1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. Shanghai Public Health Clinical Center, Shanghai 201508, China 3. National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
The ongoing pandemic of coronavirus disease 19 (COVID-19) is caused by a newly discovered β coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6–7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6–7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6–7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4+ and CD8+ cells were increased upon SARS-CoV-2 antigen stimulation. Together, these results indicate that durable anti-SARS-CoV-2 immunity is common in convalescent population, and vaccines developed from 614D variant may offer protection from the currently predominant 614D variant of SARS-CoV-2.
G Zhou, S Chen, Z Chen. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med 2020; 14(2): 117–125 https://doi.org/10.1007/s11684-020-0773-x
pmid: 32318975
N Le Bert, AT Tan, K Kunasegaran, CYL Tham, M Hafezi, A Chia, MHY Chng, M Lin, N Tan, M Linster, WN Chia, MI Chen, LF Wang, EE Ooi, S Kalimuddin, PA Tambyah, JG Low, YJ Tan, A Bertoletti. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020; 584(7821): 457–462 https://doi.org/10.1038/s41586-020-2550-z
pmid: 32668444
5
A Grifoni, D Weiskopf, SI Ramirez, J Mateus, JM Dan, CR Moderbacher, SA Rawlings, A Sutherland, L Premkumar, RS Jadi, D Marrama, AM de Silva, A Frazier, AF Carlin, JA Greenbaum, B Peters, F Krammer, DM Smith, S Crotty, A Sette. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181(7): 1489–1501.e15 https://doi.org/DOI: 10.1016/j.cell.2020.05.015
pmid: 32473127
6
KK To, OT Tsang, WS Leung, AR Tam, TC Wu, DC Lung, CC Yip, JP Cai, JM Chan, TS Chik, DP Lau, CY Choi, LL Chen, WM Chan, KH Chan, JD Ip, AC Ng, RW Poon, CT Luo, VC Cheng, JF Chan, IF Hung, Z Chen, H Chen, KY Yuen. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020; 20(5): 565–574 https://doi.org/10.1016/S1473-3099(20)30196-1
pmid: 32213337
7
DF Robbiani, C Gaebler, F Muecksch, JCC Lorenzi, Z Wang, A Cho, M Agudelo, CO Barnes, A Gazumyan, S Finkin, T Hägglöf, TY Oliveira, C Viant, A Hurley, HH Hoffmann, KG Millard, RG Kost, M Cipolla, K Gordon, F Bianchini, ST Chen, V Ramos, R Patel, J Dizon, I Shimeliovich, P Mendoza, H Hartweger, L Nogueira, M Pack, J Horowitz, F Schmidt, Y Weisblum, E Michailidis, AW Ashbrook, E Waltari, JE Pak, KE Huey-Tubman, N Koranda, PR Hoffman, AP West Jr, CM Rice, T Hatziioannou, PJ Bjorkman, PD Bieniasz, M Caskey, MC Nussenzweig. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020; 584(7821): 437–442 https://doi.org/10.1038/s41586-020-2456-9
pmid: 32555388
8
FJ Ibarrondo, JA Fulcher, D Goodman-Meza, J Elliott, C Hofmann, MA Hausner, KG Ferbas, NH Tobin, GM Aldrovandi, OO Yang. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N Engl J Med 2020; 383(11): 1085–1087 https://doi.org/10.1056/NEJMc2025179
pmid: 32706954
9
DF Gudbjartsson, GL Norddahl, P Melsted, K Gunnarsdottir, H Holm, E Eythorsson, AO Arnthorsson, D Helgason, K Bjarnadottir, RF Ingvarsson, B Thorsteinsdottir, S Kristjansdottir, K Birgisdottir, AM Kristinsdottir, MI Sigurdsson, GA Arnadottir, EV Ivarsdottir, M Andresdottir, F Jonsson, AB Agustsdottir, J Berglund, B Eiriksdottir, R Fridriksdottir, EE Gardarsdottir, M Gottfredsson, OS Gretarsdottir, S Gudmundsdottir, KR Gudmundsson, TR Gunnarsdottir, A Gylfason, A Helgason, BO Jensson, A Jonasdottir, H Jonsson, T Kristjansson, KG Kristinsson, DN Magnusdottir, OT Magnusson, LB Olafsdottir, S Rognvaldsson, L le Roux, G Sigmundsdottir, A Sigurdsson, G Sveinbjornsson, KE Sveinsdottir, M Sveinsdottir, EA Thorarensen, B Thorbjornsson, M Thordardottir, J Saemundsdottir, SH Kristjansson, KS Josefsdottir, G Masson, G Georgsson, M Kristjansson, A Moller, R Palsson, T Gudnason, U Thorsteinsdottir, I Jonsdottir, P Sulem, K Stefansson. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med 2020; [Epub ahead of print] doi: 10.1056/NEJMoa2026116 https://doi.org/10.1056/NEJMoa2026116
pmid: 32871063
10
G Alter, R Seder. The power of antibody-based surveillance. N Engl J Med 2020; [Epub ahead of print] doi: 10.1056/NEJMe2028079 https://doi.org/10.1056/NEJMe2028079
pmid: 32871061
11
NN Zhang, XF Li, YQ Deng, H Zhao, YJ Huang, G Yang, WJ Huang, P Gao, C Zhou, RR Zhang, Y Guo, SH Sun, H Fan, SL Zu, Q Chen, Q He, TS Cao, XY Huang, HY Qiu, JH Nie, Y Jiang, HY Yan, Q Ye, X Zhong, XL Xue, ZY Zha, D Zhou, X Yang, YC Wang, B Ying, CF Qin. A thermostable mRNA vaccine against COVID-19. Cell 2020; 182(5): 1271–1283.e16 https://doi.org/DOI: 10.1016/j.cell.2020.07.024
pmid: 32795413
12
J Nie, Q Li, J Wu, C Zhao, H Hao, H Liu, L Zhang, L Nie, H Qin, M Wang, Q Lu, X Li, Q Sun, J Liu, C Fan, W Huang, M Xu, Y Wang. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 2020; 9(1): 680–686 https://doi.org/10.1080/22221751.2020.1743767
pmid: 32207377
13
H Shi, J Ye, J Teng, Y Yin, Q Hu, X Wu, H Liu, X Cheng, Y Su, M Liu, J Gu, T Lu, H Chen, H Zheng, Y Sun, C Yang. Elevated serum autoantibodies against co-inhibitory PD-1 facilitate T cell proliferation and correlate with disease activity in new-onset systemic lupus erythematosus patients. Arthritis Res Ther 2017; 19(1): 52 https://doi.org/10.1186/s13075-017-1258-4
pmid: 28274252
14
C Goudot, A Coillard, AC Villani, P Gueguen, A Cros, S Sarkizova, TL Tang-Huau, M Bohec, S Baulande, N Hacohen, S Amigorena, E Segura. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 2017; 47(3): 582–596.e6 https://doi.org/DOI: 10.1016/j.immuni.2017.08.016
pmid: 28930664
15
B Korber, WM Fischer, S Gnanakaran, H Yoon, J Theiler, W Abfalterer, N Hengartner, EE Giorgi, T Bhattacharya, B Foley, KM Hastie, MD Parker, DG Partridge, CM Evans, TM Freeman, TI de Silva, C-GG Sheffield, C McDanal, LG Perez, H Tang, A Moon-Walker, SP Whelan, CC LaBranche, EO Saphire, DC Montefiori. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020; 182(4): 812–827.e19 https://doi.org/DOI: 10.1016/j.cell.2020.06.043
pmid: PMID: 32697968
16
X Zhang, Y Tan, Y Ling, G Lu, F Liu, Z Yi, X Jia, M Wu, B Shi, S Xu, J Chen, W Wang, B Chen, L Jiang, S Yu, J Lu, J Wang, M Xu, Z Yuan, Q Zhang, X Zhang, G Zhao, S Wang, S Chen, H Lu. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020; 583(7816): 437–440 https://doi.org/10.1038/s41586-020-2355-0
pmid: 32434211
17
TF Rogers, F Zhao, D Huang, N Beutler, A Burns, WT He, O Limbo, C Smith, G Song, J Woehl, L Yang, RK Abbott, S Callaghan, E Garcia, J Hurtado, M Parren, L Peng, S Ramirez, J Ricketts, MJ Ricciardi, SA Rawlings, NC Wu, M Yuan, DM Smith, D Nemazee, JR Teijaro, JE Voss, IA Wilson, R Andrabi, B Briney, E Landais, D Sok, JG Jardine, DR Burton. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 2020; 369(6506): 956–963 https://doi.org/10.1126/science.abc7520
pmid: 32540903
18
H Peng, LT Yang, J Li, ZQ Lu, LY Wang, RA Koup, RT Bailer, CY Wu. Human memory T cell responses to SARS-CoV E protein. Microbes Infect 2006; 8(9-10): 2424–2431 https://doi.org/10.1016/j.micinf.2006.05.008
pmid: 16844400
19
H Peng, LT Yang, LY Wang, J Li, J Huang, ZQ Lu, RA Koup, RT Bailer, CY Wu. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 2006; 351(2): 466–475 https://doi.org/10.1016/j.virol.2006.03.036
pmid: 16690096
20
OW Ng, A Chia, AT Tan, RS Jadi, HN Leong, A Bertoletti, YJ Tan. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 2016; 34(17): 2008–2014 https://doi.org/10.1016/j.vaccine.2016.02.063
pmid: 26954467
21
L Yang, H Peng, Z Zhu, G Li, Z Huang, Z Zhao, RA Koup, RT Bailer, C Wu. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol 2007; 88(Pt 10): 2740–2748 https://doi.org/10.1099/vir.0.82839-0
pmid: 17872527