Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2022, Vol. 16 Issue (6): 896-908   https://doi.org/10.1007/s11684-022-0944-z
  本期目录
FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches
Ran Li, Kai Xue(), Junmin Li()
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
 全文: PDF(4927 KB)   HTML
Abstract

Fibroblast growth factor 13 (FGF13) is aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in the development of acute myeloid leukemia (AML) and emphasize its associations with bone marrow niches. Results showed that FGF13 was lowly expressed in patients with AML and that its elevated expression was related to prolonged overall survival (OS). Univariate and multivariate Cox regression analyses identified FGF13 as an independent prognostic factor. A prognostic nomogram integrating FGF13 and clinicopathologic variables was constructed to predict 1-, 3-, and 5-year OS. Gene mutation and functional analyses indicated that FGF13 was not associated with AML driver mutations but was related to bone marrow niches. As for immunity, FGF13 was remarkably associated with T cell count, immune checkpoint genes, and cytokines. In addition, FGF13 overexpression substantially inhibited the growth and significantly induced the early apoptosis of AML cells. The xenograft study indicated that FGF13 overexpression prolonged the survival of recipient mice. Overall, FGF13 could serve as an independent prognostic factor for AML, and it was closely related to the bone marrow microenvironment.

Key wordsacute myeloid leukemia    FGF13    prognosis    immune-related genes    bone marrow niches
收稿日期: 2022-04-08      出版日期: 2023-01-16
Corresponding Author(s): Kai Xue,Junmin Li   
 引用本文:   
. [J]. Frontiers of Medicine, 2022, 16(6): 896-908.
Ran Li, Kai Xue, Junmin Li. FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches. Front. Med., 2022, 16(6): 896-908.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0944-z
https://academic.hep.com.cn/fmd/CN/Y2022/V16/I6/896
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 H Döhner, AH Wei, B Löwenberg. Towards precision medicine for AML. Nat Rev Clin Oncol 2021; 18( 9): 577– 590
https://doi.org/10.1038/s41571-021-00509-w pmid: 34006997
2 SA Assi, MR Imperato, DJL Coleman, A Pickin, S Potluri, A Ptasinska, PS Chin, H Blair, P Cauchy, SR James, J Zacarias-Cabeza, LN Gilding, A Beggs, S Clokie, JC Loke, P Jenkin, A Uddin, R Delwel, SJ Richards, M Raghavan, MJ Griffiths, O Heidenreich, PN Cockerill, C Bonifer. Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat Genet 2019; 51( 1): 151– 162
https://doi.org/10.1038/s41588-018-0270-1 pmid: 30420649
3 H Döhner, E Estey, D Grimwade, S Amadori, FR Appelbaum, T Büchner, H Dombret, BL Ebert, P Fenaux, RA Larson, RL Levine, F Lo-Coco, T Naoe, D Niederwieser, GJ Ossenkoppele, M Sanz, J Sierra, MS Tallman, HF Tien, AH Wei, B Löwenberg, CD Bloomfield. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129( 4): 424– 447
https://doi.org/10.1182/blood-2016-08-733196 pmid: 27895058
4 S Méndez-Ferrer, D Bonnet, DP Steensma, RP Hasserjian, IM Ghobrial, JG Gribben, M Andreeff, DS Krause. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20( 5): 285– 298
https://doi.org/10.1038/s41568-020-0245-2 pmid: 32112045
5 SJC Mancini, K Balabanian, I Corre, J Gavard, G Lazennec, Bousse-Kerdilès MC Le, F Louache, V Maguer-Satta, NM Mazure, F Mechta-Grigoriou, JF Peyron, V Trichet, O Herault. Deciphering tumor niches: lessons from solid and hematological malignancies. Front Immunol 2021; 12 : 766275
https://doi.org/10.3389/fimmu.2021.766275 pmid: 34858421
6 C Degirolamo, C Sabbà, A Moschetta. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15( 1): 51– 69
https://doi.org/10.1038/nrd.2015.9 pmid: 26567701
7 SK Olsen, M Garbi, N Zampieri, AV Eliseenkova, DM Ornitz, M Goldfarb, M Mohammadi. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 2003; 278( 36): 34226– 34236
https://doi.org/10.1074/jbc.M303183200 pmid: 12815063
8 EQ Wei, DS Sinden, L Mao, H Zhang, C Wang, GS Pitt. Inducible Fgf13 ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proc Natl Acad Sci USA 2017; 114( 20): E4010– E4019
https://doi.org/10.1073/pnas.1616393114 pmid: 28461495
9 QF Wu, L Yang, S Li, Q Wang, XB Yuan, X Gao, L Bao, X Zhang. Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 2012; 149( 7): 1549– 1564
https://doi.org/10.1016/j.cell.2012.04.046 pmid: 22726441
10 H Lu, X Shi, G Wu, J Zhu, C Song, Q Zhang, G Yang. FGF13 regulates proliferation and differentiation of skeletal muscle by down-regulating Spry1. Cell Prolif 2015; 48( 5): 550– 560
https://doi.org/10.1111/cpr.12200 pmid: 26230950
11 T Okada, K Murata, R Hirose, C Matsuda, T Komatsu, M Ikekita, M Nakawatari, F Nakayama, M Wakatsuki, T Ohno, S Kato, T Imai, T Imamura. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 2013; 3( 1): 2899
https://doi.org/10.1038/srep02899 pmid: 24113164
12 H Lu, M Yin, L Wang, J Cheng, W Cheng, H An, T Zhang. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells. Cancer Biol Ther 2020; 21( 11): 1014– 1024
https://doi.org/10.1080/15384047.2020.1824512 pmid: 33064958
13 CN Johnstone, AD Pattison, PF Harrison, DR Powell, P Lock, M Ernst, RL Anderson, TH Beilharz. FGF13 promotes metastasis of triple-negative breast cancer. Int J Cancer 2020; 147( 1): 230– 243
https://doi.org/10.1002/ijc.32874 pmid: 31957002
14 G Bindea, B Mlecnik, M Tosolini, A Kirilovsky, M Waldner, AC Obenauf, H Angell, T Fredriksen, L Lafontaine, A Berger, P Bruneval, WH Fridman, C Becker, F Pagès, MR Speicher, Z Trajanoski, J Galon. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39( 4): 782– 795
https://doi.org/10.1016/j.immuni.2013.10.003 pmid: 24138885
15 R Li, L Zhang, Z Qin, Y Wei, Z Deng, C Zhu, J Tang, L Ma. High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer. Exp Cell Res 2019; 378( 1): 32– 40
https://doi.org/10.1016/j.yexcr.2019.03.009 pmid: 30851243
16 PE Czabotar, G Lessene, A Strasser, JM Adams. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15( 1): 49– 63
https://doi.org/10.1038/nrm3722 pmid: 24355989
17 M Konopleva, A Letai. BCL-2 inhibition in AML: an unexpected bonus?. Blood 2018; 132( 10): 1007– 1012
https://doi.org/10.1182/blood-2018-03-828269 pmid: 30037885
18 Y Otani, T Ichikawa, K Kurozumi, S Inoue, J Ishida, T Oka, T Shimizu, Y Tomita, Y Hattori, A Uneda, Y Matsumoto, H Michiue, I Date. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion. Oncogene 2018; 37( 6): 777– 786
https://doi.org/10.1038/onc.2017.373 pmid: 29059154
19 K Turkowski, F Herzberg, S Günther, D Brunn, A Weigert, M Meister, T Muley, M Kriegsmann, MA Schneider, H Winter, M Thomas, F Grimminger, W Seeger, Pullamsetti S Savai, R Savai. Fibroblast growth factor-14 acts as tumor suppressor in lung adenocarcinomas. Cells 2020; 9( 8): E1755
https://doi.org/10.3390/cells9081755 pmid: 32707902
20 T Su, L Huang, N Zhang, S Peng, X Li, G Wei, E Zhai, Z Zeng, L Xu. FGF14 functions as a tumor suppressor through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J Cancer 2020; 11( 4): 819– 825
https://doi.org/10.7150/jca.36316 pmid: 31949485
21 X Wu, M Li, Y Li, Y Deng, S Ke, F Li, Y Wang, S Zhou. Fibroblast growth factor 11 (FGF11) promotes non-small cell lung cancer (NSCLC) progression by regulating hypoxia signaling pathway. J Transl Med 2021; 19( 1): 353
https://doi.org/10.1186/s12967-021-03018-7 pmid: 34404435
22 J Li, J Cao, P Li, Z Yao, R Deng, L Ying, J Tian. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis. BMC Cancer 2021; 21( 1): 858
https://doi.org/10.1186/s12885-021-08611-z pmid: 34315402
23 K Li, FR Tay, CKY Yiu. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 2020; 207 : 107465
https://doi.org/10.1016/j.pharmthera.2019.107465 pmid: 31863819
24 J Pietrzak, M Mirowski, R Świechowski, D Wodziński, A Wosiak, K Michalska, E Balcerczak. Importance of altered gene expression of metalloproteinases 2, 9, and 16 in acute myeloid leukemia: preliminary study. J Oncol 2021; 2021 : 6697975
https://doi.org/10.1155/2021/6697975 pmid: 34035811
25 PL Azevedo, NCA Oliveira, S Corrêa, MTL Castelo-Branco, E Abdelhay, R Binato. Canonical WNT signaling pathway is altered in mesenchymal stromal cells from acute myeloid leukemia patients and is implicated in BMP4 down-regulation. Transl Oncol 2019; 12( 4): 614– 625
https://doi.org/10.1016/j.tranon.2019.01.003 pmid: 30703678
26 JC Marini, A Forlino, HP Bächinger, NJ Bishop, PH Byers, A Paepe, F Fassier, N Fratzl-Zelman, KM Kozloff, D Krakow, K Montpetit, O Semler. Osteogenesis imperfecta. Nat Rev Dis Primers 2017; 3( 1): 17052
