Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway
Jun Song1,2,3, Yeping Huang1, Wenjian Zheng4, Jing Yan1, Min Cheng5, Ruxing Zhao2, Li Chen2, Cheng Hu1(), Weiping Jia1()
1. Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2. Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China 3. Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China 4. Department of Geriatrics, Qingdao Haici Medical Treatment Group, Qingdao 266000, China 5. Huangdao Disease Prevention and Control Center, Qingdao 266555, China
Oxidative stress induced by free fatty acid aggravates endothelial injury, which leads to diabetic cardiovascular complications. Reduction of intracellular oxidative stress may attenuate these pathogenic processes. The dietary polyphenol resveratrol reportedly exerts potential protective effects against endothelial injury. This study determined whether resveratrol can reduce the palmitic acid (PA)-induced generation of reactive oxygen species (ROS) and further explored the underlying molecular mechanisms. We found that resveratrol significantly reduced the PA-induced endothelial ROS levels in human aortic endothelial cells. Resveratrol also induced endothelial cell autophagy, which mediated the effect of resveratrol on ROS reduction. Resveratrol stimulated autophagy via the AMP-activated protein kinase (AMPK)-mTOR pathway. Taken together, these data suggest that resveratrol prevents PA-induced intracellular ROS by autophagy regulation via the AMPK-mTOR pathway. Thus, the induction of autophagy by resveratrol may provide a novel therapeutic candidate for cardioprotection in metabolic syndrome.
Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018; 100: 1–19 https://doi.org/10.1016/j.vph.2017.05.005
pmid: 28579545
2
Morales CR, Pedrozo Z, Lavandero S, Hill JA. Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal 2014; 20(3): 507–518 https://doi.org/10.1089/ars.2013.5359
pmid: 23641894
3
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50(3): 537–567 https://doi.org/10.1007/s12020-015-0709-4
pmid: 26271514
4
Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA, Vecchione C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 2013; 61: 215–226 https://doi.org/10.1016/j.fct.2013.07.021
pmid: 23872128
Xu M, Xue W, Ma Z, Bai J, Wu S. Resveratrol reduces the incidence of portal vein system thrombosis after splenectomy in a rat fibrosis model. Oxid Med Cell Longev 2016; 2016:7453849 https://doi.org/10.1155/2016/7453849
pmid: 27433290.
8
Han SY, Choi YJ, Kang MK, Park JH, Kang YH. Resveratrol suppresses cytokine production linked to FcεRI-MAPK activation in IgE-antigen complex-exposed basophilic mast cells and mice. Am J Chin Med 2015; 43(8): 1605–1623 https://doi.org/10.1142/S0192415X15500913
pmid: 26621445
9
Diaz-Gerevini GT, Repossi G, Dain A, Tarres MC, Das UN, Eynard AR. Beneficial action of resveratrol: how and why? Nutrition 2016; 32(2): 174–178 https://doi.org/10.1016/j.nut.2015.08.017
pmid: 26706021
10
Novelle MG, Wahl D, Diéguez C, Bernier M, de Cabo R. Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev 2015; 21: 1–15 https://doi.org/10.1016/j.arr.2015.01.002
pmid: 25625901
11
Antonioli M, Di Rienzo M, Piacentini M, Fimia GM. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci 2017; 42(1): 28–41 https://doi.org/10.1016/j.tibs.2016.09.008
pmid: 27765496
Gu J, Hu W, Song ZP, Chen YG, Zhang DD, Wang CQ. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int Immunopharmacol 2016; 32: 1–7 https://doi.org/10.1016/j.intimp.2016.01.002
pmid: 26774212
14
Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 2003; 278(33): 31000–31006 https://doi.org/10.1074/jbc.M300643200
pmid: 12788940
15
He C, Li H, Viollet B, Zou MH, Xie Z. AMPK suppresses vascular inflammation in vivo by inhibiting signal transducer and activator of transcription-1. Diabetes 2015; 64(12): 4285–4297 https://doi.org/10.2337/db15-0107
pmid: 25858560
16
Youn JY, Wang T, Cai H. An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production. Circ Res 2009; 104(1): 50–59 https://doi.org/10.1161/CIRCRESAHA.108.178467
pmid: 19038867
17
Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA. Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem 2002; 277(36): 32552–32557 https://doi.org/10.1074/jbc.M204512200
pmid: 12107173
18
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30(2): 214–226 https://doi.org/10.1016/j.molcel.2008.03.003
pmid: 18439900
19
Zhang L, Wei J, Ren L, Zhang J, Wang J, Jing L, Yang M, Yu Y, Sun Z, Zhou X. Endosulfan induces autophagy and endothelial dysfunction via the AMPK/mTOR signaling pathway triggered by oxidative stress. Environ Pollut 2017; 220(Pt B): 843–852 https://doi.org/10.1016/j.envpol.2016.10.067
pmid: 27814983
20
Jo HK, Kim GW, Jeong KJ, Kim DY, Chung SH. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull 2014; 37(8): 1341–1351 https://doi.org/10.1248/bpb.b14-00281
pmid: 25087956
21
Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, Coselli JS, Chen L, Wang XL, Zhang Y, Shen YH. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes 2009; 58(10): 2246–2257 https://doi.org/10.2337/db08-1512
pmid: 19592618
22
Koshkin V, Wang X, Scherer PE, Chan CB, Wheeler MB. Mitochondrial functional state in clonal pancreatic β-cells exposed to free fatty acids. J Biol Chem 2003; 278(22): 19709–19715 https://doi.org/10.1074/jbc.M209709200
pmid: 12642585
23
Lee Y, Lee HY, Gustafsson AB. Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol 2012; 60(2): 118–124 https://doi.org/10.1097/FJC.0b013e318256cdd0
pmid: 22472907
24
Elnakish MT, Hassanain HH, Janssen PM, Angelos MG, Khan M. Emerging role of oxidative stress in metabolic syndrome and cardiovascular diseases: important role of Rac/NADPH oxidase. J Pathol 2013; 231(3): 290–300 https://doi.org/10.1002/path.4255
pmid: 24037780
25
Hutcheson R, Rocic P. The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: the great exploration. Exp Diabetes Res 2012; 2012: 271028 https://doi.org/10.1155/2012/271028
pmid: 22829804.
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12(1): 1–222 https://doi.org/10.1080/15548627.2015.1100356
pmid: 26799652
30
Gu J, Hu W, Song ZP, Chen YG, Zhang DD, Wang CQ. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int Immunopharmacol 2016; 32: 1–7 https://doi.org/10.1016/j.intimp.2016.01.002
pmid: 26774212
31
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta 2014; 1840(4): 1331–1344 https://doi.org/10.1016/j.bbagen.2013.10.034
pmid: 24513455
32
Fan X, Wang J, Hou J, Lin C, Bensoussan A, Chang D, Liu J, Wang B. Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med 2015; 13:92 https://doi.org/10.1186/s12967-015-0450-z
pmid: 25884210
33
Zheng XT, Wu ZH, Wei Y, Dai JJ, Yu GF, Yuan F, Ye LC. Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis. Mol Cell Biochem 2017; 425(1-2): 125–138 https://doi.org/10.1007/s11010-016-2868-x
pmid: 27848074