What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations
Mara Simopoulou1,2(), Konstantinos Sfakianoudis3, Petroula Tsioulou1, Anna Rapani1, Polina Giannelou1,3, Nikolaos Kiriakopoulos1, Agni Pantou3, Nikolaos Vlahos1, George Anifandis4, Stamatis Bolaris5, Konstantinos Pantos3, Michael Koutsilieris1
1. Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece 2. Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias str., 11528, Athens, Greece 3. Centre for Human Reproduction, Genesis Athens Clinic, Papanikoli, 15232, Athens, Greece 4. Department of Histology and Embryology, Faculty of Medicine, University of Thessaly, 41500, Larisa, Greece 5. Assisted Conception Unit, General-Maternity District Hospital “Elena Venizelou,” Plateia Elenas Venizelou, 11521, Athens, Greece
Assisted reproduction provides a wide spectrum of treatments and strategies addressing infertility. However, distinct groups of infertile patients with unexplained infertility, congenital disorders, and other complex cases pose a challenge in in vitro fertilization (IVF) practices. This special cohort of patients is associated with futile attempts, IVF overuse, and dead ends in management. Cutting edge research on animal models introduced this concept, along with the development of artificial organs with the aim to mimic the respective physiological functions in reproduction. Extrapolation on clinical application leads to the future use of infertility management in humans. To date, the successful clinical application of artificial reproductive organs in humans is not feasible because further animal model studies are required prior to clinical trials. The application of these artificial organs could provide a solution to infertility cases with no other options. This manuscript presents an overview on the current status, future prospects, and considerations on the potential clinical application of artificial ovary, uterus, and gametes in humans. This paper presents how the IVF practice landscape may be shaped and challenged in the future, along with the subsequent concerns in assisted reproductive treatments.
. [J]. Frontiers of Medicine, 2019, 13(6): 627-638.
Mara Simopoulou, Konstantinos Sfakianoudis, Petroula Tsioulou, Anna Rapani, Polina Giannelou, Nikolaos Kiriakopoulos, Agni Pantou, Nikolaos Vlahos, George Anifandis, Stamatis Bolaris, Konstantinos Pantos, Michael Koutsilieris. What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations. Front. Med., 2019, 13(6): 627-638.
JK Min, SA Breheny, V MacLachlan, DL Healy. What is the most relevant standard of success in assisted reproduction? The singleton, term gestation, live birth rate per cycle initiated: the BESST endpoint for assisted reproduction. Hum Reprod 2004; 19(1): 3–7 https://doi.org/10.1093/humrep/deh028
pmid: 14688149
2
J Wang, MV Sauer. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2006; 2(4): 355–364 https://doi.org/10.2147/tcrm.2006.2.4.355
pmid: 18360648
3
JYJ Huang, Z Rosenwaks. Assisted reproductive techniques. In: Rosenwaks Z, Wassarman PM. Human Fertility: Methods and Protocols. New York, NY: Springer New York, 2014: 171–231
4
C Audibert, D Glass. A global perspective on assisted reproductive technology fertility treatment: an 8-country fertility specialist survey. Reprod Biol Endocrinol 2015; 13: 133 https://doi.org/10.1186/s12958-015-0131-z
