Hybrid polymer biomaterials for bone tissue regeneration
Bo Lei1, Baolin Guo1, Kunal J. Rambhia2, Peter X. Ma1,2,3,4,5()
1. Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China 2. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA 3. Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA 4. Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA 5. Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
. [J]. Frontiers of Medicine, 2019, 13(2): 189-201.
Bo Lei, Baolin Guo, Kunal J. Rambhia, Peter X. Ma. Hybrid polymer biomaterials for bone tissue regeneration. Front. Med., 2019, 13(2): 189-201.
ZPan, J Ding. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2(3): 366–377 https://doi.org/10.1098/rsfs.2011.0123
pmid: 23741612
9
JCIgwe, PE Mikael, SPNukavarapu. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J Tissue Eng Regen Med 2014; 8(2): 131–142 https://doi.org/10.1002/term.1506
pmid: 22689304
JVenkatesan, PA Vinodhini, PNSudha, SKKim. Chitin and chitosan composites for bone tissue regeneration. Adv Food Nutr Res 2014;73: 59–81 PMID: 25300543 https://doi.org/10.1016/B978-0-12-800268-1.00005-6
FSun, H Zhou, JLee. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011; 7(11): 3813–3828 https://doi.org/10.1016/j.actbio.2011.07.002
pmid: 21784182
14
KGkioni, SCG Leeuwenburgh, TELDouglas, AGMikos, JAJansen. Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev 2010; 16(6): 577–585 https://doi.org/10.1089/ten.teb.2010.0462
pmid: 20735319
15
QWei, J Lu, QWang, HFan, X Zhang. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates. Nanotechnology 2015; 26(11): 115605 https://doi.org/10.1088/0957-4484/26/11/115605
pmid: 25719911
16
TNVo, SR Shah, SLu, AMTatara, EJLee, TT Roh, YTabata, AGMikos. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 2016; 83: 1–11 https://doi.org/10.1016/j.biomaterials.2015.12.026
pmid: 26773659
17
MRNejadnik, AG Mikos, JAJansen, SCGLeeuwenburgh. Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles. J Biomed Mater Res A 2012; 100(5): 1316–1323 https://doi.org/10.1002/jbm.a.34071
pmid: 22374694
18
SSamavedi, AR Whittington, ASGoldstein. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 2013; 9(9): 8037–8045 https://doi.org/10.1016/j.actbio.2013.06.014
pmid: 23791671
SKango, S Kalia, ACelli, JNjuguna, YHabibi, RKumar. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 2013; 38(8): 1232–1261 https://doi.org/10.1016/j.progpolymsci.2013.02.003
22
SPina, JM Oliveira, RLReis. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 2015; 27(7): 1143–1169 https://doi.org/10.1002/adma.201403354
pmid: 25580589
SShinzato, T Nakamura, KAndo, TKokubo, YKitamura. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). J Biomed Mater Res 2002; 60(4): 556–563 https://doi.org/10.1002/jbm.10098
pmid: 11948514
26
VAKoleganova, SM Bernier, SJDixon, ASRizkalla. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone. J Biomed Mater Res A 2006; 77(3): 572–579 https://doi.org/10.1002/jbm.a.30561
pmid: 16506172
PKerativitayanan, AK Gaharwar. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomater 2015; 26: 34–44 https://doi.org/10.1016/j.actbio.2015.08.025
pmid: 26297886
29
XZhao, Y Wu, YDu, XChen, B Lei, YXue, PXMa. A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J Mater Chem B Mater Biol Med 2015; 3(16): 3222–3233 https://doi.org/10.1039/C4TB01693A
30
YZDu, M Yu, JGe, PXMa, XF Chen, BLei. Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly(citrates)-based hybrid biodegradable elastomers for bone regeneration. Adv Funct Mater 2015; 25(31): 5016–5029 https://doi.org/10.1002/adfm.201501712
31
YZDu, J Ge, YPShao, PXMa, XF Chen, BLei. Development of silica grafted poly(1,8-octanediol-co-citrates) hybrid elastomers with highly tunable mechanical properties and biocompatibility. J Mater Chem B Mater Biol Med 2015; 3(15): 2986–3000 https://doi.org/10.1039/C4TB02089H
ELHopley, S Salmasi, DMKalaskar, AMSeifalian. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv 2014; 32(5): 1000–1014 https://doi.org/10.1016/j.biotechadv.2014.05.003
pmid: 24858314
34
XLiu, JM Holzwarth, PXMa. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 2012; 12(7): 911–919 https://doi.org/10.1002/mabi.201100466
pmid: 22396193
BLei, XF Chen, YJWang, NZhao. Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Mater Lett 2009; 63(20): 1719–1721 https://doi.org/10.1016/j.matlet.2009.04.041
37
BLei, X Chen, YWang, NZhao, C Du, LFang. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A 2010; 94(4): 1091–1099
pmid: 20694976
38
XFChen, B Lei, YJWang, NZhao. Morphological control and in vitro bioactivity of nanoscale bioactive glasses. J Non-Cryst Solids 2009; 355(13): 791–796 https://doi.org/10.1016/j.jnoncrysol.2009.02.005
39
SMZakaria, SH Sharif Zein, MROthman, FYang, JA Jansen. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B Rev 2013; 19(5): 431–441 https://doi.org/10.1089/ten.teb.2012.0624
pmid: 23557483
40
ARBoccaccini, M Erol, WJStark, DMohn, ZK Hong, JFMano. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 2010; 70(13): 1764–1776 https://doi.org/10.1016/j.compscitech.2010.06.002
41
BLei, KH Shin, DYNoh, YHKoh, WY Choi, HEKim. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res Part B Appl Biomater 2012; 100B (4): 967–975 https://doi.org/10.1002/jbm.b.32659
42
BLei, XF Chen, XHan, JAZhou. Versatile fabrication of nanoscale sol-gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 2012; 22(33): 16906–16913 https://doi.org/10.1039/c2jm31384g
43
BLei, KH Shin, DYNoh, IHJo, YH Koh, HEKim, SEKim. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Mater Sci Eng C 2013; 33(3): 1102–1108 https://doi.org/10.1016/j.msec.2012.11.039
pmid: 23827548
44
SIRoohani-Esfahani, SNouri-Khorasani, ZLu, R Appleyard, HZreiqat. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010; 31(21): 5498–5509 https://doi.org/10.1016/j.biomaterials.2010.03.058
pmid: 20398935
MPeter, NS Binulal, SVNair, NSelvamurugan, HTamura, RJayakumar. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 2010; 158(2): 353–361 https://doi.org/10.1016/j.cej.2010.02.003
47
MMozafari, F Moztarzadeh, MRabiee, MAzami, SMaleknia, MTahriri, ZMoztarzadeh, NNezafati. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 2010; 36(8): 2431–2439 https://doi.org/10.1016/j.ceramint.2010.07.010
48
ZHong, RL Reis, JFMano. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater 2008; 4(5): 1297–1306 https://doi.org/10.1016/j.actbio.2008.03.007
pmid: 18439885
CHe, G Xiao, XJin, CSun, PX Ma. Electrodeposition on nanofibrous polymer scaffolds: rapid mineralization, tunable calcium phosphate composition and topography. Adv Funct Mater 2010; 20(20): 3568–3576 https://doi.org/10.1002/adfm.201000993
pmid: 21673827
51
BLei, L Wang, XFChen, SKChae. Biomimetic and molecular level-based silicate bioactive glass-gelatin hybrid implants for loading-bearing bone fixation and repair. J Mater Chem B Mater Biol Med 2013; 1(38): 5153–5162 https://doi.org/10.1039/c3tb20941e
52
JChen, W Que, YXing, BLei. Molecular level-based bioactive glass-poly (caprolactone) hybrids monoliths with porous structure for bone tissue repair. Ceram Int 2015; 41(2): 3330–3334 https://doi.org/10.1016/j.ceramint.2014.10.147
53
MXie, J Ge, BLei, QZhang, XChen, PX Ma. Star-shaped, biodegradable, and elastomeric PLLA-PEG-POSS hybrid membrane with biomineralization activity for guiding bone tissue regeneration. Macromol Biosci 2015; 15(12): 1656–1662 https://doi.org/10.1002/mabi.201500237
pmid: 26241149
54
JChen, Y Du, WQue, YXing, X Chen, BLei. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration. Colloids Surf B Biointerfaces 2015; 136: 126–133 https://doi.org/10.1016/j.colsurfb.2015.08.053
pmid: 26381696
55
JChen, YZ Du, WXQue, YLXing, BLei. Content-dependent biomineralization activity and mechanical properties based on polydimethylsiloxane-bioactive glass-poly(caprolactone) hybrids monoliths for bone tissue regeneration. Rsc Adv. 2015; 5(75): 61309–61317 https://doi.org/10.1039/C5RA09075J
56
BLei, KH Shin, YWMoon, DYNoh, YH Koh, YJin, HEKim. Synthesis and bioactivity of sol-gel derived porous, bioactive glass microspheres using chitosan as novel biomolecular template. J Am Ceram Soc 2012; 95(1): 30–33 https://doi.org/10.1111/j.1551-2916.2011.04918.x
57
OMahony, O Tsigkou, CIonescu, CMinelli, LLing, R Hanly, MESmith, MMStevens, JRJones. Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 2010; 20(22): 3835–3845 https://doi.org/10.1002/adfm.201000838
58
BLei, KH Shin, IHJo, YHKoh, HE Kim. Highly porous gelatin-silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique. Mater Chem Phys 2014; 145(3): 397–402 https://doi.org/10.1016/j.matchemphys.2013.09.057
YMXue, L Wang, YPShao, JYan, XF Chen, BLei. Facile and green fabrication of biomimetic gelatin-siloxane hybrid hydrogel with highly elastic properties for biomedical applications. Chem Eng J 2014; 251: 158–164 https://doi.org/10.1016/j.cej.2014.04.049
61
SDuan, X Yang, FMei, YTang, X Li, YShi, JMao, H Zhang, QCai. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 2015; 103(4): 1424–1435 https://doi.org/10.1002/jbm.a.35283
pmid: 25046153
62
BSitharaman, X Shi, XFWalboomers, HLiao, V Cuijpers, LJWilson, AGMikos, JAJansen. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 2008; 43(2): 362–370 https://doi.org/10.1016/j.bone.2008.04.013
pmid: 18541467
63
SPark, J Park, IJo, SPCho, D Sung, SRyu, MPark, KA Min, JKim, SHong, BH Hong, BSKim. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 2015; 58: 93–102 https://doi.org/10.1016/j.biomaterials.2015.04.027
pmid: 25941786
64
IAWBSiqueira, MAF Corat, BCavalcanti, WARibeiro Neto, AAMartin, REBretas, FRMarciano, AOLobo. In vitro and in vivo studies of novel poly(D,L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration. ACS Appl Mater Interfaces 2015; 7(18): 9385–9398 https://doi.org/10.1021/acsami.5b01066
pmid: 25899398
65
PEMikael, AR Amini, JBasu, MJosefina Arellano-Jimenez, CTLaurencin, MMSanders, CBarry Carter, SPNukavarapu. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater 2014; 9(3): 035001 https://doi.org/10.1088/1748-6041/9/3/035001
pmid: 24687391
66
EHirata, C Ménard-Moyon, EVenturelli, HTakita, FWatari, ABianco, AYokoyama. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology 2013; 24(43): 435101 https://doi.org/10.1088/0957-4484/24/43/435101
pmid: 24077482
67
BDas, P Chattopadhyay, SMaji, AUpadhyay, MDas Purkayastha, CLMohanta, TKMaity, NKarak. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration. Biomed Mater 2015; 10(2): 025011 https://doi.org/10.1088/1748-6041/10/2/025011
pmid: 25886640
68
BLei, KH Shin, YHKoh, HEKim. Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2014; 102(7): 1528–1536 https://doi.org/10.1002/jbm.b.33133
pmid: 24596176
AMoradi, A Dalilottojari, BPingguan-Murphy, IDjordjevic. Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater Des 2013; 50: 446–450 https://doi.org/10.1016/j.matdes.2013.03.026
77
SLLiang, WD Cook, GAThouas, QZChen. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Biomaterials 2010; 31(33): 8516–8529 https://doi.org/10.1016/j.biomaterials.2010.07.105
pmid: 20739061
78
YDu, M Yu, XChen, PXMa, B Lei. Development of biodegradable poly(citrate)-polyhedral oligomeric silsesquioxanes hybrid elastomers with high mechanical properties and osteogenic differentiation activity. ACS Appl Mater Interfaces 2016; 8(5): 3079–3091 https://doi.org/10.1021/acsami.5b10378
pmid: 26765285
79
YDu, Y Xue, PXMa, XChen, B Lei. Biodegradable, elastomeric, and intrinsically photoluminescent poly(silicon-citrates) with high photostability and biocompatibility for tissue regeneration and bioimaging. Adv Healthc Mater 2016; 5(3): 382–392 https://doi.org/10.1002/adhm.201500643
pmid: 26687865
MXie, L Wang, JGe, BGuo, PX Ma. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering. ACS Appl Mater Interfaces 2015; 7(12): 6772–6781 https://doi.org/10.1021/acsami.5b00191
pmid: 25742188
JGHardy, SA Geissler, DAguilar Jr, MKVillancio-Wolter, DJMouser, RCSukhavasi, RCCornelison, LWTien, RCPreda, RSHayden, JKChow, LNguy, DL Kaplan, CESchmidt. Instructive conductive 3D silk foam-based bone tissue scaffolds enable electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol Biosci 2015; 15(11): 1490–1496 https://doi.org/10.1002/mabi.201500171
pmid: 26033953
86
SMeng, Z Zhang, MRouabhia. Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab 2011; 29(5): 535–544 https://doi.org/10.1007/s00774-010-0257-1
pmid: 21327884
87
SMeng, M Rouabhia, ZZhang. Electrical stimulation modulates osteoblast proliferation and bone protein production through heparin-bioactivated conductive scaffolds. Bioelectromagnetics 2013; 34(3): 189–199 https://doi.org/10.1002/bem.21766
pmid: 23124591
88
MYazdimamaghani, M Razavi, MMozafari, DVashaee, HKotturi, LTayebi. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS). J Mater Sci Mater Med 2015; 26(12):274 https://doi.org/10.1007/s10856-015-5599-8
pmid: 26543020
89
JPelto, M Björninen, APälli, ETalvitie, JHyttinen, BMannerström, RSuuronen Seppanen, MKellomäki, SMiettinen, SHaimi. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 2013; 19(7-8): 882–892 https://doi.org/10.1089/ten.tea.2012.0111
pmid: 23126228
ODSchneider, F Weber, TJBrunner, SLoher, MEhrbar, PRSchmidlin, WJStark. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater 2009; 5(5): 1775–1784 https://doi.org/10.1016/j.actbio.2008.11.030
pmid: 19121610
MXie, J Ge, YXue, YDu, B Lei, PXMa. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation. J Mech Behav Biomed Mater 2015; 51: 163–168 https://doi.org/10.1016/j.jmbbm.2015.07.011
pmid: 26253207
95
LCLi, M Yu, PXMa, BLGuo. Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells. J Mater Chem B Mater Biol Med 2016; 4(3): 471–481 https://doi.org/10.1039/C5TB01899D