https://doi.org/10.1038/nrdp.2017.52 pmid: 28820180
27 P Lu, VM Weaver, Z Werb. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196( 4): 395– 406
https://doi.org/10.1083/jcb.201102147 pmid: 22351925
28 W Chen, Z Yang. Identification of differentially expressed genes reveals BGN predicting overall survival and tumor immune infiltration of gastric cancer. Comput Math Methods Med 2021; 2021 : 5494840
https://doi.org/10.1155/2021/5494840 pmid: 34868341
29 YY Jia, Y Yu, HJ Li. POSTN promotes proliferation and epithelial-mesenchymal transition in renal cell carcinoma through ILK/AKT/mTOR pathway. J Cancer 2021; 12( 14): 4183– 4195
https://doi.org/10.7150/jca.51253 pmid: 34093819
30 P Charoentong, F Finotello, M Angelova, C Mayer, M Efremova, D Rieder, H Hackl, Z Trajanoski. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18( 1): 248– 262
https://doi.org/10.1016/j.celrep.2016.12.019 pmid: 28052254
31 IA Smith, BR Knezevic, JU Ammann, DA Rhodes, D Aw, DB Palmer, IH Mather, J Trowsdale. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J Immunol 2010; 184( 7): 3514– 3525
https://doi.org/10.4049/jimmunol.0900416 pmid: 20208008
32 Z Jiang, F Liu. Butyrophilin-like 9 (BTNL9) suppresses invasion and correlates with favorable prognosis of uveal melanoma. Med Sci Monit 2019; 25 : 3190– 3198
https://doi.org/10.12659/MSM.914074 pmid: 31039142
33 Q Mo, K Xu, C Luo, Q Zhang, L Wang, G Ren. BTNL9 is frequently downregulated and inhibits proliferation and metastasis via the P53/CDC25C and P53/GADD45 pathways in breast cancer. Biochem Biophys Res Commun 2021; 553 : 17– 24
https://doi.org/10.1016/j.bbrc.2021.03.022 pmid: 33756341
34 C Alfaro, MF Sanmamed, ME Rodríguez-Ruiz, Á Teijeira, C Oñate, Á González, M Ponz, KA Schalper, JL Pérez-Gracia, I Melero. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 2017; 60 : 24– 31
https://doi.org/10.1016/j.ctrv.2017.08.004 pmid: 28866366
35 D Aldinucci, C Borghese, N Casagrande. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 2020; 12( 7): E1765
https://doi.org/10.3390/cancers12071765 pmid: 32630699
36 M Gulubova, E Aleksandrova, T Vlaykova. Promoter polymorphisms in TGFB1 and IL10 genes influence tumor dendritic cells infiltration, development and prognosis of colorectal cancer. J Gene Med 2018; 20( 2–3): e3005
https://doi.org/10.1002/jgm.3005 pmid: 29388277
37 DJ Propper, FR Balkwill. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19( 4): 237– 253
https://doi.org/10.1038/s41571-021-00588-9 pmid: 34997230
38 K Sarter, E Leimgruber, F Gobet, V Agrawal, I Dunand-Sauthier, E Barras, B Mastelic-Gavillet, A Kamath, P Fontannaz, L Guéry, FV Duraes, C Lippens, U Ravn, ML Santiago-Raber, G Magistrelli, N Fischer, CA Siegrist, S Hugues, W Reith. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes. J Exp Med 2016; 213( 2): 177– 187
https://doi.org/10.1084/jem.20150435 pmid: 26809444
39 G Trinchieri. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3( 2): 133– 146
https://doi.org/10.1038/nri1001 pmid: 12563297
40 DJ Propper, FR Balkwill. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19( 4): 237– 253
https://doi.org/10.1038/s41571-021-00588-9 pmid: 34997230
41 J Crespo, K Wu, W Li, I Kryczek, T Maj, L Vatan, S Wei, AW Opipari, W Zou. Human naive T cells express functional CXCL8 and promote tumorigenesis. J Immunol 2018; 201( 2): 814– 820
https://doi.org/10.4049/jimmunol.1700755 pmid: 29802127
42 FP Santos, H Kantarjian, J Cortes, A Quintas-Cardama. Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Curr Opin Investig Drugs 2010; 11( 12): 1450– 1465
pmid: 21154127
43 A Lerga, C Richard, MD Delgado, M Cañelles, P Frade, MA Cuadrado, J León. Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem Biophys Res Commun 1999; 260( 1): 256– 264
https://doi.org/10.1006/bbrc.1999.0852 pmid: 10381376
44 TM Horton, SM Blaney, AM Langevin, J Kuhn, B Kamen, SL Berg, M Bernstein, S Weitman. Phase I trial and pharmacokinetic study of raltitrexed in children with recurrent or refractory leukemia: a pediatric oncology group study. Clin Cancer Res 2005; 11( 5): 1884– 1889
https://doi.org/10.1158/1078-0432.CCR-04-1676 pmid: 15756014
[1] FMD-22021-OF-LJM_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed