Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (2): 275-289   https://doi.org/10.1007/s11684-022-0945-y
  本期目录
A small-molecule pan-HER inhibitor alone or in combination with cisplatin exerts efficacy against nasopharyngeal carcinoma
Jing Yang1,2,3, Yanfei Yang1,4, Yuquan Wei1, Xiawei Wei1()
1. Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
2. Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
3. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
4. Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha 410008, China
 全文: PDF(18726 KB)   HTML
Abstract

The abnormal activation of HER family kinase activity is closely related to the development of human malignancies. In this study, we used HER kinases as targets for the treatment of nasopharyngeal carcinoma (NPC) and explored the anti-tumor effects of the novel pan-HER inhibitor HM781-36B, alone or in combination with cisplatin. We found that HER family proteins were positively expressed in tumor tissues of some NPC patients, and the high levels of those proteins were significantly related to poor prognosis. HM781-36B inhibited NPC in vitro and in vivo. HM781-36B exerted synergistic effects with cisplatin on inhibiting proliferation and promoting apoptosis of NPC cells. In NPC xenograft models in nude mice, HM781-36B and cisplatin synergistically inhibited tumor growth. Downregulating the activity of HER family proteins and their downstream signaling pathways and regulating tumor microenvironment may explain the synergistic anti-tumor effects of HM781-36B and cisplatin. In conclusion, our study provides evidence for HER family proteins as prognostic biomarkers and potential therapeutic targets for NPC. The pan-HER inhibitor HM781-36B alone or in combination with cisplatin represents promising therapeutic effects for the treatment of NPC patients, which provides a new idea for the comprehensive treatment of NPC.

Key wordsepidermal growth factor receptor    ErbB receptors    HM781-36B    nasopharyngeal carcinoma    molecular targeted therapy    cisplatin
收稿日期: 2022-01-10      出版日期: 2023-05-26
Corresponding Author(s): Xiawei Wei   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(2): 275-289.
Jing Yang, Yanfei Yang, Yuquan Wei, Xiawei Wei. A small-molecule pan-HER inhibitor alone or in combination with cisplatin exerts efficacy against nasopharyngeal carcinoma. Front. Med., 2023, 17(2): 275-289.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-022-0945-y
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I2/275
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 YP Chen, ATC Chan, QT Le, P Blanchard, Y Sun, J Ma. Nasopharyngeal carcinoma. Lancet 2019; 394(10192): 64–80
https://doi.org/10.1016/S0140-6736(19)30956-0 pmid: 31178151
2 F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
https://doi.org/10.3322/caac.21492 pmid: 30207593
3 AD Colevas, SS Yom, DG Pfister, S Spencer, D Adelstein, D Adkins, DM Brizel, B Burtness, PM Busse, JJ Caudell, AJ Cmelak, DW Eisele, M Fenton, RL Foote, J Gilbert, ML Gillison, RI Haddad, WL Jr Hicks, YJ Hitchcock, A Jimeno, D Leizman, E Maghami, LK Mell, BB Mittal, HA Pinto, JA Ridge, J Rocco, CP Rodriguez, JP Shah, RS Weber, M Witek, F Worden, W Zhen, JL Burns, SD Darlow. NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J Natl Compr Canc Netw 2018; 16(5): 479–490
https://doi.org/10.6004/jnccn.2018.0026 pmid: 29752322
4 SM Ali, M Yao, J Yao, J Wang, Y Cheng, AB Schrock, GW Chirn, H Chen, S Mu, L Gay, JA Elvin, J Suh, VA Miller, PJ Stephens, JS Ross, K Wang. Comprehensive genomic profiling of different subtypes of nasopharyngeal carcinoma reveals similarities and differences to guide targeted therapy. Cancer 2017; 123(18): 3628–3637
https://doi.org/10.1002/cncr.30781 pmid: 28581676
5 Y Yarden, MX Sliwkowski. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2): 127–137
https://doi.org/10.1038/35052073 pmid: 11252954
6 CL Arteaga, JA Engelman. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25(3): 282–303
https://doi.org/10.1016/j.ccr.2014.02.025 pmid: 24651011
7 JL Leong, KS Loh, TC Putti, BC Goh, LK Tan. Epidermal growth factor receptor in undifferentiated carcinoma of the nasopharynx. Laryngoscope 2004; 114(1): 153–157
https://doi.org/10.1097/00005537-200401000-00029 pmid: 14710013
8 Z Taheri-Kadkhoda, B Magnusson, M Svensson, C Mercke, T Björk-Eriksson. Expression modes and clinical manifestations of latent membrane protein 1, Ki-67, cyclin-B1, and epidermal growth factor receptor in nonendemic nasopharyngeal carcinoma. Head Neck 2009; 31(4): 482–492
https://doi.org/10.1002/hed.21002 pmid: 19132724
9 WE Miller, HS Earp, N Raab-Traub. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 1995; 69(7): 4390–4398
https://doi.org/10.1128/jvi.69.7.4390-4398.1995 pmid: 7769701
10 G Bar-Sela, A Kuten, S Ben-Eliezer, E Gov-Ari, O Ben-Izhak. Expression of HER2 and C-KIT in nasopharyngeal carcinoma: implications for a new therapeutic approach. Mod Pathol 2003; 16(10): 1035–1040
https://doi.org/10.1097/01.MP.0000089778.48167.91 pmid: 14559987
11 DF Roychowdhury, A Jr Tseng, KK Fu, V Weinburg, N Weidner. New prognostic factors in nasopharyngeal carcinoma. Tumor angiogenesis and C-erbB2 expression. Cancer 1996; 77(8): 1419–1426
https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8<1419::AID-CNCR1>3.0.CO;2-7 pmid: 8608524
12 B Duan, Z Zhu, B You, S Shi, Y Shan, P Jiang, Q Zhang, L Bao, Y Yin, Y You. Overexpression of ERBB3 promotes proliferation, migration, and angiogenesis in nasopharyngeal carcinoma. Int J Clin Exp Pathol 2019; 12(8): 2931–2940
pmid: 31934129
13 MH Kang, SU Moon, JH Sung, JW Kim, KW Lee, HS Lee, JS Lee, JH Kim. Antitumor activity of HM781-36B, alone or in combination with chemotherapeutic agents, in colorectal cancer cells. Cancer Res Treat 2016; 48(1): 355–364
https://doi.org/10.4143/crt.2014.260 pmid: 25761479
14 M Wang, Y Hu, T Yu, X Ma, X Wei, Y Wei. Pan-HER-targeted approach for cancer therapy: mechanisms, recent advances and clinical prospect. Cancer Lett 2018; 439: 113–130
https://doi.org/10.1016/j.canlet.2018.07.014 pmid: 30218688
15 MY Cha, KO Lee, M Kim, JY Song, KH Lee, J Park, YJ Chae, YH Kim, KH Suh, GS Lee, SB Park, MS Kim. Antitumor activity of HM781-36B, a highly effective pan-HER inhibitor in erlotinib-resistant NSCLC and other EGFR-dependent cancer models. Int J Cancer 2012; 130(10): 2445–2454
https://doi.org/10.1002/ijc.26276 pmid: 21732342
16 HJ Nam, HP Kim, YK Yoon, HS Hur, SH Song, MS Kim, GS Lee, SW Han, SA Im, TY Kim, DY Oh, YJ Bang. Antitumor activity of HM781-36B, an irreversible Pan-HER inhibitor, alone or in combination with cytotoxic chemotherapeutic agents in gastric cancer. Cancer Lett 2011; 302(2): 155–165
https://doi.org/10.1016/j.canlet.2011.01.010 pmid: 21306821
17 Y Hiraishi, T Wada, K Nakatani, I Tojyo, T Matsumoto, N Kiga, K Negoro, S Fujita. EGFR inhibitor enhances cisplatin sensitivity of oral squamous cell carcinoma cell lines. Pathol Oncol Res 2008; 14(1): 39–43
https://doi.org/10.1007/s12253-008-9020-5 pmid: 18347929
18 P Wee, Z Wang. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017; 9(5): 52
https://doi.org/10.3390/cancers9050052 pmid: 28513565