J Kim, AS Perez, J Claflin, A David, H Zhou, A Shikanov. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice. NPJ Regen Med 2016; 1(1): 16010 https://doi.org/10.1038/npjregenmed.2016.10
pmid: 28856012
7
A Podfigurna-Stopa, A Czyzyk, M Grymowicz, R Smolarczyk, K Katulski, K Czajkowski, B Meczekalski. Premature ovarian insufficiency: the context of long-term effects. J Endocrinol Invest 2016; 39(9): 983–990 https://doi.org/10.1007/s40618-016-0467-z
pmid: 27091671
VM Schmidt, E Isachenko, G Rappl, G Rahimi, B Hanstein, B Morgenstern, P Mallmann, V Isachenko. Construction of human artificial ovary from cryopreserved ovarian tissue: appearance of apoptosis and necrosis after enzymatic isolation of follicles. Cryobiology 2018; 84: 10–14 https://doi.org/10.1016/j.cryobiol.2018.08.011
pmid: PMID:30148986
AS Dawood, HA Salem. Current clinical applications of platelet-rich plasma in various gynecological disorders: an appraisal of theory and practice. Clin Exp Reprod Med 2018; 45(2): 67–74 https://doi.org/10.5653/cerm.2018.45.2.67
pmid: 29984206
12
K Sfakianoudis, M Simopoulou, N Nitsos, A Rapani, A Pantou, T Vaxevanoglou, G Kokkali, M Koutsilieris, K Pantos. A case series on platelet-rich plasma revolutionary management of poor responder patients. Gynecol Obstet Invest 2019; 84(1): 99–106 https://doi.org/DOI:10.1159/000491697
pmid: PMID:30134239
H Ye, T Zheng, W Li, X Li, X Fu, Y Huang, C Hu, J Li, J Huang, Z Liu, L Zheng, Y Zheng. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem 2017; 43(5): 1917–1925 https://doi.org/10.1159/000484114
pmid: 29055950
15
YJ Kim, YY Kim, BC Kang, MS Kim, IK Ko, HC Liu, Z Rosenwaks, SY Ku. Induction of multiple ovulation via modulation of angiotensin II receptors in in vitro ovarian follicle culture models. J Tissue Eng Regen Med 2017; 11(11): 3100–3110 https://doi.org/10.1002/term.2214
pmid: 27717202
16
YY Kim, A Tamadon, SY Ku. Potential use of antiapoptotic proteins and noncoding RNAs for efficient in vitro follicular maturation and ovarian bioengineering. Tissue Eng Part B Rev 2017; 23(2): 142–158 https://doi.org/10.1089/ten.teb.2016.0156
pmid: 27763207
17
V Luyckx, MM Dolmans, J Vanacker, C Legat, C Fortuño Moya, J Donnez, CA Amorim. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril 2014; 101(4): 1149–1156 https://doi.org/10.1016/j.fertnstert.2013.12.025
pmid: 24462059
18
A Tamadon, KH Park, YY Kim, BC Kang, SY Ku. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng Regen Med 2016; 13(5): 447–454 https://doi.org/10.1007/s13770-016-9107-0
pmid: 30603426
19
F Paulini, JMV Vilela, MC Chiti, J Donnez, P Jadoul, MM Dolmans, CA Amorim. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online 2016; 33(3): 425–432 https://doi.org/10.1016/j.rbmo.2016.05.003
pmid: 27210771
20
E Kniazeva, AN Hardy, SA Boukaidi, TK Woodruff, JS Jeruss, LD Shea. Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Sci Rep 2015; 5(1): 17709 https://doi.org/10.1038/srep17709
pmid: 26633657
21
MC Chiti, MM Dolmans, L Mortiaux, F Zhuge, E Ouni, PAK Shahri, E Van Ruymbeke, SD Champagne, J Donnez, CA Amorim. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet 2018; 35(1): 41–48 https://doi.org/10.1007/s10815-017-1091-3
pmid: 29236205
22
MM Laronda, AL Rutz, S Xiao, KA Whelan, FE Duncan, EW Roth, TK Woodruff, RN Shah. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8: 15261 https://doi.org/10.1038/ncomms15261
pmid: 28509899
23
JW Yun, YY Kim, JH Ahn, BC Kang, SY Ku. Use of nonhuman primates for the development of bioengineered female reproductive organs. Tissue Eng Regen Med 2016; 13(4): 323–334 https://doi.org/10.1007/s13770-016-9091-4
pmid: 30603414
24
G Del Priore, S Schlatt, J Malanowska-Stega. Uterus transplant techniques in primates: 10 years’ experience. Exp Clin Transplant 2008; 6(1): 87–94
pmid: 18405252
25
V von Schönfeldt, R Chandolia, R Ochsenkühn, E Nieschlag, L Kiesel, B Sonntag. FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting. Reprod Biol Endocrinol 2012; 10(1): 98 https://doi.org/10.1186/1477-7827-10-98
pmid: 23176179
26
YY Kim, JW Yun, JM Kim, CG Park, Z Rosenwaks, HC Liu, BC Kang, SY Ku. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles. J Investig Med 2016; 64(4): 888–893 https://doi.org/10.1136/jim-2015-000001
pmid: 26980777
27
A Huxley. Brave New World. Reprint edition. New York: Harper Perennial, 1932
28
HKL Johansson, T Svingen, PA Fowler, AM Vinggaard, J Boberg. Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13(7): 400–414 https://doi.org/10.1038/nrendo.2017.36
pmid: 28450750
M Simopoulou, B Asimakopoulos, P Bakas, N Boyadjiev, D Tzanakaki, G Creatsas. Oocyte and embryo vitrification in the IVF laboratory: a comprehensive review. Folia Med (Plovdiv) 2014; 56(3): 161–169 https://doi.org/10.2478/folmed-2014-0023
pmid: 25434072
31
JR Ho, I Woo, K Louie, W Salem, SI Jabara, KA Bendikson, RJ Paulson, K Chung. A comparison of live birth rates and perinatal outcomes between cryopreserved oocytes and cryopreserved embryos. J Assist Reprod Genet 2017; 34(10): 1359–1366 https://doi.org/10.1007/s10815-017-0995-2
pmid: 28718080
32
S Kim, Y Lee, S Lee, T Kim. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci 2018; 61(4): 431–442 https://doi.org/10.5468/ogs.2018.61.4.431
pmid: 30018897
Q Shi, Y Xie, Y Wang, S Li. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep 2017; 7(1): 8538 https://doi.org/10.1038/s41598-017-09005-7
pmid: 28819292
35
FJ Mathias, F D’Souza, S Uppangala, SR Salian, G Kalthur, SK Adiga. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 2014; 60(6): 317–322 https://doi.org/10.3109/19396368.2014.923542
pmid: 24896655
36
F Pacheco, K Oktay. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci 2017; 24(8): 1111–1120 https://doi.org/10.1177/1933719117702251
pmid: 28701069
37
J Perrin, J Saïas-Magnan, F Broussais, R Bouabdallah, C D’Ercole, B Courbiere. First French live-birth after oocyte vitrification performed before chemotherapy for fertility preservation. J Assist Reprod Genet 2016; 33(5): 663–666 https://doi.org/10.1007/s10815-016-0674-8
pmid: 26861964
38
R Dittrich, L Lotz, G Keck, I Hoffmann, A Mueller, MW Beckmann, H van der Ven, M Montag. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 2012; 97(2): 387–390 https://doi.org/10.1016/j.fertnstert.2011.11.047
pmid: 22177311
B Meczekalski, A Czyzyk, M Kunicki, A Podfigurna-Stopa, L Plociennik, G Jakiel, M Maciejewska-Jeske, K Lukaszuk. Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol Invest 2016; 39(11): 1259–1265 https://doi.org/10.1007/s40618-016-0497-6
pmid: 27300031
43
P Ventura-Juncá, I Irarrázaval, AJ Rolle, JI Gutiérrez, RD Moreno, MJ Santos. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48(1): 68 https://doi.org/10.1186/s40659-015-0059-y
pmid: 26683055
C Bulletti, VM Jasonni, S Tabanelli, L Gianaroli, PM Ciotti, AP Ferraretti, C Flamigni. Early human pregnancy in vitro utilizing an artificially perfused uterus. Fertil Steril 1988; 49(6): 991–996 https://doi.org/10.1016/S0015-0282(16)59949-X
pmid: 3371494
46
SC Pak, CH Song, GY So, CH Jang, KH Lee, JY Kim. Extrauterine incubation of fetal goats applying the extracorporeal membrane oxygenation via umbilical artery and vein. J Korean Med Sci 2002; 17(5): 663–668 https://doi.org/10.3346/jkms.2002.17.5.663
pmid: 12378020
47
AK Mittra, NK Choudhary, AS Zadgaonkar. Development of an artificial womb for acoustical simulation of mother’s abdomen. Int J Biomed Eng Technol 2008; 1(3): 315 https://doi.org/10.1504/IJBET.2008.016964
O Nick, E Megan. Construction and test of an artificial uterus for ex situ development of shark embryos. Zoo Biol 2012; 31(2): 197–205 https://doi.org/10.1002/zoo.20422
pmid: 21905089
50
EA Partridge, MG Davey, MA Hornick, PE McGovern, AY Mejaddam, JD Vrecenak, C Mesas-Burgos, A Olive, RC Caskey, TR Weiland, J Han, AJ Schupper, JT Connelly, KC Dysart, J Rychik, HL Hedrick, WH Peranteau, AW Flake. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017; 8: 15112 https://doi.org/10.1038/ncomms15112
pmid: 28440792
51
M Hellström, RR El-Akouri, C Sihlbom, BM Olsson, J Lengqvist, H Bäckdahl, BR Johansson, M Olausson, S Sumitran-Holgersson, M Brännström. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater 2014; 10(12): 5034–5042 https://doi.org/10.1016/j.actbio.2014.08.018
pmid: 25169258
52
SH Lü, HB Wang, H Liu, HP Wang, QX Lin, DX Li, YX Song, CM Duan, LX Feng, CY Wang. Reconstruction of engineered uterine tissues containing smooth muscle layer in collagen/matrigel scaffold in vitro. Tissue Eng Part A 2009; 15(7): 1611–1618 https://doi.org/10.1089/ten.tea.2008.0187
pmid: 19061433
53
I Kisu, M Mihara, K Banno, H Hara, Y Masugi, J Araki, T Iida, Y Yamada, Y Kato, T Shiina, N Suganuma, D Aoki. Uterus allotransplantation in cynomolgus macaque: a preliminary experience with non-human primate models. J Obstet Gynaecol Res 2014; 40(4): 907–918 https://doi.org/10.1111/jog.12302
pmid: 24612366
54
M Brännström, L Johannesson, H Bokström, N Kvarnström, J Mölne, P Dahm-Kähler, A Enskog, M Milenkovic, J Ekberg, C Diaz-Garcia, M Gäbel, A Hanafy, H Hagberg, M Olausson, L Nilsson. Livebirth after uterus transplantation. Lancet 2015; 385(9968): 607–616 https://doi.org/10.1016/S0140-6736(14)61728-1
pmid: 25301505
O Ozkan, NU Dogan, O Ozkan, I Mendilcioglu, S Dogan, B Aydinuraz, M Simsek. Uterus transplantation: from animal models through the first heart beating pregnancy to the first human live birth. Womens Health (Lond) 2016; 12(4): 442–449 https://doi.org/10.1177/1745505716653849
pmid: 27638900
M Benner, G Ferwerda, I Joosten, RG van der Molen. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2018; 24(4): 393–415 https://doi.org/10.1093/humupd/dmy012
pmid: 29668899
60
Y Huh, YY Kim, SY Ku. Perspective of bioartificial uterus as gynecological regenerative medicine. Tissue Eng Regen Med 2012; 9(5): 233–239 https://doi.org/10.1007/s13770-012-0360-6
61
C Coughlan, W Ledger, Q Wang, F Liu, A Demirol, T Gurgan, R Cutting, K Ong, H Sallam, TC Li. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 14–38 https://doi.org/10.1016/j.rbmo.2013.08.011
pmid: 24269084
62
J Bosteels, J Kasius, S Weyers, FJ Broekmans, BWJ Mol, TM D’Hooghe. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Syst Rev 2015; (2): CD009461 https://doi.org/DOI:10.1002/14651858.CD009461.pub3
pmid: PMID:25701429
63
GAJ Dunselman, N Vermeulen, C Becker, C Calhaz-Jorge, T D’Hooghe, B De Bie, O Heikinheimo, AW Horne, L Kiesel, A Nap, A Prentice, E Saridogan, D Soriano, W Nelen; European Society of Human Reproduction and Embryology. ESHRE guideline: management of women with endometriosis. Hum Reprod 2014; 29(3): 400–412 https://doi.org/10.1093/humrep/det457
pmid: 24435778
64
EB Johnston-MacAnanny, J Hartnett, LL Engmann, JC Nulsen, MM Sanders, CA Benadiva. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 2010; 93(2): 437–441 https://doi.org/10.1016/j.fertnstert.2008.12.131
pmid: 19217098
65
K Kitaya, H Matsubayashi, K Yamaguchi, R Nishiyama, Y Takaya, T Ishikawa, T Yasuo, H Yamada. Chronic endometritis: potential cause of infertility and obstetric and neonatal complications. Am J Reprod Immunol 2016; 75(1): 13–22 https://doi.org/10.1111/aji.12438
pmid: 26478517
66
A Barash, N Dekel, S Fieldust, I Segal, E Schechtman, I Granot. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril 2003; 79(6): 1317–1322 https://doi.org/10.1016/S0015-0282(03)00345-5
pmid: 12798877
67
I Cervelló, X Santamaría, K Miyazaki, T Maruyama, C Simón. Cell therapy and tissue engineering from and toward the uterus. Semin Reprod Med 2015; 33(5): 366–372 https://doi.org/10.1055/s-0035-1559581
pmid: 26285168
68
S Zadehmodarres, S Salehpour, N Saharkhiz, L Nazari. Treatment of thin endometrium with autologous platelet-rich plasma: a pilot study. JBRA Assist Reprod 2017; 21(1): 54–56 https://doi.org/10.5935/1518-0557.20170013
pmid: PMID:28333034
69
S Gameiro, J Boivin, L Peronace, CM Verhaak. Why do patients discontinue fertility treatment? A systematic review of reasons and predictors of discontinuation in fertility treatment. Hum Reprod Update 2012; 18(6): 652–669 https://doi.org/10.1093/humupd/dms031
pmid: 22869759
70
M Garel, B Blondel, L Karpel, V Blanchet, G Breart, R Frydman, F Olivennes. Women’s views on Friendly IVF: a qualitative preliminary study. J Psychosom Obstet Gynaecol 2009; 30(2): 101–104 https://doi.org/10.1080/01674820802604896
pmid: 19533489
71
F Simonstein, M Mashiach-Eizenberg. The artificial womb: a pilot study considering people’s views on the artificial womb and ectogenesis in Israel. Camb Q Healthc Ethics 2009; 18(1): 87–94 https://doi.org/10.1017/S0963180108090130
pmid: 19091150
Y Long, D Yao, X Pan, T Ou. Clinical efficacy and safety of nerve-sparing radical hysterectomy for cervical cancer: a systematic review and meta-analysis. PLoS ONE 2014; 9(4): e94116 https://doi.org/10.1371/journal.pone.0094116
pmid: PMID:24748015
76
M Brännström, P Dahm Kähler, R Greite, J Mölne, C Díaz-García, SG Tullius. Uterus transplantation: a rapidly expanding field. Transplantation 2018; 102(4): 569–577 https://doi.org/10.1097/TP.0000000000002035
pmid: 29210893
77
