidney disease in China. N Engl J Med 2016; 375(9): 905–906 https://doi.org/10.1056/NEJMc1602469
pmid: 27579659
Kanasaki K, Taduri G, Koya D . Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013; 4: 7 https://doi.org/10.3389/fendo.2013.00007
pmid: 23390421
8
Liu F, Guo J, Zhang Q , Liu D, Wen L, Yang Y , Yang L, Liu Z. The expression of tristetraprolin and its relationship with urinary proteins in patients with diabetic nephropathy. PLoS One 2015; 10(10): e0141471 https://doi.org/10.1371/journal.pone.0141471
pmid: 26517838
9
Sun L, Kanwar YS. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int 2015; 88(4): 662–665 https://doi.org/10.1038/ki.2015.250
pmid: 26422621
da Silva Cristino Cordeiro V, de Bem GF , da Costa CA , Santos IB , de Carvalho LC , Ognibene DT , da Rocha AP , de Carvalho JJ , de Moura RS , Resende AC . Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress. Eur J Nutr. 2017 Jan 20. [Epub ahead of print] doi: 10.1007/s00394-016-1371-1 https://doi.org/10.1007/s00394-016-1371-1
pmid: 28105508.
12
Barutta F, Bruno G, Grimaldi S , Gruden G . Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48(3): 730–742 https://doi.org/10.1007/s12020-014-0437-1
pmid: 25273317
13
Pichler R, Afkarian M, Dieter BP , Tuttle KR . Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 2017; 312(4): F716–F731
pmid: 27558558
14
Mudaliar H, Pollock C, Panchapakesan U . Role of Toll-like receptors in diabetic nephropathy. Clin Sci (Lond) 2014; 126(10): 685–694 https://doi.org/10.1042/CS20130267
pmid: 24490813
15
Xu XX, Qi XM, Zhang W , Zhang CQ , Wu XX, Wu YG, Wang K , Shen JJ . Effects of total glucosides of paeony on immune regulatory toll-like receptors TLR2 and 4 in the kidney from diabetic rats. Phytomedicine 2014; 21(6): 815–823 https://doi.org/10.1016/j.phymed.2013.12.003
pmid: 24462407
16
Jheng HF, Tsai PJ, Chuang YL , Shen YT , Tai TA, Chen WC, Chou CK , Ho LC, Tang MJ, Lai KT , Sung JM , Tsai YS . Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech 2015; 8(10): 1311–1321 https://doi.org/10.1242/dmm.019398
pmid: 26398934
17
Lopez-Parra V, Mallavia B, Lopez-Franco O , Ortiz-Muñoz G , Oguiza A , Recio C , Blanco J , Nimmerjahn F , Egido J , Gomez-Guerrero C . Fc g receptor deficiency attenuates diabetic nephropathy. J Am Soc Nephrol 2012; 23(9): 1518–1527 https://doi.org/10.1681/ASN.2011080822
pmid: 22859852
18
Herrera M, Söderberg M, Sabirsh A , Valastro B , Mölne J , Santamaria B , Valverde AM , Guionaud S , Heasman S , Bigley A , Jermutus L , Rondinone C , Coghlan M , Baker D , Quinn CM . Inhibition of T-cell activation by the CTLA4-Fc Abatacept is sufficient to ameliorate proteinuric kidney disease. Am J Physiol Renal Physiol 2017; 312(4): F748–F759
pmid: 27440778
19
Hu Z, Zhou Q, Zhang C , Fan S, Cheng W, Zhao Y , Shao F, Wang HW, Sui SF , Chai J. Structural and biochemical basis for induced self-propagation of NLRC4. Science 2015; 350(6259): 399–404 https://doi.org/10.1126/science.aac5489
pmid: 26449475
20
Shi JX, Li JS, Hu R , Shi Y, Su X, Li Q , Zhang F . CNOT7/hCAF1 is involved in ICAM-1 and IL-8 regulation by tristetraprolin. Cell Signal 2014; 26(11): 2390–2396 https://doi.org/10.1016/j.cellsig.2014.07.020
pmid: 25038453
21
Gaba A, Grivennikov SI, Do MV , Stumpo DJ , Blackshear PJ , Karin M . Cutting edge: IL-10-mediated tristetraprolin induction is part of a feedback loop that controls macrophage STAT3 activation and cytokine production. J Immunol 2012; 189(5): 2089–2093 https://doi.org/10.4049/jimmunol.1201126
pmid: 22865915
22
Lee HH, Yoon NA, Vo MT , Kim CW, Woo JM, Cha HJ , Cho YW, Lee BJ, Cho WJ , Park JW . Tristetraprolin down-regulates IL-17 through mRNA destabilization. FEBS Lett 2012; 586(1): 41–46 https://doi.org/10.1016/j.febslet.2011.11.021
pmid: 22138182
23
Molle C, Zhang T, Ysebrant de Lendonck L, Gueydan C , Andrianne M , Sherer F , Van Simaeys G , Blackshear PJ , Leo O, Goriely S. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J Exp Med 2013; 210(9): 1675–1684 https://doi.org/10.1084/jem.20120707
pmid: 23940256
24
Shi JX, Su X, Xu J , Zhang WY , Shi Y. HuR post-transcriptionally regulates TNF-α-induced IL-6 expression in human pulmonary microvascular endothelial cells mainly via tristetraprolin. Respir Physiol Neurobiol 2012; 181(2): 154–161 https://doi.org/10.1016/j.resp.2012.02.011
pmid: 22426177
25
Chen X, Wei Z, Wang W , Yan R, Xu X, Cai Q . Role of RNA-binding protein tristetraprolin in tumor necrosis factor-α mediated gene expression. Biochem Biophys Res Commun 2012; 428(3): 327–332 https://doi.org/10.1016/j.bbrc.2012.09.033
pmid: 22995314
26
Schichl YM, Resch U, Hofer-Warbinek R , de Martin R . Tristetraprolin impairs NF-κB/p65 nuclear translocation. J Biol Chem 2009; 284(43): 29571–29581 https://doi.org/10.1074/jbc.M109.031237
pmid: 19654331
27
Liang J, Lei T, Song Y , Yanes N , Qi Y, Fu M. RNA-destabilizing factor tristetraprolin negatively regulates NF-κB signaling. J Biol Chem 2009; 284(43): 29383–29390 https://doi.org/10.1074/jbc.M109.024745
pmid: 19738286
28
Yang M, Yang BO, Gan H , Li X, Xu J, Yu J , Gao L, Li F. Anti-inflammatory effect of 1,25-dihydroxyvitamin D3 is associated with crosstalk between signal transducer and activator of transcription 5 and the vitamin D receptor in human monocytes. Exp Ther Med 2015; 9(5): 1739–1744
pmid: 26136886
29
Zhang X, Zhou M, Guo Y , Zhou Y. 1,25-Dihydroxyvitamin D(3) promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. Biomed Res Int 2015; 2015:157834
30
Toffoli B, Gilardi F, Winkler C , Soderberg M , Kowalczuk L , Arsenijevic Y , Bamberg K , Bonny O , Desvergne B . Nephropathy in Pparg-null mice highlights PPAR g systemic activities in metabolism and in the immune system. PLoS One 2017; 12(2): e0171474 https://doi.org/10.1371/journal.pone.0171474
pmid: 28182703
31
Wang Y, Borchert ML, Deluca HF . Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney Int 2012; 81(10): 993–1001 https://doi.org/10.1038/ki.2011.463
pmid: 22278022
32
Xie X, Li Z, Pi M , Wu J, Zeng W, Zuo L , Zha Y. Down-regulation of p38 MAPK and collagen by 1, 25-(OH)2-VD3 in rat models of diabetic nephropathy. Chin J Cellular Mol Immunol (Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi) 2016; 32(7): 931–935 (in Chinese)
pmid: 27363275
33
Guan X, Yang H, Zhang W , Wang H, Liao L. Vitamin D receptor and its protective role in diabetic nephropathy. Chin Med J (Engl) 2014; 127(2): 365–369
pmid: 24438630
34
Yang M, Xu J, Yu J , Yang B, Gan H, Li S , Li X. Anti-inflammatory effects of 1,25-dihydroxyvitamin D3 in monocytes cultured in serum from patients with type 2 diabetes mellitus and diabetic nephropathy with uremia via Toll-like receptor 4 and nuclear factor- kB p65. Mol Med Rep 2015; 12(6): 8215–8222
35
Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 2010; 6(2): 94–101 https://doi.org/10.1038/nrendo.2009.266
pmid: 20098449
Østergaard J , Thiel S , Gadjeva M , Hansen TK , Rasch R , Flyvbjerg A . Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice. Diabetologia 2007; 50(7): 1541–1549 https://doi.org/10.1007/s00125-007-0686-0
pmid: 17473913
38
Ostergaard J A , Ruseva M M , Malik T H . Increased autoreactivity of the complement-activating molecule mannan-binding lectin in a type 1 diabetes model. J Diabetes Res 2016; 2016:1825738
39
Østergaard JA , Thiel S , Hovind P , Holt CB , Parving HH , Flyvbjerg A , Rossing P , Hansen TK . Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study. Diabetologia 2014; 57(10): 2201–2207 https://doi.org/10.1007/s00125-014-3332-7
pmid: 25064124
40
Jenny L, Ajjan R, King R , Thiel S , Schroeder V . Plasma levels of mannan-binding lectin-associated serine proteases MASP-1 and MASP-2 are elevated in type 1 diabetes and correlate with glycaemic control. Clin Exp Immunol 2015; 180(2): 227–232 https://doi.org/10.1111/cei.12574
pmid: 25533914
41
Yang L, Brozovic S, Xu J , Long Y, Kralik PM, Waigel S , Zacharias W , Zheng S , Epstein PN . Inflammatory gene expression in OVE26 diabetic kidney during the development of nephropathy. Nephron, Exp Nephrol 2011; 119(1): e8–e20 https://doi.org/10.1159/000324407
pmid: 21606656
42
Uesugi N, Sakata N, Nangaku M , Abe M, Horiuchi S, Hisano S , Iwasaki H . Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation. Am J Kidney Dis 2004; 44(2): 224–238 https://doi.org/10.1053/j.ajkd.2004.04.027
pmid: 15264180
43
Fortpied J, Vertommen D, Van Schaftingen E. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. Diabetes Metab Res Rev 2010; 26(4): 254–260 https://doi.org/10.1002/dmrr.1079
pmid: 20503257
44
Qin X, Goldfine A, Krumrei N , Grubissich L , Acosta J , Chorev M , Hays AP , Halperin JA . Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 2004; 53(10): 2653–2661 https://doi.org/10.2337/diabetes.53.10.2653
pmid: 15448097
45
Acosta J, Hettinga J, Flückiger R , Krumrei N , Goldfine A , Angarita L , Halperin J . Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci USA 2000; 97(10): 5450–5455 https://doi.org/10.1073/pnas.97.10.5450
pmid: 10805801
46
Maki T, Maeda Y, Sonoda N , Makimura H , Kimura S , Maeno S , Takayanagi R , Inoguchi T . Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: a role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Metabolism 2017; 71: 33–45 https://doi.org/10.1016/j.metabol.2017.02.013
pmid: 28521876
47
Quadri SS, Culver SA, Li C , Siragy HM . Interaction of the renin angiotensin and cox systems in the kidney. Front Biosci (Schol Ed) 2016; 8(2): 215–226 https://doi.org/10.2741/s459
pmid: 27100703
48
Kawanami D, Matoba K, Utsunomiya K . Signaling pathways in diabetic nephropathy. Histol Histopathol 2016; 31(10): 1059– 1067
pmid: 27094540
49
Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells 2015; 4(4): 631–652 https://doi.org/10.3390/cells4040631
pmid: 26473930
Yamaguchi Y, Iwano M, Suzuki D , Nakatani K , Kimura K , Harada K , Kubo A, Akai Y, Toyoda M , Kanauchi M , Neilson EG , Saito Y . Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis 2009; 54(4): 653–664 https://doi.org/10.1053/j.ajkd.2009.05.009
pmid: 19615802
52
Anil Kumar P, Welsh GI, Saleem MA , Menon RK . Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5: 151 https://doi.org/10.3389/fendo.2014.00151
pmid: 25309512
53
Guo J, Xia N, Yang L , Zhou S, Zhang Q, Qiao Y , Liu Z. GSK-3β and vitamin D receptor are involved in β-catenin and snail signaling in high glucose-induced epithelial-mesenchymal transition of mouse podocytes. Cell Physiol Biochem 2014; 33(4): 1087–1096 https://doi.org/10.1159/000358678
pmid: 24732862
54
Wan J, Li P, Liu DW , Chen Y, Mo HZ, Liu BG , Chen WJ , Lu XQ, Guo J, Zhang Q , Qiao YJ , Liu ZS, Wan GR. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Mol Med Rep 2016; 14(2): 1771–1784
pmid: 27357417
55
Zhou S, Wang P, Qiao Y , Ge Y, Wang Y, Quan S , Yao R, Zhuang S, Wang LJ , Du Y, Liu Z, Gong R . Genetic and pharmacologic targeting of glycogen synthase kinase 3β reinforces the Nrf2 antioxidant defense against podocytopathy. J Am Soc Nephrol 2016; 27(8): 2289–2308 https://doi.org/10.1681/ASN.2015050565
pmid: 26647425
56
Dai H, Zhang Y, Yuan L , Wu J, Ma L, Shi H . CTGF mediates high-glucose induced epithelial-mesenchymal transition through activation of β-catenin in podocytes. Ren Fail 2016; 38(10): 1711–1716 https://doi.org/10.3109/0886022X.2016.1158069
pmid: 26984259
57
Lv Z, Hu M, Zhen J , Lin J, Wang Q, Wang R . Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol 2013; 45(2): 255–264 https://doi.org/10.1016/j.biocel.2012.11.003
pmid: 23153508
58
Li G, Li CX, Xia M , Ritter JK , Gehr TW , Boini K , Li PL. Enhanced epithelial-to-mesenchymal transition associated with lysosome dysfunction in podocytes: role of p62/Sequestosome 1 as a signaling hub. Cell Physiol Biochem 2015; 35(5): 1773–1786 https://doi.org/10.1159/000373989
pmid: 25832774
59
Okamura DM, Pennathur S, Pasichnyk K , López-Guisa JM , Collins S , Febbraio M , Heinecke J , Eddy AA . CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol 2009; 20(3): 495–505 https://doi.org/10.1681/ASN.2008010009
pmid: 19211715
60
Hou Y, Wu M, Wei J , Ren Y, Du C, Wu H , Li Y, Shi Y. CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochem Biophys Res Commun 2015; 468(1-2): 281–286 https://doi.org/10.1016/j.bbrc.2015.10.112
pmid: 26505798
61
Tang WB, Ling GH, Sun L , Zhang K , Zhu X, Zhou X, Liu FY . Smad anchor for receptor activation regulates high glucose-induced EMT via modulation of Smad2 and Smad3 activities in renal tubular epithelial cells. Nephron 2015; 130(3): 213–220 https://doi.org/10.1159/000431105
pmid: 26159183
62
Huang H, Zheng F, Dong X , Wu F, Wu T, Li H . Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro. Exp Ther Med 2017; 13(1): 254–262
pmid: 28123498
63
Duan SB, Liu GL, Wang YH , Zhang JJ . Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Ren Fail 2012; 34(10): 1244–1251 https://doi.org/10.3109/0886022X.2012.718711
pmid: 23009159
64
Pang XX, Bai Q, Wu F , Chen GJ , Zhang AH , Tang CS . Urotensin II induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Kidney Blood Press Res 2016; 41(4): 434–449 https://doi.org/10.1159/000443445
pmid: 27467277
65
Qi W, Mu J, Luo ZF , Zeng W, Guo YH, Pang Q , Ye ZL, Liu L, Yuan FH , Feng B. Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 2011; 60(5): 594–603 https://doi.org/10.1016/j.metabol.2010.07.021
pmid: 20817186
66
Inagi R, Ishimoto Y, Nangaku M . Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nat Rev Nephrol 2014; 10(7): 369–378 https://doi.org/10.1038/nrneph.2014.67
pmid: 24752014
67
Cao AL, Wang L, Chen X , Wang YM , Guo HJ, Chu S, Liu C , Zhang XM , Peng W. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest 2016; 96(6): 610–622 https://doi.org/10.1038/labinvest.2016.44
pmid: 26999661
68
Fu S, Yang L, Li P , Hofmann O , Dicker L , Hide W, Lin X, Watkins SM , Ivanov AR , Hotamisligil GS . Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011; 473(7348): 528–531 https://doi.org/10.1038/nature09968
pmid: 21532591
69
Kang S, Dahl R, Hsieh W , Shin A, Zsebo KM, Buettner C , Hajjar RJ , Lebeche D . Small molecular allosteric activator of the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J Biol Chem 2016; 291(10): 5185–5198 https://doi.org/10.1074/jbc.M115.705012
pmid: 26702054
70
Guo H, Cao A, Chu S , Wang Y, Zang Y, Mao X , Wang H, Wang Y, Liu C , Zhang X , Peng W. Astragaloside IV attenuates podocyte apoptosis mediated by endoplasmic reticulum stress through upregulating Sarco/endoplasmic reticulum Ca(2+)-ATPase 2 expression in diabetic nephropathy. Front Pharmacol 2016; 7: 500 https://doi.org/10.3389/fphar.2016.00500
pmid: 28066247
Distelhorst CW, Bootman MD. Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease. Cell Calcium 2011; 50(3): 234–241 https://doi.org/10.1016/j.ceca.2011.05.011
pmid: 21628070
79
Kar P, Mirams GR, Christian HC , Parekh AB . Control of NFAT isoform activation and NFAT-dependent gene expression through two coincident and spatially segregated intracellular Ca(2+) signals. Mol Cell 2016; 64(4): 746–759 https://doi.org/10.1016/j.molcel.2016.11.011
pmid: 27863227
80
Ivanova H, Vervliet T, Missiaen L , Parys JB , De Smedt H , Bultynck G . Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 2014; 1843(10): 2164–2183 https://doi.org/10.1016/j.bbamcr.2014.03.007
pmid: 24642269
81
Yasuda M, Tanaka Y, Kume S , Morita Y , Chin-Kanasaki M , Araki H , Isshiki K , Araki S , Koya D, Haneda M, Kashiwagi A , Maegawa H , Uzu T. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta 2014; 1842(7): 1097–1108 https://doi.org/10.1016/j.bbadis.2014.04.001
pmid: 24726883
108
Li X, Li C, Sun G. Histone acetylation and its modifiers in the pathogenesis of diabetic nephropathy. J Diabetes Res 2016; 2016:4065382
82
Xu S, Nam SM, Kim JH , Das R, Choi SK, Nguyen TT , Quan X, Choi SJ, Chung CH , Lee EY, Lee IK, Wiederkehr A , Wollheim CB , Cha SK, Park KS. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis 2015; 6(11): e1976 https://doi.org/10.1038/cddis.2015.331
pmid: 26583319
83
Yuan Z, Cao A, Liu H , Guo H, Zang Y, Wang Y , Wang Y, Wang H, Yin P , Peng W. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J Cell Biochem 2017 Feb 9. [Epub ahead of print] doi: 10.1002/jcb.25930 https://doi.org/10.1002/jcb.25930
pmid: 28181698
84
Tunçdemir M , Öztürk M . Regulation of the Ku70 and apoptosis-related proteins in experimental diabetic nephropathy. Metabolism 2016; 65(10): 1466–1477 https://doi.org/10.1016/j.metabol.2016.06.010
pmid: 27621182
85
Noriega-Cisneros R , Cortés-Rojo C , Manzo-Avalos S , Clemente-Guerrero M , Calderón-Cortés E , Salgado-Garciglia R , Montoya-Pérez R , Boldogh I , Saavedra-Molina A . Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes. Mitochondrion 2013; 13(6): 835–840 https://doi.org/10.1016/j.mito.2013.05.012
pmid: 23751425
86
Pollock JS, Pollock DM. Endothelin, nitric oxide, and reactive oxygen species in diabetic kidney disease. Contrib Nephrol 2011; 172: 149–159 https://doi.org/10.1159/000329054
pmid: 21893996
Nistala R, Whaley-Connell A, Sowers JR . Redox control of renal function and hypertension. Antioxid Redox Signal 2008; 10(12): 2047–2089 https://doi.org/10.1089/ars.2008.2034
pmid: 18821850
89
Sedeek M, Callera G, Montezano A , Gutsol A , Heitz F , Szyndralewiez C , Page P, Kennedy CR, Burns KD , Touyz RM , Hébert RL . Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2010; 299(6): F1348–F1358 https://doi.org/10.1152/ajprenal.00028.2010
pmid: 20630933
90
Sedeek M, Nasrallah R, Touyz RM , Hébert RL . NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 2013; 24(10): 1512–1518 https://doi.org/10.1681/ASN.2012111112
pmid: 23970124
91
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010; 11(12): 872–884 https://doi.org/10.1038/nrm3013
pmid: 21102612
92
Wang W, Wang Y, Long J , Wang J, Haudek SB, Overbeek P , Chang BH , Schumacker PT , Danesh FR . Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 2012; 15(2): 186–200 https://doi.org/10.1016/j.cmet.2012.01.009
pmid: 22326220
93
Liu D, Xu M, Ding LH , Lv LL, Liu H, Ma KL , Zhang AH , Crowley SD , Liu BC. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 2014; 57: 7–19 https://doi.org/10.1016/j.biocel.2014.09.018
pmid: 25281528
94
Zhuang Y, Yasinta M, Hu C , Zhao M, Ding G, Bai M , Yang L, Ni J, Wang R , Jia Z, Huang S, Zhang A . Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury. Am J Physiol Renal Physiol 2015; 308(8): F857–F866 https://doi.org/10.1152/ajprenal.00203.2014
pmid: 25694478
95
Zhuang Y, Ding G, Zhao M , Bai M, Yang L, Ni J , Wang R, Jia Z, Huang S , Zhang A . NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J Biol Chem 2014; 289(36): 25101–25111 https://doi.org/10.1074/jbc.M114.578260
pmid: 25059664
96
Xiao L, Zhu X, Yang S , Liu F, Zhou Z, Zhan M , Xie P, Zhang D, Li J , Song P, Kanwar YS, Sun L . Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes 2014; 63(4): 1366–1380 https://doi.org/10.2337/db13-1412
pmid: 24353183
97
Wu L, Wang Q, Guo F , Ma X, Ji H, Liu F , Zhao Y, Qin G. MicroRNA-27a induces mesangial cell injury by targeting of PPAR g, and its in vivo knockdown prevents progression of diabetic nephropathy. Sci Rep 2016; 6(1): 26072 https://doi.org/10.1038/srep26072
pmid: 27184517
98
He F, Peng F, Xia X , Zhao C, Luo Q, Guan W , Li Z, Yu X, Huang F . miR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 2014; 57(8): 1726–1736 https://doi.org/10.1007/s00125-014-3282-0
pmid: 24908566
99
McClelland AD, Herman-Edelstein M, Komers R , Jha JC, Winbanks CE, Hagiwara S , Gregorevic P , Kantharidis P , Cooper ME . miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129(12): 1237–1249 https://doi.org/10.1042/CS20150427
pmid: 26415649
100
Huang Y, Liu Y, Li L , Su B, Yang L, Fan W , Yin Q, Chen L, Cui T , Zhang J , Lu Y, Cheng J, Fu P , Liu F. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol 2014; 15(1): 142 https://doi.org/10.1186/1471-2369-15-142
pmid: 25182190
101
Meng S, Cao JT, Zhang B , Zhou Q, Shen CX, Wang CQ . Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53(1): 64–72 https://doi.org/10.1016/j.yjmcc.2012.04.003
pmid: 22525256
109
Sun G D, Cui W P, Guo Q Y, Mu X. Histone lysine methylation in diabetic nephropathy. J Diabetes Res 2014; 2014:654148
110
Gao C, Chen G, Liu L , Dong RW . Impact of high glucose and proteasome inhibitor MG132 on histone H2A and H2B ubiquitination in rat glomerular mesangial cells. 2013: 2013, 589474
111
Badal SS, Wang Y, Long J , Corcoran DL , Chang BH , Truong LD , Kanwar YS , Overbeek PA , Danesh FR . miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun 2016; 7: 12076 https://doi.org/10.1038/ncomms12076
pmid: 27350436
112
Hale LJ, Hurcombe J, Lay A , Santamaría B , Valverde AM , Saleem MA , Mathieson PW , Welsh GI , Coward RJ . Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am J Physiol Renal Physiol 2013; 305(2): F182–F188 https://doi.org/10.1152/ajprenal.00548.2012
pmid: 23698113
113
Gnudi L, Benedetti S, Woolf AS , Long DA . Vascular growth factors play critical roles in kidney glomeruli. Clin Sci (Lond) 2015; 129(12): 1225–1236 https://doi.org/10.1042/CS20150403
pmid: 26561594
114
Singh A, Ramnath RD, Foster RR , Wylie EC , Fridén V , Dasgupta I , Haraldsson B , Welsh GI , Mathieson PW , Satchell SC . Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One 2013; 8(2): e55852 https://doi.org/10.1371/journal.pone.0055852
pmid: 23457483
115
Singh A, Fridén V, Dasgupta I , Foster RR , Welsh GI , Tooke JE , Haraldsson B , Mathieson PW , Satchell SC . High glucose causes dysfunction of the human glomerular endothelial glycocalyx. Am J Physiol Renal Physiol 2011; 300(1): F40–F48 https://doi.org/10.1152/ajprenal.00103.2010
pmid: 20980411
116
Salmon AH, Ferguson JK, Burford JL , Gevorgyan H , Nakano D , Harper SJ , Bates DO , Peti-Peterdi J . Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 2012; 23(8): 1339–1350 https://doi.org/10.1681/ASN.2012010017
pmid: 22797190
117
Gnudi L, Coward RJ, Long DA . Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab 2016; 27(11): 820–830 https://doi.org/10.1016/j.tem.2016.07.002
pmid: 27470431
118
Oltean S, Qiu Y, Ferguson JK , Stevens M , Neal C, Russell A, Kaura A , Arkill KP , Harris K , Symonds C , Lacey K , Wijeyaratne L , Gammons M , Wylie E , Hulse RP , Alsop C , Cope G, Damodaran G, Betteridge KB , Ramnath R , Satchell SC , Foster RR , Ballmer-Hofer K , Donaldson LF , Barratt J , Baelde HJ , Harper SJ , Bates DO , Salmon AH . Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. J Am Soc Nephrol 2015; 26(8): 1889–1904 https://doi.org/10.1681/ASN.2014040350
pmid: 25542969
119
Garsen M, Lenoir O, Rops AL , Dijkman HB , Willemsen B , van Kuppevelt TH , Rabelink TJ , Berden JH , Tharaux PL , van der Vlag J . Endothelin-1 induces proteinuria by heparanase-mediated disruption of the glomerular glycocalyx. J Am Soc Nephrol 2016; 27(12): 3545–3551 https://doi.org/10.1681/ASN.2015091070
pmid: 27026367
120
de Zeeuw D, Coll B, Andress D , Brennan JJ , Tang H, Houser M, Correa-Rotter R , Kohan D , Lambers Heerspink HJ , Makino H , Perkovic V , Pritchett Y , Remuzzi G , Tobe SW , Toto R, Viberti G, Parving HH . The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol 2014; 25(5): 1083–1093 https://doi.org/10.1681/ASN.2013080830
pmid: 24722445