19 WKJ LamJYK Chan. Recent advances in the management of nasopharyngeal carcinoma F1000Res 2018; 7: F1000 Faculty Rev-1829 doi: 10.12688/f1000research.15066.1
pmid: 30519454
20 A Gschwind, OM Fischer, A Ullrich. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004; 4(5): 361–370
https://doi.org/10.1038/nrc1360 pmid: 15122207
21 BB Ma, TC Poon, KF To, B Zee, FK Mo, CM Chan, S Ho, PM Teo, PJ Johnson, AT Chan. Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma—a prospective study. Head Neck 2003; 25(10): 864–872
https://doi.org/10.1002/hed.10307 pmid: 12966511
22 Y Lee, S Cho, JH Seo, BK Shin, HK Kim, I Kim, A Kim. Correlated expression of erbB-3 with hormone receptor expression and favorable clinical outcome in invasive ductal carcinomas of the breast. Am J Clin Pathol 2007; 128(6): 1041–1049
https://doi.org/10.1309/GA5VRFQFY5D0MVKD pmid: 18024331
23 A Naresh, W Long, GA Vidal, WC Wimley, L Marrero, CI Sartor, S Tovey, TG Cooke, JM Bartlett, FE Jones. The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res 2006; 66(12): 6412–6420
https://doi.org/10.1158/0008-5472.CAN-05-2368 pmid: 16778220
24 CK Tang, XZ Concepcion, M Milan, X Gong, E Montgomery, ME Lippman. Ribozyme-mediated down-regulation of ErbB-4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Res 1999; 59(20): 5315–5322
pmid: 10537315
25 Z Huang, C Brdlik, P Jin, HM Shepard. A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther 2009; 9(1): 97–110
https://doi.org/10.1517/14712590802630427 pmid: 19063696
26 NE Hynes, HA Lane. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5(5): 341–354
https://doi.org/10.1038/nrc1609 pmid: 15864276
27 RM Goldberg, P Kirkpatrick. Cetuximab. Nat Rev Drug Discov 2005; 4(5 Suppl): S10–S11
https://doi.org/10.1038/nrd1728 pmid: 15962524
28 D Kazandjian, GM Blumenthal, W Yuan, K He, P Keegan, R Pazdur. FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 2016; 22(6): 1307–1312
https://doi.org/10.1158/1078-0432.CCR-15-2266 pmid: 26980062
29 HJ Kim, HP Kim, YK Yoon, MS Kim, GS Lee, SW Han, SA Im, TY Kim, DY Oh, YJ Bang. Antitumor activity of HM781-36B, a pan-HER tyrosine kinase inhibitor, in HER2-amplified breast cancer cells. Anticancer Drugs 2012; 23(3): 288–297
https://doi.org/10.1097/CAD.0b013e32834e7d9b pmid: 23422737
30 EN Arwert, AS Harney, D Entenberg, Y Wang, E Sahai, JW Pollard, JS Condeelis. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep 2018; 23(5): 1239–1248
https://doi.org/10.1016/j.celrep.2018.04.007 pmid: 29719241
31 R Hughes, BZ Qian, C Rowan, M Muthana, I Keklikoglou, OC Olson, S Tazzyman, S Danson, C Addison, M Clemons, AM Gonzalez-Angulo, JA Joyce, M De Palma, JW Pollard, CE Lewis. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 2015; 75(17): 3479–3491
https://doi.org/10.1158/0008-5472.CAN-14-3587 pmid: 26269531
32 RM Steinman. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30(1): 1–22
https://doi.org/10.1146/annurev-immunol-100311-102839 pmid: 22136168
33 F Veglia, DI Gabrilovich. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017; 45: 43–51
https://doi.org/10.1016/j.coi.2017.01.002 pmid: 28192720
34 S Ostrand-Rosenberg. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol 2018; 51: 68–75
https://doi.org/10.1016/j.coi.2018.03.007 pmid: 29544121
35 M Kawano, S Mabuchi, Y Matsumoto, T Sasano, R Takahashi, H Kuroda, K Kozasa, K Hashimoto, A Isobe, K Sawada, T Hamasaki, E Morii, T Kimura. The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer. Sci Rep 2015; 5(1): 18217
https://doi.org/10.1038/srep18217 pmid: 26666576
[1] FMD-22022-OF-WXW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed