Efficacy of intelligent diagnosis with a dynamic uncertain causality graph model for rare disorders of sex development
Dongping Ning1,2, Zhan Zhang3, Kun Qiu3, Lin Lu1(), Qin Zhang4(), Yan Zhu5, Renzhi Wang6
1. Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China 2. Department of Pediatrics, Linfen Central Hospital, Linfen 041000, China 3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China 4. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 5. Institute of Internet Industry, Tsinghua University, Beijing 100084, China 6. Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
Disorders of sex development (DSD) are a group of rare complex clinical syndromes with multiple etiologies. Distinguishing the various causes of DSD is quite difficult in clinical practice, even for senior general physicians because of the similar and atypical clinical manifestations of these conditions. In addition, DSD are difficult to diagnose because most primary doctors receive insufficient training for DSD. Delayed diagnoses and misdiagnoses are common for patients with DSD and lead to poor treatment and prognoses. On the basis of the principles and algorithms of dynamic uncertain causality graph (DUCG), a diagnosis model for DSD was jointly constructed by experts on DSD and engineers of artificial intelligence. “Chaining” inference algorithm and weighted logic operation mechanism were applied to guarantee the accuracy and efficiency of diagnostic reasoning under incomplete situations and uncertain information. Verification was performed using 153 selected clinical cases involving nine common DSD-related diseases and three causes other than DSD as the differential diagnosis. The model had an accuracy of 94.1%, which was significantly higher than that of interns and third-year residents. In conclusion, the DUCG model has broad application prospects as a computer-aided diagnostic tool for DSD-related diseases.
. [J]. Frontiers of Medicine, 2020, 14(4): 498-505.
Dongping Ning, Zhan Zhang, Kun Qiu, Lin Lu, Qin Zhang, Yan Zhu, Renzhi Wang. Efficacy of intelligent diagnosis with a dynamic uncertain causality graph model for rare disorders of sex development. Front. Med., 2020, 14(4): 498-505.
M Cools, A Nordenström, R Robeva, J Hall, P Westerveld, C Flück, B Köhler, M Berra, A Springer, K Schweizer, V Pasterski; COST Action BM1303 working group 1. Caring for individuals with a difference of sex development (DSD): a Consensus Statement. Nat Rev Endocrinol 2018; 14(7): 415–429 https://doi.org/10.1038/s41574-018-0010-8
pmid: 29769693
2
PA Lee, CP Houk, SF Ahmed, IA Hughes; International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. Pediatrics 2006; 118(2): e488–e500 https://doi.org/10.1542/peds.2006-0738
pmid: 16882788
AL Boehmer, O Brinkmann, H Brüggenwirth, C van Assendelft, BJ Otten, MC Verleun-Mooijman, MF Niermeijer, HG Brunner, CW Rouwé, JJ Waelkens, W Oostdijk, WJ Kleijer, TH van der Kwast, MA de Vroede, SL Drop. Genotype versus phenotype in families with androgen insensitivity syndrome. J Clin Endocrinol Metab 2001; 86(9): 4151–4160 https://doi.org/10.1210/jcem.86.9.7825
pmid: 11549642
5
HH Lee, JM Kuo, HT Chao, YJ Lee, JG Chang, CH Tsai, BC Chung. Carrier analysis and prenatal diagnosis of congenital adrenal hyperplasia caused by 21-hydroxylase deficiency in Chinese. J Clin Endocrinol Metab 2000; 85(2): 597–600 https://doi.org/10.1210/jc.85.2.597
pmid: 10690861
6
AY Rawal, PF Austin. Concepts and updates in the evaluation and diagnosis of common disorders of sexual development. Curr Urol Rep 2015; 16(12): 83 https://doi.org/10.1007/s11934-015-0556-0
pmid: 26547422
J Kremen, YM Chan. Genetic evaluation of disorders of sex development: current practice and novel gene discovery. Curr Opin Endocrinol Diabetes Obes 2019; 26(1): 54–59 https://doi.org/10.1097/MED.0000000000000452
pmid: 30507699
10
L Audi, SF Ahmed, N Krone, M Cools, K McElreavey, PM Holterhus, A Greenfield, A Bashamboo, O Hiort, SA Wudy, R McGowan; The EU COST Action. GENETICS IN ENDOCRINOLOGY: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur J Endocrinol 2018; 179(4): R197–R206 https://doi.org/10.1530/EJE-18-0256
pmid: 30299888
EA Eugster, LA Dimeglio, JC Wright, GR Freidenberg, R Seshadri, OH Pescovitz. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J Pediatr 2001; 138(1): 26–32 https://doi.org/10.1067/mpd.2001.110527
pmid: 11148508
13
K Muthusamy, MB Elamin, G Smushkin, MH Murad, JF Lampropulos, KB Elamin, NO Abu Elnour, JF Gallegos-Orozco, MM Fatourechi, N Agrwal, MA Lane, FN Albuquerque, PJ Erwin, VM Montori. Adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J Clin Endocrinol Metab 2010; 95(9): 4161–4172 https://doi.org/10.1210/jc.2009-2616
pmid: 20823467
14
C Dong, Y Wang, Q Zhang, N Wang. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo. Comput Methods Programs Biomed 2014; 113(1): 162–174 https://doi.org/10.1016/j.cmpb.2013.10.002
pmid: 24176413
15
PA Lee, A Nordenström, CP Houk, SF Ahmed, R Auchus, A Baratz, K Baratz Dalke, LM Liao, K Lin-Su, LH Looijenga 3rd, T Mazur, HFL Meyer-Bahlburg, P Mouriquand, CA Quigley, DE Sandberg, E Vilain, S Witchel; Global DSD Update Consortium. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr 2016; 85(3): 158–180 https://doi.org/10.1159/000442975
pmid: 26820577
16
A Kulle, N Krone, PM Holterhus, G Schuler, RF Greaves, A Juul, YB de Rijke, MF Hartmann, A Saba, O Hiort, SA Wudy; EU COST Action. Steroid hormone analysis in diagnosis and treatment of DSD: position paper of EU COST Action BM 1303 ‘DSDnet’. Eur J Endocrinol 2017; 176(5): P1–P9 https://doi.org/10.1530/EJE-16-0953
pmid: 28188242
17
Q Zhang. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases. J Comput Sci Technol 2012; 27(1): 1–23 https://doi.org/10.1007/s11390-012-1202-7
18
Q Zhang, C Dong, Y Cui, Z Yang. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: statistics base, matrix, and application. IEEE Trans Neural Netw Learn Syst 2014; 25(4): 645–663 https://doi.org/10.1109/TNNLS.2013.2279320
pmid: 24807944
19
SR Hao, SC Geng, LX Fan, JJ Chen, Q Zhang, LJ Li. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model. J Zhejiang Univ Sci B 2017; 18(5): 393–401 https://doi.org/10.1631/jzus.B1600273
pmid: 28471111
20
XJ Bao, YH Fan, Z Zhang, ZQ Jing, Y Wang, ZY Liu, MJ Guo, RZ Wang, M Feng. Diagnostic value of dynamic uncertain causality graph in sellar region disease. Chin J Minim Invasive Neurosurg (Zhongguo Wei Qin Xi Shen Jing Wai Ke Za Zhi) 2018; 23(06): 249–253 (in Chinese)
21
S Chen, ZX Pan, HJ Zhu, Q Wang, JJ Yang, Y Lei, JQ Li, H Pan. Development of a computer-aided tool for the pattern recognition of facial features in diagnosing Turner syndrome: comparison of diagnostic accuracy with clinical workers. Sci Rep 2018; 8(1): 9317 https://doi.org/10.1038/s41598-018-27586-9
pmid: 29915349