1. State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China 2. Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Sciences, Ministry of Justice, Shanghai 200063, China
Growing evidence suggests that somatic hypermutational status and programmed cell death-1 overexpression are potential predictive biomarkers indicating treatment benefits from immunotherapy using immune checkpoint inhibitors. However, biomarker-matched trials are still limited, and many of the genomic alterations remain difficult to target. To isolate the potential somatic hypermutational tumor from microsatellite instability low/microsatellite stability (MSI-L/MSS) cases, we employed two commercial kits to determine MSI and forensic short tandem repeat (STR) alternations in 250 gastrointestinal (GI) tumors. Three types of forensic STR alternations, namely, allelic loss, Aadd, and Anew, were identified. 62.4% (156/250) of the patients with GI exhibited STR alternation, including 100% (15/15) and 60% (141/235) of the microsatellite high instability and MSI-L/MSS cases, respectively. 30% (75/250) of the patients exhibited STR instability with more than 26.32% (26.32%–84.21%) STR alternation. The cutoff with 26.32% of the STR alternations covered all 15 MSI cases and suggested that it might be a potential threshold. Given the similar mechanism of the mutations of MSI and forensic STR, the widely used forensic identifier STR kit might provide potential usage for identifying hypermutational status in GI cancers.
JG Kim, S Shin, J Park. Comparison between mononucleotide and dinucleotide marker panels in gastric cancer with loss of hMLH1 or hMSH2 expression. Int J Biol Markers 2017; 32(3): e352–e356 https://doi.org/10.5301/ijbm.5000266
pmid: 28525661
2
L Hamzehzadeh, M Yousefi, SH Ghaffari. Colorectal cancer screening: a comprehensive review to recent non-invasive methods. Int J Hematol Oncol Stem Cell Res 2017; 11(3): 250–261
pmid: 28989593
3
DT Le, JN Durham, KN Smith, H Wang, BR Bartlett, LK Aulakh, S Lu, H Kemberling, C Wilt, BS Luber, F Wong, NS Azad, AA Rucki, D Laheru, R Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, TF Greten, AG Duffy, KK Ciombor, AD Eyring, BH Lam, A Joe, SP Kang, M Holdhoff, L Danilova, L Cope, C Meyer, S Zhou, RM Goldberg, DK Armstrong, KM Bever, AN Fader, J Taube, F Housseau, D Spetzler, N Xiao, DM Pardoll, N Papadopoulos, KW Kinzler, JR Eshleman, B Vogelstein, RA Anders, LA Diaz Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357(6349): 409–413 https://doi.org/10.1126/science.aan6733
pmid: 28596308
4
A Vanderwalde, D Spetzler, N Xiao, Z Gatalica, J Marshall. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 2018; 7(3): 746–756 https://doi.org/10.1002/cam4.1372
pmid: 29436178
5
W Chen, BJ Swanson, WL Frankel. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol 2017; 12(1): 24 https://doi.org/10.1186/s13000-017-0613-8
pmid: 28259170
K Yuza, M Nagahashi, S Watanabe, K Takabe, T Wakai. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017; 8(67): 112103–112115 https://doi.org/10.18632/oncotarget.22783
pmid: 29340115
C Egoavil, C Alenda, A Castillejo, A Paya, G Peiro, AB Sánchez-Heras, MI Castillejo, E Rojas, VM Barberá, S Cigüenza, JA Lopez, O Piñero, MJ Román, JC Martínez-Escoriza, C Guarinos, L Perez-Carbonell, FI Aranda, JL Soto. Prevalence of Lynch syndrome among patients with newly diagnosed endometrial cancers. PLoS One 2013; 8(11): e79737 https://doi.org/10.1371/journal.pone.0079737
pmid: 24244552
10
X Liu, Z Yang, O Latchoumanin, L Qiao. Antagonizing programmed death-1 and programmed death ligand-1 as a therapeutic approach for gastric cancer. Therap Adv Gastroenterol 2016; 9(6): 853–860 https://doi.org/10.1177/1756283X16658251
pmid: 27803740
DT Le, JN Uram, H Wang, BR Bartlett, H Kemberling, AD Eyring, AD Skora, BS Luber, NS Azad, D Laheru, B Biedrzycki, RC Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, SM Duffy, RM Goldberg, A de la Chapelle, M Koshiji, F Bhaijee, T Huebner, RH Hruban, LD Wood, N Cuka, DM Pardoll, N Papadopoulos, KW Kinzler, S Zhou, TC Cornish, JM Taube, RA Anders, JR Eshleman, B Vogelstein, LA Diaz Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520 https://doi.org/10.1056/NEJMoa1500596
pmid: 26028255
13
C Böger, HM Behrens, M Mathiak, S Krüger, H Kalthoff, C Röcken. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget 2016; 7(17): 24269–24283 https://doi.org/10.18632/oncotarget.8169
pmid: 27009855
14
SE Hile, S Shabashev, KA Eckert. Tumor-specific microsatellite instability: do distinct mechanisms underlie the MSI-L and EMAST phenotypes? Mutat Res 2013; 743-744: 67–77 https://doi.org/10.1016/j.mrfmmm.2012.11.003
pmid: 23206442
MM Watson, D Lea, E Rewcastle, HR Hagland, K Søreide. Elevated microsatellite alterations at selected tetranucleotides in early-stage colorectal cancers with and without high-frequency microsatellite instability: same, same but different? Cancer Med 2016; 5(7): 1580–1587 https://doi.org/10.1002/cam4.709
pmid: 27061136
18
B Devaraj, A Lee, BL Cabrera, K Miyai, L Luo, S Ramamoorthy, T Keku, RS Sandler, KL McGuire, JM Carethers. Relationship of EMAST and microsatellite instability among patients with rectal cancer. J Gastrointest Surg 2010; 14(10): 1521–1528 https://doi.org/10.1007/s11605-010-1340-6
pmid: 20844976
19
P Laiho, V Launonen, P Lahermo, M Esteller, M Guo, JG Herman, JP Mecklin, H Järvinen, P Sistonen, KM Kim, D Shibata, RS Houlston, LA Aaltonen. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res 2002; 62(4): 1166–1170
pmid: 11861399
20
W Pepiński, I Sołtyszewski, M Skawrońska, M Rogowski, R Zalewska, L Kozłowski, T Filipowski, J Janica. Loss of heterozygosity (LOH)—implications for human genetic identification. Folia Histochem Cytobiol 2009; 47(1): 105–110 https://doi.org/10.2478/v10042-009-0019-x
pmid: 19419947
21
C Xiao, Z Peng, F Chen, H Yan, B Zhu, Y Tai, P Qiu, C Liu, X Song, Z Wu, L Chen. Mutation analysis of 19 commonly used short tandem repeat loci in a Guangdong Han population. Leg Med (Tokyo) 2018; 32: 92–97 https://doi.org/10.1016/j.legalmed.2018.03.005
pmid: 29625275
22
SM Zhao, CT Li, SH Zhang, L Li. Application of number of matched STR loci and identical alleles in individual discrimination of colorectal cancer. J Foren Med (Fa Yi Xue Za Zhi) 2009;25(6):412–416, 420 (in China)
23
NC Campanella, C Scapulatempo-Neto, LF Abrahão-Machado, AT Torres De Oliveira, GN Berardinelli, DP Guimarães, RM Reis. Lack of microsatellite instability in gastrointestinal stromal tumors. Oncol Lett 2017; 14(5): 5221–5228 https://doi.org/10.3892/ol.2017.6884
pmid: 29113157
24
RJ Kelly. Immunotherapy for esophageal and gastric cancer. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting 2017; 37:292–300
25
G Filoglu, O Bulbul, G Rayimoglu, FE Yediay, T Zorlu, S Ongoren, H Altuncul. Evaluation of reliability on STR typing at leukemic patients used for forensic purposes. Mol Biol Rep 2014; 41(6): 3961–3972 https://doi.org/10.1007/s11033-014-3264-9
pmid: 24562624
26
C Xiao, Z Peng, F Chen, H Yan, B Zhu, Y Tai, P Qiu, C Liu, X Song, Z Wu, L Chen. Mutation analysis of 19 commonly used short tandem repeat loci in a Guangdong Han population. Leg Med (Tokyo) 2018; 32:92–97 https://doi.org/10.1016/j.legalmed.2018.03.005
pmid: 29625275
27
GGP Peloso, R Rosso, C Previdere. Forensic evaluation of tetranucleotide STR instability in lung cancer. Int Congr Ser 2003; 1239(02): 719–721 https://doi.org/10.1016/S0531-5131(02)00500-9
28
JLR Edelmanna, S Heringb, LC Hornc. Loss of heterozygosity and microsatellite instability of forensically used STR markers in human cervical carcinoma. International Congress Series 2004; 1261: 499–501 https://doi.org/10.1016/S0531-5131(03)01717-5
M Yarchoan, A Hopkins, EM Jaffee. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377(25): 2500–2501 https://doi.org/10.1056/NEJMc1713444
pmid: 29262275
31
S Pelotti, S Ceccardi, M Alù, F Lugaresi, R Trane, M Falconi, C Bini, A Cicognani. Cancerous tissues in forensic genetic analysis. Genet Test 2007; 11(4): 397–400 https://doi.org/10.1089/gte.2007.0004
pmid: 18294056
32
A Copija, D Waniczek, A Witkoś, K Walkiewicz, E Nowakowska-Zajdel. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients. Int J Mol Sci 2017; 18(1): E107 https://doi.org/10.3390/ijms18010107
pmid: 28067827
33
TJFGSJ George, K Gowen, M Kennedy, JR Greenbowe, AB Schrock, S Mahamed Ali, SJ Klempner, AF Hezel, JS Ross, P Stephens, VA Miller, D Fabrizio. Tumor mutational burden as a potential biomarker for PD1/PD-L1 therapy in colorectal cancer. ASCO Annual Meeting Abstracts 2016; 3587
34
Z Jin, HH Yoon. The promise of PD-1 inhibitors in gastro-esophageal cancers: microsatellite instability vs. PD-L1. J Gastrointest Oncol 2016; 7(5): 771–788 https://doi.org/10.21037/jgo.2016.08.06
pmid: 27747091
35
K Søreide. High-fidelity of five quasimonomorphic mononucleotide repeats to high-frequency microsatellite instability distribution in early-stage adenocarcinoma of the colon. Anticancer Res 2011; 31(3): 967–971
pmid: 21498722
36
AIHM Shemirani, MM Haghighi, SM Zadeh, SR Fatemi, MY Taleghani, N Zali, Z Akbari, SM Kashfi, MR Zali. Simplified MSI marker panel for diagnosis of colorectal cancer. Asian Pac J Cancer Prev 2011; 12(8): 2101–2104
pmid: 22292659
37
F Macrae, M Harris. Re: Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2005; 97(12): 936–937, author reply937–938 https://doi.org/10.1093/jnci/dji157
pmid: 15956656
38
LA Aaltonen, P Peltomäki, FS Leach, P Sistonen, L Pylkkänen, JP Mecklin, H Järvinen, SM Powell, J Jen, SR Hamilton, et al.Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260(5109): 812–816 https://doi.org/10.1126/science.8484121
pmid: 8484121
M Perucho. Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58: 5248-5257, 1998. Cancer Res 1999; 59(1): 249–256
pmid: 9892214