S Puntambekar, M Telang, P Kulkarni, S Jadhav, R Sathe, N Warty, S Puntambekar, S Kade, M Panse, N Agarkhedkar, G Gandhi, M Manchekar, H Parekh, K Parikh, R Desai, M Mehta, M Chitale, S Nanda. Laparoscopic-assisted uterus retrieval from live organ donors for uterine transplant. J Minim Invasive Gynecol 2018; 25(4): 571–572 https://doi.org/10.1016/j.jmig.2017.11.001
pmid: 29133152
78
S Saso, A Clarke, T Bracewell-Milnes, A Saso, M Al-Memar, MY Thum, J Yazbek, G Del Priore, P Hardiman, S Ghaem-Maghami, JR Smith. Psychological issues associated with absolute uterine factor infertility and attitudes of patients toward uterine transplantation. Prog Transplant 2016; 26(1): 28–39 https://doi.org/10.1177/1526924816634840
pmid: 27136247
79
R Landau. Artificial womb versus natural birth: an exploratory study of women’s views. J Reprod Infant Psychol 2007; 25(1): 4–17 https://doi.org/10.1080/02646830601117118
K Devolder, J Harris. The ambiguity of the embryo: ethical inconsistency in the human embryonic stem cell debate. Metaphilosophy 2007; 38(2–3): 153–169 https://doi.org/10.1111/j.1467-9973.2007.00480.x
82
D Cutas, W Dondorp, T Swierstra, S Repping, G de Wert. Artificial gametes: perspectives of geneticists, ethicists and representatives of potential users. Med Health Care Philos 2014; 17(3): 339–345 https://doi.org/10.1007/s11019-013-9535-8
pmid: PMID:24357153
83
S Hendriks, EA Dancet, AM van Pelt, G Hamer, S Repping. Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 2015; 21(3): 285–296 https://doi.org/10.1093/humupd/dmv001
pmid: 25609401
84
H Mertes, G Pennings. Embryonic stem cell-derived gametes and genetic parenthood: a problematic relationship. Camb Q Healthc Ethics 2008; 17(1): 7–14 https://doi.org/10.1017/S096318010808002X
pmid: 18462541
85
K Hayashi, S Ogushi, K Kurimoto, S Shimamoto, H Ohta, M Saitou. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338(6109): 971–975 https://doi.org/10.1126/science.1226889
pmid: 23042295
86
CA Easley, CR Simerly, G Schatten. Gamete derivation from embryonic stem cells, induced pluripotent stem cells or somatic cell nuclear transfer-derived embryonic stem cells: state of the art. Reprod Fertil Dev 2014; 27(1): 89–92 https://doi.org/10.1071/RD14317
pmid: 25472048
87
T Douglas, C Harding, H Bourne, J Savulescu. Stem cell research and same-sex reproduction. In: Stem Cells: New Frontiers in Science & Ethics. World Scientific, 2012: 207–228
J Harper, MC Magli, K Lundin, CLR Barratt, D Brison. When and how should new technology be introduced into the IVF laboratory? Hum Reprod 2012; 27(2): 303–313 https://doi.org/10.1093/humrep/der414
pmid: 22166806
92
JG Brink, J Hassoulas. The first human heart transplant and further advances in cardiac transplantation at Groote Schuur Hospital and the University of Cape Town. Cardiovasc J Afr 2009; 20(1): 31–35
pmid: 19287813
93
HJ Leese, H Whittall. Regulation of the transition from research to clinical practice in human assisted conception. Hum Fertil (Camb) 2001; 4(3): 172–176 https://doi.org/10.1080/1464727012000199262
pmid: 11591276
94
BP Jones, NJ Williams, S Saso, MY Thum, I Quiroga, J Yazbek, S Wilkinson, S Ghaem-Maghami, P Thomas, JR Smith. Uterine transplantation in transgender women. BJOG 2019; 126(2): 152–156 https://doi.org/10.1111/1471-0528.15438
pmid: PMID:30125449