Cancer imposes a severe threat to people’s health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.
Peng Lu, Renxing Wang, and Yue Xing contributed equally to this work.
引用本文:
. [J]. Frontiers of Medicine, 2022, 16(2): 157-175.
Ying Deng, Zhaowei Sun, Lei Wang, Minghui Wang, Jie Yang, Genxi Li. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front. Med., 2022, 16(2): 157-175.
miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, and miR-214
Ovarian cancer
Plasma
Modified MACSa
2008
[73]
miR-19b-3p, miR-584-5p, miR-425-5p, miR-221-3p, miR-409-3p, and miR-21-5p
Lung adenocarcinoma
Plasma
ExoQuick
2016
[74]
miR-141
Prostate cancer
Serum
ExoQuick
2015
[64]
miR-221-3p
Cervical carcinoma
Serum
ExoQuick
2019
[65]
miR-301a-3p
Pancreatic cancer
Serum
Ultracentrifugation
2018
[66]
Tab.2
Fig.1
Detection method
Target
Type of cancer
Sample
Recognition element
Signal element
LOD
References
Electrochemistry
EGFRvIII/EGFR
Glioblastoma
Serum
Peptide
MB
7.83 × 103 particles/μL
[25]
Electrochemistry
CD63
Breast cancer
Serum
Aptamer
HRP-OPD
96 particles/μL
[82]
Electrochemistry
EpCAM
Breast cancer
Serum
Aptamer
HRP-H2O2-TMB
285 particles/μL
[81]
Electrochemistry
MUC1
Gastric cancer
Plasma
Aptamer/antibody
G-quadruplex/H2O2
954 particles/mL
[85]
Electrochemistry
EpCAM
Colorectal cancer
Plasma
Aptamer
MB
44 particles/μL
[86]
Electrochemistry
PD-L1/CD63
Breast cancer
Serum
Aptamer/antibody
HRP-OPD
334 particles/mL
[92]
Electrochemistry
CD63
Colorectal cancer
Serum
Aptamer
HRP-H2O2-TMB
160 particles/μL
[94]
Electrochemistry
CD9/CA-125
Ovarian cancer
–
Antibody
Fe2O3-H2O2-TMB
1.25 × 106 exosomes/mL
[95]
Tab.3
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
1
KD Miller, RL Siegel, CC Lin, AB Mariotto, JL Kramer, JH Rowland, KD Stein, R Alteri, A Jemal. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271–289 https://doi.org/10.3322/caac.21349
pmid: 27253694
2
J Hou, X Li, KP Xie. Coupled liquid biopsy and bioinformatics for pancreatic cancer early detection and precision prognostication. Mol Cancer 2021; 20(1): 34 https://doi.org/10.1186/s12943-021-01309-7
pmid: 33593396
3
C Liu, Y Yang, Y Wu. Recent advances in exosomal protein detection via liquid biopsy biosensors for cancer screening, diagnosis, and prognosis. AAPS J 2018; 20(2): 41 https://doi.org/10.1208/s12248-018-0201-1
pmid: 29520676
4
G Siravegna, S Marsoni, S Siena, A Bardelli. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017; 14(9): 531–548 https://doi.org/10.1038/nrclinonc.2017.14
pmid: 28252003
5
N Soda, BHA Rehm, P Sonar, NT Nguyen, MJA Shiddiky. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B Mater Biol Med 2019; 7(43): 6670–6704 https://doi.org/10.1039/C9TB01490J
pmid: 31646316
6
L Zhang, C Gu, J Wen, G Liu, H Liu, L Li. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 2021; 413(1): 83–102 https://doi.org/10.1007/s00216-020-03000-0
pmid: 33164151
A Sharma, A Johnson. Exosome DNA: critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol 2020; 235(3): 1921–1932 https://doi.org/10.1002/jcp.29153
pmid: 31512231
B Sandfeld-Paulsen, N Aggerholm-Pedersen, R Bæk, KR Jakobsen, P Meldgaard, BH Folkersen, TR Rasmussen, K Varming, MM Jørgensen, BS Sorensen. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 2016; 10(10): 1595–1602 https://doi.org/10.1016/j.molonc.2016.10.003
pmid: 27856179
S Maacha, AA Bhat, L Jimenez, A Raza, M Haris, S Uddin, JC Grivel. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019; 18(1): 55 https://doi.org/10.1186/s12943-019-0965-7
pmid: 30925923
J Silva, V Garcia, M Rodriguez, M Compte, E Cisneros, P Veguillas, JM Garcia, G Dominguez, Y Campos-Martin, J Cuevas, C Peña, M Herrera, R Diaz, N Mohammed, F Bonilla. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 2012; 51(4): 409–418 https://doi.org/10.1002/gcc.21926
pmid: 22420032
17
W Yu, J Hurley, D Roberts, SK Chakrabortty, D Enderle, M Noerholm, XO Breakefield, JK Skog. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32(4): 466–477 https://doi.org/10.1016/j.annonc.2021.01.074
pmid: 33548389
18
S Khodashenas, S Khalili, M Forouzandeh Moghadam. A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol Lett 2019; 41(4–5): 523–531 https://doi.org/10.1007/s10529-019-02667-5
pmid: 30963341
19
RA Dragovic, GP Collett, P Hole, DJ Ferguson, CW Redman, IL Sargent, DS Tannetta. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence nanoparticle tracking analysis. Methods 2015; 87: 64–74 https://doi.org/10.1016/j.ymeth.2015.03.028
pmid: 25843788
S Mastoridis, GM Bertolino, G Whitehouse, F Dazzi, A Sanchez-Fueyo, M Martinez-Llordella. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol 2018; 9: 1583 https://doi.org/10.3389/fimmu.2018.01583
pmid: 30034401
22
X Luo, M An, KC Cuneo, DM Lubman, L Li. High-performance chemical isotope labeling liquid chromatography mass spectrometry for exosome metabolomics. Anal Chem 2018; 90(14): 8314–8319 https://doi.org/10.1021/acs.analchem.8b01726
pmid: 29920066
23
J Ko, E Carpenter, D Issadore. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst (Lond) 2016; 141(2): 450–460 https://doi.org/10.1039/C5AN01610J
pmid: 26378496
24
KW Witwer, EI Buzás, LT Bemis, A Bora, C Lässer, J Lötvall, EN Nolte-’t Hoen, MG Piper, S Sivaraman, J Skog, C Théry, MH Wauben, F Hochberg. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2: 20360 https://doi.org/10.3402/jev.v2i0.20360
pmid: 24009894
25
Z Sun, L Wang, S Wu, Y Pan, Y Dong, S Zhu, J Yang, Y Yin, G Li. An electrochemical biosensor designed by using Zr-based metal-organic frameworks for the detection of glioblastoma-derived exosomes with practical application. Anal Chem 2020; 92(5): 3819–3826 https://doi.org/10.1021/acs.analchem.9b05241
pmid: 32024367
26
L Wang, Y Pan, Y Liu, Z Sun, Y Huang, J Li, J Yang, Y Xiang, G Li. Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification. ACS Appl Mater Interfaces 2020; 12(1): 322–329 https://doi.org/10.1021/acsami.9b18869
pmid: 31840492
27
E van der Pol, F A W Coumans, AE Grootemaat, C Gardiner, IL Sargent, P Harrison, A Sturk, TG van Leeuwen, R Nieuwland. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 2014; 12(7): 1182–1192 https://doi.org/10.1111/jth.12602
pmid: 24818656
28
S Lin, Z Yu, D Chen, Z Wang, J Miao, Q Li, D Zhang, J Song, D Cui. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): e1903916 https://doi.org/10.1002/smll.201903916
pmid: 31663295
MK Masud, J Na, M Younus, MSA Hossain, Y Bando, MJA Shiddiky, Y Yamauchi. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48(24): 5717–5751 https://doi.org/10.1039/C9CS00174C
pmid: 31720618
31
Y Huang, L Wang, L Sha, Y Wang, X Duan, G Li. Highly sensitive detection of lipopolysaccharide based on collaborative amplification of dual enzymes. Anal Chim Acta 2020; 1126: 31–37 https://doi.org/10.1016/j.aca.2020.06.013
pmid: 32736722
32
Y Geng, WJ Peveler, VM Rotello. Array-based “chemical nose” sensing in diagnostics and drug discovery. Angew Chem Int Ed Engl 2019; 58(16): 5190–5200 https://doi.org/10.1002/anie.201809607
pmid: 30347522
33
J Wu, S Hu, L Zhang, J Xin, C Sun, L Wang, K Ding, B Wang. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020; 10(10): 4544–4556 https://doi.org/10.7150/thno.40532
pmid: 32292514
34
SC Guo, SC Tao, H Dawn. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J Extracell Vesicles 2018; 7(1): 1508271 https://doi.org/10.1080/20013078.2018.1508271
pmid: 30151077
35
N Cheng, D Du, X Wang, D Liu, W Xu, Y Luo, Y Lin. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol 2019; 37(11): 1236–1254 https://doi.org/10.1016/j.tibtech.2019.04.008
pmid: 31104858
S Ogino, JA Nowak, T Hamada Jr, DA Milner Jr, R Nishihara. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019; 14(1): 83–103 https://doi.org/10.1146/annurev-pathmechdis-012418-012818
pmid: 30125150
38
L Zhang, C Gu, J Wen, G Liu, H Liu, L Li. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 2021; 413(1): 83–102 https://doi.org/10.1007/s00216-020-03000-0
pmid: 33164151
39
L Balaj, R Lessard, L Dai, YJ Cho, SL Pomeroy, XO Breakefield, J Skog. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2(1): 180 https://doi.org/10.1038/ncomms1180
pmid: 21285958
40
M Mathieu, L Martin-Jaular, G Lavieu, C Théry. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9–17 https://doi.org/10.1038/s41556-018-0250-9
pmid: 30602770
RM Johnstone, M Adam, JR Hammond, L Orr, C Turbide. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412–9420 https://doi.org/10.1016/S0021-9258(18)48095-7
pmid: 3597417
BP Foster, T Balassa, TD Benen, M Dominovic, GK Elmadjian, V Florova, MD Fransolet, A Kestlerova, G Kmiecik, IA Kostadinova, C Kyvelidou, M Meggyes, MN Mincheva, L Moro, J Pastuschek, V Spoldi, P Wandernoth, M Weber, B Toth, UR Markert. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci 2016; 53(6): 379–395 https://doi.org/10.1080/10408363.2016.1190682
pmid: 27191915
45
E Delorme-Axford, RB Donker, JF Mouillet, T Chu, A Bayer, Y Ouyang, T Wang, DB Stolz, SN Sarkar, AE Morelli, Y Sadovsky, CB Coyne. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA 2013; 110(29): 12048–12053 https://doi.org/10.1073/pnas.1304718110
pmid: 23818581
46
U Gehrmann, TI Näslund, S Hiltbrunner, P Larssen, S Gabrielsson. Harnessing the exosome-induced immune response for cancer immunotherapy. Semin Cancer Biol 2014; 28: 58–67 https://doi.org/10.1016/j.semcancer.2014.05.003
pmid: 24859748
47
Y Cheng, JS Schorey. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep 2019; 20(3): e46613 https://doi.org/10.15252/embr.201846613
pmid: 30683680
48
JV de Carvalho, RO de Castro, EZ da Silva, PP Silveira, ME da Silva-Januário, E Arruda, MC Jamur, C Oliver, RS Aguiar, LL daSilva. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One 2014; 9(11): e113691 https://doi.org/10.1371/journal.pone.0113691
pmid: 25423108
49
C Guay, R Regazzi. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 2017; 19(Suppl 1): 137–146 https://doi.org/10.1111/dom.13027
pmid: 28880477
50
Y Zhang, YW Hu, L Zheng, Q Wang. Characteristics and roles of exosomes in cardiovascular disease. DNA Cell Biol 2017; 36(3): 202–211 https://doi.org/10.1089/dna.2016.3496
pmid: 28112546
51
V Budnik, C Ruiz-Cañada, F Wendler. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 2016; 17(3): 160–172 https://doi.org/10.1038/nrn.2015.29
pmid: 26891626
52
V Sundararajan, FH Sarkar, TS Ramasamy. The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell Oncol (Dordr) 2018; 41(3): 223–252 https://doi.org/10.1007/s13402-018-0378-4
pmid: 29667069
53
Y Yang, CW Li, LC Chan, Y Wei, JM Hsu, W Xia, JH Cha, J Hou, JL Hsu, L Sun, MC Hung. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 2018; 28(8): 862–864 https://doi.org/10.1038/s41422-018-0060-4
pmid: 29959401
54
T Fang, H Lv, G Lv, T Li, C Wang, Q Han, L Yu, B Su, L Guo, S Huang, D Cao, L Tang, S Tang, M Wu, W Yang, H Wang. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 2018; 9(1): 191 https://doi.org/10.1038/s41467-017-02583-0
pmid: 29335551
55
X Liu, Y Lu, Y Xu, S Hou, J Huang, B Wang, J Zhao, S Xia, S Fan, X Yu, Y Du, L Hou, Z Li, Z Ding, S An, B Huang, L Li, J Tang, J Ju, H Guan, B Song. Exosomal transfer of miR-501 confers doxorubicin resistance and tumorigenesis via targeting of BLID in gastric cancer. Cancer Lett 2019; 459: 122–134 https://doi.org/10.1016/j.canlet.2019.05.035
pmid: 31173853
56
K Al-Nedawi, B Meehan, J Micallef, V Lhotak, L May, A Guha, J Rak. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5): 619–624 https://doi.org/10.1038/ncb1725
pmid: 18425114
57
KR Jakobsen, BS Paulsen, R Bæk, K Varming, BS Sorensen, MM Jørgensen. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 2015; 4(1): 26659 https://doi.org/10.3402/jev.v4.26659
pmid: 25735706
58
SA Melo, LB Luecke, C Kahlert, AF Fernandez, ST Gammon, J Kaye, VS LeBleu, EA Mittendorf, J Weitz, N Rahbari, C Reissfelder, C Pilarsky, MF Fraga, D Piwnica-Worms, R Kalluri. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177–182 https://doi.org/10.1038/nature14581
pmid: 26106858
59
JH Yoon, IH Ham, O Kim, H Ashktorab, DT Smoot, SW Nam, JY Lee, H Hur, WS Park. Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer 2018; 21(6): 956–967 https://doi.org/10.1007/s10120-018-0828-8
pmid: 29704153
60
S Khan, HF Bennit, D Turay, M Perez, S Mirshahidi, Y Yuan, NR Wall. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 2014; 14(1): 176 https://doi.org/10.1186/1471-2407-14-176
pmid: 24620748
61
P Zhang, X Zhou, M He, Y Shang, AL Tetlow, AK Godwin, Y Zeng. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng 2019; 3(6): 438–451 https://doi.org/10.1038/s41551-019-0356-9
pmid: 31123323
62
PS Mitchell, RK Parkin, EM Kroh, BR Fritz, SK Wyman, EL Pogosova-Agadjanyan, A Peterson, J Noteboom, KC O’Briant, A Allen, DW Lin, N Urban, CW Drescher, BS Knudsen, DL Stirewalt, R Gentleman, RL Vessella, PS Nelson, DB Martin, M Tewari. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513–10518 https://doi.org/10.1073/pnas.0804549105
pmid: 18663219
63
Z Sun, K Shi, S Yang, J Liu, Q Zhou, G Wang, J Song, Z Li, Z Zhang, W Yuan. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 2018; 17(1): 147 https://doi.org/10.1186/s12943-018-0897-7
pmid: 30309355
64
Z Li, YY Ma, J Wang, XF Zeng, R Li, W Kang, XK Hao. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther 2015; 9: 139–148
pmid: 26770063
65
CF Zhou, J Ma, L Huang, HY Yi, YM Zhang, XG Wu, RM Yan, L Liang, M Zhong, YH Yu, S Wu, W Wang. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 2019; 38(8): 1256–1268 https://doi.org/10.1038/s41388-018-0511-x
pmid: 30254211
66
X Wang, G Luo, K Zhang, J Cao, C Huang, T Jiang, B Liu, L Su, Z Qiu. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res 2018; 78(16): 4586–4598 doi:10.1158/0008-5472.CAN-17-3841
pmid: 29880482
K Boriachek, M Umer, MN Islam, V Gopalan, AK Lam, NT Nguyen, MJA Shiddiky. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst (Lond) 2018; 143(7): 1662–1669 https://doi.org/10.1039/C7AN01843F
pmid: 29512659
69
Y Li, Y Zhang, F Qiu, Z Qiu. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 2011; 32(15): 1976–1983 https://doi.org/10.1002/elps.201000598
pmid: 21557262
70
HK Kim, H Jeong, BH Choi, YH Quan, J Rho, JH Park, Y Park, Y Choi, KN Han, YH Choi, S Hong. Lung cancer exosome specific protein 1 (LESP-1) as a potential factor for diagnosis and treatment of non-small cell lung cancer. J Clin Oncol 2020; 38(15_suppl): e15550 https://doi.org/10.1200/JCO.2020.38.15_suppl.e15550
71
Y Tian, L Ma, M Gong, G Su, S Zhu, W Zhang, S Wang, Z Li, C Chen, L Li, L Wu, X Yan. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 2018; 12(1): 671–680 https://doi.org/10.1021/acsnano.7b07782
pmid: 29300458
72
S Khan, HF Bennit, D Turay, M Perez, S Mirshahidi, Y Yuan, NR Wall. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 2014; 14(1): 176 https://doi.org/10.1186/1471-2407-14-176
pmid: 24620748
73
DD Taylor, C Gercel-Taylor. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110(1): 13–21 https://doi.org/10.1016/j.ygyno.2008.04.033
pmid: 18589210
74
X Zhou, W Wen, X Shan, W Zhu, J Xu, R Guo, W Cheng, F Wang, LW Qi, Y Chen, Z Huang, T Wang, D Zhu, P Liu, Y Shu. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2017; 8(4): 6513–6525
pmid: 28036284
75
R Miranda-Castro, I Palchetti, N de-Los-Santos-Álvarez. The translational potential of electrochemical DNA-based liquid biopsy. Front Chem 2020; 8: 143 https://doi.org/10.3389/fchem.2020.00143
pmid: 32266206
76
A Díaz-Fernández, R Lorenzo-Gómez, R Miranda-Castro, N de-Los-Santos-Álvarez, MJ Lobo-Castañón. Electrochemical aptasensors for cancer diagnosis in biological fluids—a review. Anal Chim Acta 2020; 1124: 1–19 https://doi.org/10.1016/j.aca.2020.04.022
pmid: 32534661
X Yin, T Hou, B Huang, L Yang, F Li. Aptamer recognition-trigged label-free homogeneous electrochemical strategy for an ultrasensitive cancer-derived exosome assay. Chem Commun (Camb) 2019; 55(91): 13705–13708 https://doi.org/10.1039/C9CC07253E
pmid: 31657371
79
H Dong, H Chen, J Jiang, H Zhang, C Cai, Q Shen. Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal Chem 2018; 90(7): 4507–4513 https://doi.org/10.1021/acs.analchem.7b04863
pmid: 29512380
80
L Zhao, R Sun, P He, X Zhang. Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking machine and exonuclease III-assisted electrochemical ratiometric biosensing. Anal Chem 2019; 91(22): 14773–14779 https://doi.org/10.1021/acs.analchem.9b04282
pmid: 31660712
81
L Wang, L Zeng, Y Wang, T Chen, W Chen, G Chen, C Li, J Chen. Electrochemical aptasensor based on multidirectional hybridization chain reaction for detection of tumorous exosomes. Sens Actuators B Chem 2021; 332: 129471 https://doi.org/10.1016/j.snb.2021.129471
82
Y An, T Jin, Y Zhu, F Zhang, P He. An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens Bioelectron 2019; 142: 111503 https://doi.org/10.1016/j.bios.2019.111503
pmid: 31376716
83
Y Cao, L Li, B Han, Y Wang, Y Dai, J Zhao. A catalytic molecule machine-driven biosensing method for amplified electrochemical detection of exosomes. Biosens Bioelectron 2019; 141: 111397 https://doi.org/10.1016/j.bios.2019.111397
pmid: 31200334
R Huang, L He, Y Xia, H Xu, C Liu, H Xie, S Wang, L Peng, Y Liu, Y Liu, N He, Z Li. A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small 2019; 15(19): e1900735 https://doi.org/10.1002/smll.201900735
pmid: 30963720
86
L Wang, Y Deng, J Wei, Y Huang, Z Wang, G Li. Spherical nucleic acids-based cascade signal amplification for highly sensitive detection of exosomes. Biosens Bioelectron 2021; 191: 113465 https://doi.org/10.1016/j.bios.2021.113465
pmid: 34218177
87
G Maduraiveeran, M Sasidharan, V Ganesan. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103: 113–129 https://doi.org/10.1016/j.bios.2017.12.031
pmid: 29289816
88
LE Kreno, K Leong, OK Farha, M Allendorf, RP Van Duyne, JT Hupp. Metal-organic framework materials as chemical sensors. Chem Rev 2012; 112(2): 1105–1125 https://doi.org/10.1021/cr200324t
pmid: 22070233
89
JG Heck, J Napp, S Simonato, J Möllmer, M Lange, HM Reichardt, R Staudt, F Alves, C Feldmann. Multifunctional phosphate-based inorganic-organic hybrid nanoparticles. J Am Chem Soc 2015; 137(23): 7329–7336 https://doi.org/10.1021/jacs.5b01172
pmid: 26018463
90
J Mao, D Ran, C Xie, Q Shen, S Wang, W Lu. EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy. ACS Appl Mater Interfaces 2017; 9(29): 24462–24475 https://doi.org/10.1021/acsami.7b05617
pmid: 28685576
91
G Cheng, W Li, L Ha, X Han, S Hao, Y Wan, Z Wang, F Dong, X Zou, Y Mao, SY Zheng. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J Am Chem Soc 2018; 140(23): 7282–7291 https://doi.org/10.1021/jacs.8b03584
pmid: 29809001
92
Y Cao, Y Wang, X Yu, X Jiang, G Li, J Zhao. Identification of programmed death ligand-1 positive exosomes in breast cancer based on DNA amplification-responsive metal-organic frameworks. Biosens Bioelectron 2020; 166: 112452 https://doi.org/10.1016/j.bios.2020.112452
pmid: 32738648
93
S Kandambeth, K Dey, R Banerjee. Covalent organic frameworks: chemistry beyond the structure. J Am Chem Soc 2019; 141(5): 1807–1822 https://doi.org/10.1021/jacs.8b10334
pmid: 30485740
94
M Wang, Y Pan, S Wu, Z Sun, L Wang, J Yang, Y Yin, G Li. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens Bioelectron 2020; 169: 112638 https://doi.org/10.1016/j.bios.2020.112638
pmid: 32987328
95
FZ Farhana, M Umer, A Saeed, AS Pannu, M Shahbazi, A Jabur, HJ Nam, K Ostrikov, P Sonar, SH Firoz, MJA Shiddiky. Isolation and detection of exosomes using Fe2O3 nanoparticles. ACS Appl Nano Mater 2021; 4(2): 1175–1186 https://doi.org/10.1021/acsanm.0c02807
96
L Xu, N Shoaie, F Jahanpeyma, J Zhao, M Azimzadeh, KT Al Jamal. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview. Biosens Bioelectron 2020; 161: 112222 https://doi.org/10.1016/j.bios.2020.112222
pmid: 32365010
97
H Kholafazad Kordasht, M Hasanzadeh. Biomedical analysis of exosomes using biosensing methods: recent progress. Anal Methods 2020; 12(22): 2795–2811 https://doi.org/10.1039/D0AY00722F
pmid: 32930202
98
MS Panagopoulou, AW Wark, DJS Birch, CD Gregory. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles 2020; 9(1): 1710020 https://doi.org/10.1080/20013078.2019.1710020
pmid: 32002172
99
L Wang, Y Yang, Y Liu, L Ning, Y Xiang, G Li. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection. Chem Commun (Camb) 2019; 55(18): 2708–2711 https://doi.org/10.1039/C9CC00220K
pmid: 30758019
100
X Yu, L He, M Pentok, H Yang, Y Yang, Z Li, N He, Y Deng, S Li, T Liu, X Chen, H Luo. An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 2019; 11(33): 15589–15595 https://doi.org/10.1039/C9NR04050A
pmid: 31403149
101
Y Pan, L Wang, Y Deng, M Wang, Y Peng, J Yang, G Li. A simple and sensitive method for exosome detection based on steric hindrance-controlled signal amplification. Chem Commun (Camb) 2020; 56(89): 13768–13771 https://doi.org/10.1039/D0CC06113A
pmid: 33084644
102
W Tian, P Li, W He, C Liu, Z Li. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens Bioelectron 2019; 128: 17–22 https://doi.org/10.1016/j.bios.2018.12.041
pmid: 30616213
103
L Huang, DB Wang, N Singh, F Yang, N Gu, XE Zhang. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale 2018; 10(43): 20289–20295 https://doi.org/10.1039/C8NR07720G
pmid: 30371719
104
R Huang, L He, S Li, H Liu, L Jin, Z Chen, Y Zhao, Z Li, Y Deng, N He. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Nanoscale 2020; 12(4): 2445–2451 https://doi.org/10.1039/C9NR08747H
pmid: 31894795
105
J Zhang, J Shi, W Liu, K Zhang, H Zhao, H Zhang, Z Zhang. A simple, specific and “on-off” type MUC1 fluorescence aptasensor based on exosomes for detection of breast cancer. Sens Actuators B Chem 2018; 276: 552–559 https://doi.org/10.1016/j.snb.2018.08.056
106
P Li, X Yu, W Han, Y Kong, W Bao, J Zhang, W Zhang, Y Gu. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sens 2019; 4(5): 1433–1441 https://doi.org/10.1021/acssensors.9b00621
pmid: 31017389
107
Y Yu, WS Zhang, Y Guo, H Peng, M Zhu, D Miao, G Su. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens Bioelectron 2020; 167: 112482 https://doi.org/10.1016/j.bios.2020.112482
pmid: 32795917
108
B Li, C Liu, W Pan, J Shen, J Guo, T Luo, J Feng, B Situ, T An, Y Zhang, L Zheng. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens Bioelectron 2020; 168: 112520 https://doi.org/10.1016/j.bios.2020.112520
pmid: 32866725
109
Z Zhang, C Tang, L Zhao, L Xu, W Zhou, Z Dong, Y Yang, Q Xie, X Fang. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 2019; 11(20): 10106–10113 https://doi.org/10.1039/C9NR01589B
pmid: 31089660
110
X Liang, L Han. White peroxidase-mimicking nanozymes: colorimetric pesticide assay without interferences of O2 and color. Adv Funct Mater 2020; 30(28): 2001933 https://doi.org/10.1002/adfm.202001933
111
L Xu, R Chopdat, D Li, KT Al-Jamal. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens Bioelectron 2020; 169: 112576 https://doi.org/10.1016/j.bios.2020.112576
pmid: 32919211
112
A Mokhtarzadeh, J Ezzati Nazhad Dolatabadi, K Abnous, M de la Guardia, M Ramezani. Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 2015; 68: 95–106 https://doi.org/10.1016/j.bios.2014.12.052
pmid: 25562736
113
W Liu, J Li, Y Wu, S Xing, Y Lai, G Zhang. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens Bioelectron 2018; 102: 204–210 PMID:29145073 https://doi.org/10.1016/j.bios.2017.11.033
114
J Li, MA Baird, MA Davis, W Tai, LS Zweifel, KM Adams Waldorf, M Gale Jr, L Rajagopal, RH Pierce, X Gao. Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nat Biomed Eng 2017; 1: 0082 https://doi.org/10.1038/s41551-017-0082
pmid: 29082104
115
H Lee, J Rho, PB Messersmith. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 2009; 21(4): 431–434 https://doi.org/10.1002/adma.200801222
pmid: 19802352
116
Z Chen, SB Cheng, P Cao, QF Qiu, Y Chen, M Xie, Y Xu, WH Huang. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron 2018; 122: 211–216 https://doi.org/10.1016/j.bios.2018.09.033
pmid: 30265971
117
F He, H Liu, X Guo, BC Yin, BC Ye. Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal Chem 2017; 89(23): 12968–12975 https://doi.org/10.1021/acs.analchem.7b03919
pmid: 29139297
118
Y Zhang, D Wang, S Yue, Y Lu, C Yang, J Fang, Z Xu. Sensitive multicolor visual detection of exosomes via dual signal amplification strategy of enzyme-catalyzed metallization of Au nanorods and hybridization chain reaction. ACS Sens 2019; 4(12): 3210–3218 https://doi.org/10.1021/acssensors.9b01644
pmid: 31820935
119
Y Zhang, J Jiao, Y Wei, D Wang, C Yang, Z Xu. Plasmonic colorimetric biosensor for sensitive exosome detection via enzyme-induced etching of gold nanobipyramid@MnO2 nanosheet nanostructures. Anal Chem 2020; 92(22): 15244–15252 https://doi.org/10.1021/acs.analchem.0c04136
pmid: 33108733
120
S Munir, AA Shah, H Rahman, M Bilal, MSR Rajoka, AA Khan, M Khurshid. Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol Lett 2020; 42(3): 357–373 https://doi.org/10.1007/s10529-020-02795-3
pmid: 31950406
K Boriachek, MK Masud, C Palma, HP Phan, Y Yamauchi, MSA Hossain, NT Nguyen, C Salomon, MJA Shiddiky. Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal Chem 2019; 91(6): 3827–3834 https://doi.org/10.1021/acs.analchem.8b03619
pmid: 30735354
123
YM Wang, JW Liu, GB Adkins, W Shen, MP Trinh, LY Duan, JH Jiang, W Zhong. Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal Chem 2017; 89(22): 12327–12333 https://doi.org/10.1021/acs.analchem.7b03335
pmid: 29069893
124
Y Xia, M Liu, L Wang, A Yan, W He, M Chen, J Lan, J Xu, L Guan, J Chen. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron 2017; 92: 8–15 https://doi.org/10.1016/j.bios.2017.01.063
pmid: 28167415
125
Y Zhou, H Xu, H Wang, BC Ye. Detection of breast cancer-derived exosomes using the horseradish peroxidase-mimicking DNAzyme as an aptasensor. Analyst (Lond) 2020; 145: 107–114 https://doi.org/10.1039/C9AN01653H
pmid: 31746830
AV Kabashin, P Evans, S Pastkovsky, W Hendren, GA Wurtz, R Atkinson, R Pollard, VA Podolskiy, AV Zayats. Plasmonic nanorod metamaterials for biosensing. Nat Mater 2009; 8(11): 867–871 https://doi.org/10.1038/nmat2546
pmid: 19820701
129
Q Wang, L Zou, X Yang, X Liu, W Nie, Y Zheng, Q Cheng, K Wang. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron 2019; 135: 129–136 https://doi.org/10.1016/j.bios.2019.04.013
pmid: 31004923
130
A Thakur, G Qiu, SP Ng, J Guan, J Yue, Y Lee, CL Wu. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron 2017; 94: 400–407 https://doi.org/10.1016/j.bios.2017.03.036
pmid: 28324860
131
G Qiu, A Thakur, C Xu, SP Ng, Y Lee, CML Wu. Detection of glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv Funct Mater 2019; 29(9): 1806761 https://doi.org/10.1002/adfm.201806761
132
H Im, H Shao, YI Park, VM Peterson, CM Castro, R Weissleder, H Lee. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 2014; 32(5): 490–495 https://doi.org/10.1038/nbt.2886
pmid: 24752081
133
S Zong, Z Wang, H Chen, Y Cui. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Small 2013; 9(24): 4215–4220 https://doi.org/10.1002/smll.201301372
pmid: 23852668
134
D Cialla-May, XS Zheng, K Weber, J Popp. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 2017; 46(13): 3945–3961 https://doi.org/10.1039/C7CS00172J
pmid: 28639667
135
Z Wang, S Zong, Y Wang, N Li, L Li, J Lu, Z Wang, B Chen, Y Cui. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 2018; 10(19): 9053–9062 https://doi.org/10.1039/C7NR09162A
pmid: 29718044
136
S Zong, L Wang, C Chen, J Lu, D Zhu, Y Zhang, Z Wang, Y Cui. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal Methods 2016; 8(25): 5001–5008 https://doi.org/10.1039/C6AY00406G
137
EA Kwizera, R O’Connor, V Vinduska, M Williams, ER Butch, SE Snyder, X Chen, X Huang. Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 2018; 8(10): 2722–2738 https://doi.org/10.7150/thno.21358
pmid: 29774071
138
D Ma, C Huang, J Zheng, J Tang, J Li, J Yang, R Yang. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens Bioelectron 2018; 101: 167–173 https://doi.org/10.1016/j.bios.2017.08.062
pmid: 29073517
139
JU Lee, WH Kim, HS Lee, KH Park, SJ Sim. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars. Small 2019; 15(17): e1804968 https://doi.org/10.1002/smll.201804968
pmid: 30828996
140
EK Sackmann, AL Fulton, DJ Beebe. The present and future role of microfluidics in biomedical research. Nature 2014; 507(7491): 181–189 https://doi.org/10.1038/nature13118
pmid: 24622198
141
W Chen, F Shao, Y Xianyu. Microfluidics-implemented biochemical assays: from the perspective of readout. Small 2020; 16(9): e1903388 https://doi.org/10.1002/smll.201903388
pmid: 31532891
142
SS Kanwar, CJ Dunlay, DM Simeone, S Nagrath. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 2014; 14(11): 1891–1900 https://doi.org/10.1039/C4LC00136B
pmid: 24722878
143
P Zhang, M He, Y Zeng. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016; 16(16): 3033–3042 https://doi.org/10.1039/C6LC00279J
pmid: 27045543
144
R Vaidyanathan, M Naghibosadat, S Rauf, D Korbie, LG Carrascosa, MJA Shiddiky, M Trau. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem 2014; 86(22): 11125–11132 https://doi.org/10.1021/ac502082b
pmid: 25324037
145
HK Woo, V Sunkara, J Park, TH Kim, JR Han, CJ Kim, HI Choi, YK Kim, YK Cho. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano 2017; 11(2): 1360–1370 https://doi.org/10.1021/acsnano.6b06131
pmid: 28068467
146
LG Liang, MQ Kong, S Zhou, YF Sheng, P Wang, T Yu, F Inci, WP Kuo, LJ Li, U Demirci, S Wang. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep 2017; 7(1): 46224 https://doi.org/10.1038/srep46224
pmid: 28436447
147
L Zhu, K Wang, J Cui, H Liu, X Bu, H Ma, W Wang, H Gong, C Lausted, L Hood, G Yang, Z Hu. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem 2014; 86(17): 8857–8864 https://doi.org/10.1021/ac5023056
pmid: 25090139
148
H Shao, J Chung, L Balaj, A Charest, DD Bigner, BS Carter, FH Hochberg, XO Breakefield, R Weissleder, H Lee. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 2012; 18(12): 1835–1840 https://doi.org/10.1038/nm.2994
pmid: 23142818
149
SR Shin, T Kilic, YS Zhang, H Avci, N Hu, D Kim, C Branco, J Aleman, S Massa, A Silvestri, J Kang, A Desalvo, MA Hussaini, SK Chae, A Polini, N Bhise, MA Hussain, H Lee, MR Dokmeci, A Khademhosseini. Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv Sci (Weinh) 2017; 4(5): 1600522 https://doi.org/10.1002/advs.201600522
pmid: 28546915
150
T Hamada, N Keum, R Nishihara, S Ogino. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol 2017; 52(3): 265–275 https://doi.org/10.1007/s00535-016-1272-3
pmid: 27738762