Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2019, Vol. 13 Issue (1): 69-82   https://doi.org/10.1007/s11684-018-0677-1
  本期目录
High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells
Synat Kang1,2, Yanyan Li1, Yifeng Bao1, Yi Li1,2()
1. State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2115 KB)   HTML
Abstract

Cytokine-activated T cells (CATs) can be easily expanded and are widely applied to cancer immunotherapy. However, the good efficacy of CATs is rarely reported in clinical applications because CATs have no or very low antigen specificity. The low-efficacy problem can be resolved using T cell antigen receptor-engineered CAT (TCR-CAT). Herein, we demonstrate that NY-ESO-1157–165 HLA-A*02:01-specific high-affinity TCR (HAT)-transduced CATs can specifically kill cancer cells with good efficacy. With low micromolar range dissociation equilibrium constants, HAT-transduced CATs showed good specificity with no off-target killing. Furthermore, the high-affinity TCR-CATs delivered significantly better activation and cytotoxicity than the equivalent TCR-engineered T cells (TCR-Ts) in terms of interferon-g and granzyme B production and in vitro cancer cell killing ability. TCR-CAT may be a very good alternative to the expensive TCR-T, which is considered an effective personalized cyto-immunotherapy.

Key wordscytokine-activated T cells    high-affinity T cell receptor    cancer immunotherapy    TCR-CAT
收稿日期: 2018-05-04      出版日期: 2019-03-12
Corresponding Author(s): Yi Li   
 引用本文:   
. [J]. Frontiers of Medicine, 2019, 13(1): 69-82.
Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells. Front. Med., 2019, 13(1): 69-82.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-018-0677-1
https://academic.hep.com.cn/fmd/CN/Y2019/V13/I1/69
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 RAMorgan, ME Dudley, JRWunderlich, MSHughes, JCYang, RMSherry, RERoyal, SLTopalian, USKammula, NPRestifo, ZZheng, ANahvi, CRde Vries, LJRogers-Freezer, SAMavroukakis, SARosenberg. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314(5796): 126–129
https://doi.org/10.1126/science.1129003 pmid: 16946036
2 RAMorgan, N Chinnasamy, DAbate-Daga, AGros, PF Robbins, ZZheng, MEDudley, SAFeldman, JCYang, RMSherry, GQPhan, MSHughes, USKammula, ADMiller, CJHessman, AAStewart, NPRestifo, MMQuezado, MAlimchandani, AZRosenberg, ANath, T Wang, BBielekova, SCWuest, NAkula, FJMcMahon, SWilde, BMosetter, DJSchendel, CMLaurencot, SARosenberg. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36(2): 133–151
https://doi.org/10.1097/CJI.0b013e3182829903 pmid: 23377668
3 PFRobbins, RA Morgan, SAFeldman, JCYang, RMSherry, MEDudley, JRWunderlich, AVNahvi, LJHelman, CLMackall, USKammula, MSHughes, NPRestifo, MRaffeld, CCLee, CL Levy, YFLi, MEl-Gamil, SLSchwarz, CLaurencot, SARosenberg. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29(7): 917–924
https://doi.org/10.1200/JCO.2010.32.2537 pmid: 21282551
4 MPTan, GM Dolton, ABGerry, JEBrewer, ADBennett, NJPumphrey, BKJakobsen, AKSewell. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells. Clin Exp Immunol 2017; 187(1): 124–137
https://doi.org/10.1111/cei.12828 pmid: 27324616
5 LLLanier, G Yu, JHPhillips. Analysis of FcγRIII (CD16) membrane expression and association with CD3ζ and Fc epsilon RI-γ by site-directed mutation. J Immunol 1991; 146(5): 1571–1576
pmid: 1825220
6 YXing, KA Hogquist. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 2012; 4(6): a006957
https://doi.org/10.1101/cshperspect.a006957 pmid: 22661634
7 NLiddy, G Bossi, KJAdams, ALissina, TMMahon, NJHassan, JGavarret, FCBianchi, NJPumphrey, KLadell, EGostick, AKSewell, NMLissin, NEHarwood, PEMolloy, YLi, BJ Cameron, MSami, EEBaston, PTTodorov, SJPaston, REDennis, JVHarper, SMDunn, RAshfield, AJohnson, YMcGrath, GPlesa, CHJune, MKalos, DAPrice, AVuidepot, DDWilliams, DHSutton, BKJakobsen. Monoclonal TCR-redirected tumor cell killing. Nat Med 2012; 18(6): 980–987
https://doi.org/10.1038/nm.2764 pmid: 22561687
8 YZhao, AD Bennett, ZZheng, QJWang, PFRobbins, LYYu, Y Li, PEMolloy, SMDunn, BKJakobsen, SARosenberg, RAMorgan. High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J Immunol 2007; 179(9): 5845–5854
https://doi.org/10.4049/jimmunol.179.9.5845 pmid: 17947658
9 APRapoport, EA Stadtmauer, GKBinder-Scholl, OGoloubeva, DTVogl, SFLacey, AZBadros, AGarfall, BWeiss, JFinklestein, IKulikovskaya, SKSinha, SKronsberg, MGupta, SBond, L Melchiori, JEBrewer, ADBennett, ABGerry, NJPumphrey, DWilliams, HKTayton-Martin, LRibeiro, THoldich, SYanovich, NHardy, JYared, NKerr, S Philip, SWestphal, DLSiegel, BLLevine, BKJakobsen, MKalos, CHJune. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015; 21(8): 914–921
https://doi.org/10.1038/nm.3910 pmid: 26193344
10 PFRobbins, SH Kassim, TLTran, JSCrystal, RAMorgan, SAFeldman, JCYang, MEDudley, JRWunderlich, RMSherry, USKammula, MSHughes, NPRestifo, MRaffeld, CCLee, YF Li, MEl-Gamil, SARosenberg. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 2015; 21(5): 1019–1027
https://doi.org/10.1158/1078-0432.CCR-14-2708 pmid: 25538264
11 IGSchmidt-Wolf, P Lefterova, BAMehta, LPFernandez, DHuhn, KG Blume, ILWeissman, RSNegrin. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol 1993; 21(13): 1673–1679
pmid: 7694868
12 APievani, C Belussi, CKlein, ARambaldi, JGolay, MIntrona. Enhanced killing of human B-cell lymphoma targets by combined use of cytokine-induced killer cell (CIK) cultures and anti-CD20 antibodies. Blood 2011; 117(2): 510–518
https://doi.org/10.1182/blood-2010-06-290858 pmid: 21048157
13 JJMata-Molanes, M Sureda González, B Valenzuela Jiménez, EM Martínez Navarro, A Brugarolas Masllorens. Cancer immunotherapy with cytokine-induced killer cells. Target Oncol 2017; 12(3): 289–299
https://doi.org/10.1007/s11523-017-0489-2 pmid: 28474278
14 GMesiano, M Todorovic, LGammaitoni, VLeuci, LGiraudo Diego, FCarnevale-Schianca, FFagioli, WPiacibello, MAglietta, DSangiolo. Cytokine-induced killer (CIK) cells as feasible and effective adoptive immunotherapy for the treatment of solid tumors. Expert Opin Biol Ther 2012; 12(6): 673–684
https://doi.org/10.1517/14712598.2012.675323 pmid: 22500889
15 IGSchmidt-Wolf, RS Negrin, HPKiem, KGBlume, ILWeissman. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 1991; 174(1): 139–149
https://doi.org/10.1084/jem.174.1.139 pmid: 1711560
16 MTodorovic, G Mesiano, LGammaitoni, VLeuci, LGiraudo Diego, CCammarata, NJordaney, FCarnevale-Schianca, SGallo, FFagioli, WPiacibello, ARElia, YPignochino, CDell’aglio, GGrignani, ACignetti, MAglietta, DSangiolo. Ex vivo allogeneic stimulation significantly improves expansion of cytokine-induced killer cells without increasing their alloreactivity across HLA barriers. J Immunother 2012; 35(7): 579–586
https://doi.org/10.1097/CJI.0b013e31826b1fd9 pmid: 22892454
17 SHDu, Z Li, CChen, WKTan, Z Chi, TWKwang, XHXu, S Wang. Co-expansion of cytokine-induced killer cells and Vg9Vd2 T cells for CAR T-cell therapy. PLoS One 2016; 11(9): e0161820
https://doi.org/10.1371/journal.pone.0161820 pmid: 27598655
18 XGao, Y Mi, NGuo, HXu, L Xu, XGou, WJin. Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy. Front Immunol 2017; 8: 774
https://doi.org/10.3389/fimmu.2017.00774 pmid: 28729866
19 YGuo, W Han. Cytokine-induced killer (CIK) cells: from basic research to clinical translation. Chin J Cancer 2015; 34(3): 99–107
https://doi.org/10.1186/s40880-015-0002-1 pmid: 25962508
20 CSHinrichs, SA Rosenberg. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 2014; 257(1): 56–71
https://doi.org/10.1111/imr.12132 pmid: 24329789
21 AOGure, R Chua, BWilliamson, MGonen, CAFerrera, SGnjatic, GRitter, AJSimpson, YTChen, LJOld, NK Altorki. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 2005; 11(22): 8055–8062
https://doi.org/10.1158/1078-0432.CCR-05-1203 pmid: 16299236
22 YTChen, MJ Scanlan, USahin, OTüreci, AOGure, STsang, BWilliamson, EStockert, MPfreundschuh, LJOld. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997; 94(5): 1914–1918
https://doi.org/10.1073/pnas.94.5.1914 pmid: 9050879
23 CBarrow, J Browning, DMacGregor, IDDavis, SSturrock, AAJungbluth, JCebon. Tumor antigen expression in melanoma varies according to antigen and stage. Clin Cancer Res 2006; 12(3): 764–771
https://doi.org/10.1158/1078-0432.CCR-05-1544 pmid: 16467087
24 SGnjatic, H Nishikawa, AAJungbluth, AOGüre, GRitter, EJäger, AKnuth, YTChen, LJOld. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 2006; 95: 1–30
https://doi.org/10.1016/S0065-230X(06)95001-5 pmid: 16860654
25 PFRobbins, YF Li, MEl-Gamil, YZhao, JA Wargo, ZZheng, HXu, RA Morgan, SAFeldman, LAJohnson, ADBennett, SMDunn, TMMahon, BKJakobsen, SARosenberg. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 2008; 180(9): 6116–6131
https://doi.org/10.4049/jimmunol.180.9.6116 pmid: 18424733
26 SMWhite, M Renda, NYNam, EKlimatcheva, YZhu, J Fisk, MHalterman, BJRimel, HFederoff, SPandya, JDRosenblatt, VPlanelles. Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 1999; 73(4): 2832–2840
pmid: 10074131
27 LSastry, T Johnson, MJHobson, BSmucker, KCornetta. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 2002; 9(17): 1155–1162
https://doi.org/10.1038/sj.gt.3301731 pmid: 12170379
28 ARElia, P Circosta, DSangiolo, CBonini, LGammaitoni, SMastaglio, PGenovese, MGeuna, FAvolio, GInghirami, CTarella, ACignetti. Cytokine-induced killer cells engineered with exogenous T-cell receptors directed against melanoma antigens: enhanced efficacy of effector cells endowed with a double mechanism of tumor recognition. Hum Gene Ther 2015; 26(4): 220–231
https://doi.org/10.1089/hum.2014.112 pmid: 25758764
29 MPTan, AB Gerry, JEBrewer, LMelchiori, JSBridgeman, ADBennett, NJPumphrey, BKJakobsen, DAPrice, KLadell, AKSewell. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol 2015; 180(2): 255–270
https://doi.org/10.1111/cei.12570 pmid: 25496365
30 MRBetts, JM Brenchley, DAPrice, SCDe Rosa, DCDouek, MRoederer, RAKoup. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281(1-2): 65–78
https://doi.org/10.1016/S0022-1759(03)00265-5 pmid: 14580882
31 APievani, G Borleri, DPende, LMoretta, ARambaldi, JGolay, MIntrona. Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 2011; 118(12): 3301–3310
https://doi.org/10.1182/blood-2011-02-336321 pmid: 21821703
32 YMa, YC Xu, LTang, ZZhang, JWang, HX Wang. Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Exp Hematol Oncol 2012; 1(1): 11
https://doi.org/10.1186/2162-3619-1-11 pmid: 23210562
33 JDStone, AS Chervin, DMKranz. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 2009; 126(2): 165–176
https://doi.org/10.1111/j.1365-2567.2008.03015.x pmid: 19125887
34 WCChan, YC Linn. A comparison between cytokine- and bead-stimulated polyclonal T cells: the superiority of each and their possible complementary role. Cytotechnology 2016; 68(4): 735–748
https://doi.org/10.1007/s10616-014-9825-x pmid: 25481728
35 YCLinn, SK Lau, BHLiu, LHNg, HX Yong, KMHui. Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell. Immunology 2009; 126(3): 423–435
https://doi.org/10.1111/j.1365-2567.2008.02910.x pmid: 18778291
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed