State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations (“target-dependent resistance”) and in the parallel and downstream pathways (“target-independent resistance”). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
G1202R, I1171; F1174 (resistant to ceritinib but sensitive to alectinib)
Lorlatinib
Shaw et al. [138]
Target-independent resistance
MET amplification, RAS/MEK activation, protein kinase C (PKC) activation, SRC activation, activation of EGFR and HER4 pathways, SHP2 activation, and NF2 loss
No evidence
Russo et al. [137]
Third generation ALK-TKIs
Target-dependent resistance
Compound mutations such as G1202R + L1196M, D1203N + F1174C, D1203N + E1210K
Rechallenge with 1st/2nd generation ALK-TKIs 4th generation TKI: TPX0131 has potency against wild-type (WT) ALK and a spectrum of acquired resistance mutations
Russo et al. [137],Yoda et al. [137],Takahashi et al. [137],Murray et al. [139]
Target-independent resistance
MET amplification
ALK-TKI + MEK inhibitors
Dagogo-Jack et al. [140]
ROS-1
Crizotinib
Target-dependent resistance
L2026M
No evidence
Mccoach et al. [141]
ROS1-G2032R,D2033N, S1986F/Y
G2032R mutation tumors was inhibited by repotrectinib, S1986F/Y mutation tumors was inhibited by lorlatinib [142]
Katayama et al. [143],Drilon et al. [144],Gainor et al. [145]
Target-independent resistance
KRAS G12C and NRAS Q61K
No evidence
Cui et al. [146]
Kit mutation (D816G)
No evidence
Cui et al. [146]
RET
Selpercatinib/pralsetinib
Target-dependent resistance
RET G810R/S/C/V
No evidence
Lin et al. [89]
Target-independent resistance
MET amplification
No evidence
Subbiah et al. [147]
KRAS amplification/PIK3CA mutation
No evidence
Nelson-Taylor et al. [148]
Vandetanib/cabozantinib
Target-dependent resistance
RET V804M
Selpercatinib
Drusbosky et al. [149]
BRAF
Dabrafenib + trametinib
Target-dependent resistance
BRAF splice variants or BRAF amplification
No evidence
Shimizu et al. [150]
BRAF fusion genes
No evidence
Kulkarni et al. [151]
Target-independent resistance
Reactivation of RAS-RAF-MEK-ERK pathway, such as NRAS/KRAS or MEK 1/2 mutations
No evidence
Johnson et al. [152]
Activation of PI3K-AKT pathway, such as AKT activating mutations and PTEN loss of function
The G13D, R68M, A59S, and A59T mutation is sensitive to adagrasib. Combination of BI-3406 (SOS1 inhibitor) and trametinib had potent activity against Y96D/S mutation. Novel KRAS inhibitor RM-018 overcomes KRAS G12C/Y96D
Tanaka et al. [90],Awad et al. [91],Koga et al. [92]
Target-independent resistance
NRAS (Q61K or G13R), MRAS (Q71R), BRAF (G596R), EGFR (amplification, P1108L and S1046R), FGFR2 (amplification, A68T and D304N)
No evidence
Zhao et al. [103]
MET amplification
A combination of sotorasib and MET inhibitors such as crizotinib and capmatinib
Zhao et al. [103],Suzuki et al. [105]
HER2 amplification
A combination of sotorasib and SHP2 inhibitors
Ho et al. [104]
Adagrasib
Target-dependent resistance
KRAS Y96C/D/S/, R68S
Combination of BI-3406 and trametinib had potent activity against Y96D/S. RM-018 overcomes KRAS G12C/Y96D
Tanaka et al. [90],Awad et al. [91],Koga et al. [92]
KRAS G12C amplification
No evidence
Awad et al. [91]
Target-independent resistance
NRAS Q61L/R/K, BRAF V600E, MAP2K1 Q56P, MAP2K1 E102_103/104del, PIK3CA H1047R, RET M918T, MET amplification, EML4-ALK and FGFR3- TACC3, etc.
No evidence
Awad et al. [91]
Other resistant mechanism
Squamous cell transformation
No evidence
Awad et al. [91]
NTRK fusion
Larotrectinib or entrectinib
Target-dependent resistance
Solvent front, gatekeeper residue and xDFG motif
No evidence
Russo et al. [137],Cocco et al. [191]
Target-independent resistance
KRAS mutation, MET amplification, BRAF mutation
No evidence
Cocco et al. [191]
Tab.1
Fig.2
Target
Genomic alternation
Treatment
NCT number
EGFR
Mutation
Bispecific antibody targeting EGFR and MET (amivantamab, etc.)
NCT02609776
Fourth generation EGFR-TKIs (BLU-945, etc.)
NCT04862780
CD73-adenosine axis blocked + PD-(L)1
NCT05431270NCT03454451NCT05221840
CD73-adenosine axis blocked + EGFR-TKIs
NCT03381274
EGFR CAR-T cells
NCT03198052
ALK
Fusion
Double mutant active fourth generation ALK-TKIs (TPX-0131 and NVL-655)
NCT04849273NCT05384626
KRAS
Mutation
KRAS inhibitor sotorasib or adagrasib combination therapy (PD-(L)1/EGFR antibody, etc.)
NCT03785249NCT04185883
KRAS inhibitor + RAF/MEK inhibitor (VS-6766)
NCT05375994
RET
Fusion
RET/SRC inhibitor (TPX-0046)
NCT04161391
ROS-1, NTRK
Fusion
Target solvent-front mutations (repotrectinib)
NCT04772235
MET
Mutation and amplification
MET ADC (ABBV-399)
NCT03539536NCT02099058
Bispecific antibody targeting EGFR and MET (amivantamab, etc.)
NCT02609776
HER2
Mutation and overexpression
HER2 ADC (TDM1, DS-8201) + PD-(L)1 + chemotherapy
NCT04686305NCT04042701
HER3
Overexpression
HER3 ADC (patritumab deruxtecan) + EGFR-TKIs
NCT04676477
SHP-2
Overexpression
SHP-2 inhibitor + PD-(L)1/KRAS inhibitor
NCT05375084NCT05480865
NRG1
Fusion
HER2×HER3 bispecific antibody (zenocutuzumab)
NCT02912949
Tab.2
1
C Zhou, YL Wu, G Chen, J Feng, XQ Liu, C Wang, S Zhang, J Wang, S Zhou, S Ren, S Lu, L Zhang, C Hu, C Hu, Y Luo, L Chen, M Ye, J Huang, X Zhi, Y Zhang, Q Xiu, J Ma, L Zhang, C You. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011; 12(8): 735–742 https://doi.org/10.1016/S1470-2045(11)70184-X
pmid: 21783417
2
LV Sequist, JCH Yang, N Yamamoto, K O’Byrne, V Hirsh, T Mok, SL Geater, S Orlov, CM Tsai, M Boyer, WC Su, J Bennouna, T Kato, V Gorbunova, KH Lee, R Shah, D Massey, V Zazulina, M Shahidi, M Schuler. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31(27): 3327–3334 https://doi.org/10.1200/JCO.2012.44.2806
pmid: 23816960
3
TS Mok, YL Wu, MJ Ahn, MC Garassino, HR Kim, SS Ramalingam, FA Shepherd, Y He, H Akamatsu, WS Theelen, CK Lee, M Sebastian, A Templeton, H Mann, M Marotti, S Ghiorghiu, VA; AURA3 Investigators Papadimitrakopoulou. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017; 376(7): 629–640 https://doi.org/10.1056/NEJMoa1612674
pmid: 27959700
4
L Friboulet, N Li, R Katayama, CC Lee, JF Gainor, AS Crystal, PY Michellys, MM Awad, N Yanagitani, S Kim, AC Pferdekamper, J Li, S Kasibhatla, F Sun, X Sun, S Hua, P McNamara, S Mahmood, EL Lockerman, N Fujita, M Nishio, JL Harris, AT Shaw, JA Engelman. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 2014; 4(6): 662–673 https://doi.org/10.1158/2159-8290.CD-13-0846
pmid: 24675041
5
JF Gainor, L Dardaei, S Yoda, L Friboulet, I Leshchiner, R Katayama, I Dagogo-Jack, S Gadgeel, K Schultz, M Singh, E Chin, M Parks, D Lee, RH DiCecca, E Lockerman, T Huynh, J Logan, LL Ritterhouse, LP Le, A Muniappan, S Digumarthy, C Channick, C Keyes, G Getz, D Dias-Santagata, RS Heist, J Lennerz, LV Sequist, CH Benes, AJ Iafrate, M Mino-Kenudson, JA Engelman, AT Shaw. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 2016; 6(10): 1118–1133 https://doi.org/10.1158/2159-8290.CD-16-0596
pmid: 27432227
6
S Zhang, R Anjum, R Squillace, S Nadworny, T Zhou, J Keats, Y Ning, SD Wardwell, D Miller, Y Song, L Eichinger, L Moran, WS Huang, S Liu, D Zou, Y Wang, Q Mohemmad, HG Jang, E Ye, N Narasimhan, F Wang, J Miret, X Zhu, T Clackson, D Dalgarno, WC Shakespeare, VM Rivera. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res 2016; 22(22): 5527–5538 https://doi.org/10.1158/1078-0432.CCR-16-0569
pmid: 27780853
7
S Peters, DR Camidge, AT Shaw, S Gadgeel, JS Ahn, DW Kim, SI Ou, M Pérol, R Dziadziuszko, R Rosell, A Zeaiter, E Mitry, S Golding, B Balas, J Noe, PN Morcos, T; ALEX Trial Investigators Mok. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 2017; 377(9): 829–838 https://doi.org/10.1056/NEJMoa1704795
pmid: 28586279
8
AT Shaw, TM Bauer, Marinis F de, E Felip, Y Goto, G Liu, J Mazieres, DW Kim, T Mok, A Polli, H Thurm, AM Calella, G Peltz, BJ; CROWN Trial Investigators Solomon. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 2020; 383(21): 2018–2029 https://doi.org/10.1056/NEJMoa2027187
pmid: 33207094
9
DR Camidge, HR Kim, MJ Ahn, JCH Yang, JY Han, MJ Hochmair, KH Lee, A Delmonte, MR Garcia Campelo, DW Kim, F Griesinger, E Felip, R Califano, AI Spira, SN Gettinger, M Tiseo, HM Lin, Y Liu, F Vranceanu, H Niu, P Zhang, S Popat. Brigatinib versus crizotinib in ALK inhibitor-naive advanced ALK-positive NSCLC: final results of phase 3 ALTA-1L trial. J Thorac Oncol 2021; 16(12): 2091–2108 https://doi.org/10.1016/j.jtho.2021.07.035
pmid: 34537440
10
BJ Solomon, T Mok, DW Kim, YL Wu, K Nakagawa, T Mekhail, E Felip, F Cappuzzo, J Paolini, T Usari, S Iyer, A Reisman, KD Wilner, J Tursi, F; PROFILE 1014 Investigators Blackhall. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371(23): 2167–2177 https://doi.org/10.1056/NEJMoa1408440
pmid: 25470694
11
AT Shaw, SHI Ou, YJ Bang, DR Camidge, BJ Solomon, R Salgia, GJ Riely, M Varella-Garcia, GI Shapiro, DB Costa, RC Doebele, LP Le, Z Zheng, W Tan, P Stephenson, SM Shreeve, LM Tye, JG Christensen, KD Wilner, JW Clark, AJ Iafrate. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014; 371(21): 1963–1971 https://doi.org/10.1056/NEJMoa1406766
pmid: 25264305
12
D Planchard, B Besse, HJM Groen, PJ Souquet, E Quoix, CS Baik, F Barlesi, TM Kim, J Mazieres, S Novello, JR Rigas, A Upalawanna, AM Jr D’Amelio, P Zhang, B Mookerjee, BE Johnson. Dabrafenib plus trametinib in patients with previously treated BRAF (V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016; 17(7): 984–993 https://doi.org/10.1016/S1470-2045(16)30146-2
pmid: 27283860
Q He, P Xin, M Zhang, S Jiang, J Zhang, S Zhong, Y Liu, M Guo, X Chen, X Xia, Z Pan, C Guo, X Cai, W Liang, J He. The impact of epidermal growth factor receptor mutations on the prognosis of resected non-small cell lung cancer: a meta-analysis of literatures. Transl Lung Cancer Res 2019; 8(2): 124–134 https://doi.org/10.21037/tlcr.2019.03.14
pmid: 31106123
17
CK Lee, YL Wu, PN Ding, SJ Lord, A Inoue, C Zhou, T Mitsudomi, R Rosell, N Pavlakis, M Links, V Gebski, RJ Gralla, JC Yang. Impact of specific epidermal growth factor receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: a meta-analysis. J Clin Oncol 2015; 33(17): 1958–1965 https://doi.org/10.1200/JCO.2014.58.1736
pmid: 25897154
18
JCH Yang, YL Wu, M Schuler, M Sebastian, S Popat, N Yamamoto, C Zhou, CP Hu, K O’Byrne, J Feng, S Lu, Y Huang, SL Geater, KY Lee, CM Tsai, V Gorbunova, V Hirsh, J Bennouna, S Orlov, T Mok, M Boyer, WC Su, KH Lee, T Kato, D Massey, M Shahidi, V Zazulina, LV Sequist. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 2015; 16(2): 141–151 https://doi.org/10.1016/S1470-2045(14)71173-8
pmid: 25589191
19
SS Ramalingam, J Vansteenkiste, D Planchard, BC Cho, JE Gray, Y Ohe, C Zhou, T Reungwetwattana, Y Cheng, B Chewaskulyong, R Shah, M Cobo, KH Lee, P Cheema, M Tiseo, T John, MC Lin, F Imamura, T Kurata, A Todd, R Hodge, M Saggese, Y Rukazenkov, JC; FLAURA Investigators Soria. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382(1): 41–50 https://doi.org/10.1056/NEJMoa1913662
pmid: 31751012
20
H Saito, T Fukuhara, N Furuya, K Watanabe, S Sugawara, S Iwasawa, Y Tsunezuka, O Yamaguchi, M Okada, K Yoshimori, I Nakachi, A Gemma, K Azuma, F Kurimoto, Y Tsubata, Y Fujita, H Nagashima, G Asai, S Watanabe, M Miyazaki, K Hagiwara, T Nukiwa, S Morita, K Kobayashi, M Maemondo. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 2019; 20(5): 625–635 https://doi.org/10.1016/S1470-2045(19)30035-X
pmid: 30975627
21
Q Zhou, CR Xu, Y Cheng, YP Liu, GY Chen, JW Cui, N Yang, Y Song, XL Li, S Lu, JY Zhou, ZY Ma, SY Yu, C Huang, YQ Shu, Z Wang, JJ Yang, HY Tu, WZ Zhong, YL Wu. Bevacizumab plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-CTONG1509): a multicenter phase 3 study. Cancer Cell 2021; 39(9): 1279–1291.e3 https://doi.org/10.1016/j.ccell.2021.07.005
pmid: 34388377
22
X Li, L Zhang, D Jiang, Y Wang, A Zang, C Ding, M Zhao, W Su, Y Zhang, D Zhong, J Wu, C Zhang, G An, X Hu, G Cheng, H Wang, Y Li, X He, J Liu, L Liang, L Ding, L Mao, S Zhang. Routine-dose and high-dose icotinib in patients with advanced non-small cell lung cancer harboring EGFR exon 21-L858R mutation: the randomized, phase II, INCREASE trial. Clin Cancer Res 2020; 26(13): 3162–3171 https://doi.org/10.1158/1078-0432.CCR-19-3064
pmid: 32060099
23
A Passaro, T Mok, S Peters, S Popat, MJ Ahn, F de Marinis. Recent advances on the role of EGFR tyrosine kinase inhibitors in the management of NSCLC with uncommon, non exon 20 insertions, EGFR mutations. J Thorac Oncol 2021; 16(5): 764–773 https://doi.org/10.1016/j.jtho.2020.12.002
pmid: 33333327
24
JCH Yang, LV Sequist, SL Geater, CM Tsai, TS Mok, M Schuler, N Yamamoto, CJ Yu, SH Ou, C Zhou, D Massey, V Zazulina, YL Wu. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 2015; 16(7): 830–838 https://doi.org/10.1016/S1470-2045(15)00026-1
pmid: 26051236
25
A Masood, RK Kancha, J Subramanian. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer harboring uncommon EGFR mutations: focus on afatinib. Semin Oncol 2019; 46(3): 271–283 https://doi.org/10.1053/j.seminoncol.2019.08.004
pmid: 31558282
26
S Vyse, PH Huang. Amivantamab for the treatment of EGFR exon 20 insertion mutant non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22(1): 3–16 https://doi.org/10.1080/14737140.2022.2016397
pmid: 34913823
27
K Park, EB Haura, NB Leighl, P Mitchell, CA Shu, N Girard, S Viteri, JY Han, SW Kim, CK Lee, JK Sabari, AI Spira, TY Yang, DW Kim, KH Lee, RE Sanborn, J Trigo, K Goto, JS Lee, JC Yang, R Govindan, JM Bauml, P Garrido, MG Krebs, KL Reckamp, J Xie, JC Curtin, N Haddish-Berhane, A Roshak, D Millington, P Lorenzini, M Thayu, RE Knoblauch, BC Cho. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol 2021; 39(30): 3391–3402 https://doi.org/10.1200/JCO.21.00662
pmid: 34339292
28
S Yang, S Mao, X Li, C Zhao, Q Liu, X Yu, Y Wang, Y Liu, Y Pan, C Wang, G Gao, W Li, A Xiong, B Chen, H Sun, Y He, F Wu, X Chen, C Su, S Ren, C Zhou. Uncommon EGFR mutations associate with lower incidence of T790M mutation after EGFR-TKI treatment in patients with advanced NSCLC. Lung Cancer 2020; 139: 133–139 https://doi.org/10.1016/j.lungcan.2019.11.018
pmid: 31786475
29
H Wang, M Zhang, W Tang, J Ma, B Wei, Y Niu, G Zhang, P Li, X Yan, Z Ma. Mutation abundance affects the therapeutic efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma: a retrospective analysis. Cancer Biol Ther 2018; 19(8): 687–694 https://doi.org/10.1080/15384047.2018.1450115
pmid: 29565727
30
X Wang, Y Liu, Z Meng, Y Wu, S Wang, G Jin, Y Qin, F Wang, J Wang, H Zhou, X Su, X Fu, X Wang, X Shi, Z Wen, X Jia, Q Qin, Y Gao, W Guo, S Lu. Plasma EGFR mutation abundance affects clinical response to first-line EGFR-TKIs in patients with advanced non-small cell lung cancer. Ann Transl Med 2021; 9(8): 635 https://doi.org/10.21037/atm-20-7155
pmid: 33987333
31
G Pan, K Chen, X Yu, J Sheng, Y Fan. The correlation between the abundance of EGFR T790M mutation and osimertinib response in advanced non-small cell lung cancer. Transl Cancer Res 2021; 10(6): 2895–2905 https://doi.org/10.21037/tcr-21-223
pmid: 35116599
32
K Furugaki, N Harada, Y Yoshimura. Sensitivity of eight types of ALK fusion variant to alectinib in ALK-transformed cells. Anticancer Drugs 2022; 33(2): 124–131 https://doi.org/10.1097/CAD.0000000000001249
pmid: 34520436
33
S Wang, R Luo, Y Shi, X Han. The impact of the ALK fusion variant on clinical outcomes in EML4-ALK patients with NSCLC: a systematic review and meta-analysis. Future Oncol 2022; 18(3): 385–402 https://doi.org/10.2217/fon-2021-0945
pmid: 34783600
34
SS Zhang, M Nagasaka, VW Zhu, SI Ou. Going beneath the tip of the iceberg. Identifying and understanding EML4-ALK variants and TP53 mutations to optimize treatment of ALK fusion positive (ALK+) NSCLC. Lung Cancer 2021; 158: 126–136 https://doi.org/10.1016/j.lungcan.2021.06.012
pmid: 34175504
M Dankner, M Lajoie, D Moldoveanu, TT Nguyen, P Savage, S Rajkumar, X Huang, M Lvova, A Protopopov, D Vuzman, D Hogg, M Park, MC Guiot, K Petrecca, C Mihalcioiu, IR Watson, PM Siegel, AAN Rose. Dual MAPK inhibition is an effective therapeutic strategy for a subset of class II BRAF mutant melanomas. Clin Cancer Res 2018; 24(24): 6483–6494 https://doi.org/10.1158/1078-0432.CCR-17-3384
pmid: 29903896
37
MV Negrao, VM Raymond, RB Lanman, JP Robichaux, J He, MB Nilsson, PKS Ng, BE Amador, EB Roarty, RJ Nagy, KC Banks, VW Zhu, C Ng, YK Chae, JM Clarke, JA Crawford, F Meric-Bernstam, SH Ignatius Ou, DR Gandara, JV Heymach, TG Bivona, CE McCoach. Molecular landscape of BRAF-mutant NSCLC reveals an association between clonality and driver mutations and identifies targetable non-V600 driver mutations. J Thorac Oncol 2020; 15(10): 1611–1623 https://doi.org/10.1016/j.jtho.2020.05.021
pmid: 32540409
38
AC Tan, AOL Seet, GGY Lai, TH Lim, AST Lim, GS Tan, A Takano, DWM Tai, TJY Tan, JYC Lam, MCH Ng, WL Tan, MK Ang, R Kanesvaran, QS Ng, A Jain, T Rajasekaran, WT Lim, EH Tan, TKH Lim, DSW Tan. Molecular characterization and clinical outcomes in RET-rearranged NSCLC. J Thorac Oncol 2020; 15(12): 1928–1934 https://doi.org/10.1016/j.jtho.2020.08.011
pmid: 32866654
39
J Feng, Y Li, B Wei, L Guo, W Li, Q Xia, C Zhao, J Zheng, J Zhao, R Sun, Y Guo, L Brcic, T Hakozaki, J Ying, J Ma. Clinicopathologic characteristics and diagnostic methods of RET rearrangement in Chinese non-small cell lung cancer patients. Transl Lung Cancer Res 2022; 11(4): 617–631 https://doi.org/10.21037/tlcr-22-202
pmid: 35529790
40
NG ArtsimovichNN NastoiashchaiaNP Lymar’AA KostrovaLI Osokina. Effect of antibiotics on hematologic indices and enzyme activity of blood lymphocytes in mice. Gematol Transfuziol 1987; 32(4): 58–62 (in Russian)
pmid: 3596220
S Hong, F Gao, S Fu, Y Wang, W Fang, Y Huang, L Zhang. Concomitant genetic alterations with response to treatment and epidermal growth factor receptor tyrosine kinase inhibitors in patients with EGFR-mutant advanced non-small cell lung cancer. JAMA Oncol 2018; 4(5): 739–742 https://doi.org/10.1001/jamaoncol.2018.0049
pmid: 29596544
46
J Zhong, L Li, Z Wang, H Bai, F Gai, J Duan, J Zhao, M Zhuo, Y Wang, S Wang, W Zang, M Wu, T An, G Rao, G Zhu, J Wang. Potential resistance mechanisms revealed by targeted sequencing from lung adenocarcinoma patients with primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). J Thorac Oncol 2017; 12(12): 1766–1778 https://doi.org/10.1016/j.jtho.2017.07.032
pmid: 28818608
47
Z Wang, Y Cheng, T An, H Gao, K Wang, Q Zhou, Y Hu, Y Song, C Ding, F Peng, L Liang, Y Hu, C Huang, C Zhou, Y Shi, L Zhang, X Ye, M Zhang, S Chuai, G Zhu, J Hu, YL Wu, J Wang. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir Med 2018; 6(9): 681–690 https://doi.org/10.1016/S2213-2600(18)30264-9
pmid: 30017884
48
J Duan, J Xu, Z Wang, H Bai, Y Cheng, T An, H Gao, K Wang, Q Zhou, Y Hu, Y Song, C Ding, F Peng, L Liang, Y Hu, C Huang, C Zhou, Y Shi, J Han, D Wang, Y Tian, Z Yang, L Zhang, S Chuai, J Ye, G Zhu, J Zhao, YL Wu, J Wang. Refined stratification based on baseline concomitant mutations and longitudinal circulating tumor DNA monitoring in advanced EGFR-mutant lung adenocarcinoma under gefitinib treatment. J Thorac Oncol 2020; 15(12): 1857–1870 https://doi.org/10.1016/j.jtho.2020.08.020
pmid: 32916309
49
S La Monica, R Minari, D Cretella, L Flammini, C Fumarola, M Bonelli, A Cavazzoni, G Digiacomo, M Galetti, D Madeddu, A Falco, CA Lagrasta, A Squadrilli, E Barocelli, A Romanel, F Quaini, PG Petronini, M Tiseo, R Alfieri. Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC. J Exp Clin Cancer Res 2019; 38(1): 222 https://doi.org/10.1186/s13046-019-1240-x
pmid: 31138260
50
D Planchard, PH Feng, N Karaseva, SW Kim, TM Kim, CK Lee, A Poltoratskiy, N Yanagitani, R Marshall, X Huang, P Howarth, PA Jänne, K Kobayashi. Osimertinib plus platinum-pemetrexed in newly diagnosed epidermal growth factor receptor mutation-positive advanced/metastatic non-small-cell lung cancer: safety run-in results from the FLAURA2 study. ESMO Open 2021; 6(5): 100271 https://doi.org/10.1016/j.esmoop.2021.100271
pmid: 34543864
51
Y Hosomi, S Morita, S Sugawara, T Kato, T Fukuhara, A Gemma, K Takahashi, Y Fujita, T Harada, K Minato, K Takamura, K Hagiwara, K Kobayashi, T Nukiwa, A; North-East Japan Study Group Inoue. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol 2020; 38(2): 115–123 https://doi.org/10.1200/JCO.19.01488
pmid: 31682542
52
WH Hsu, JCH Yang, TS Mok, HH Loong. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol 2018; 29(suppl_1): i3–i9 https://doi.org/10.1093/annonc/mdx702
pmid: 29462253
53
A Leonetti, S Sharma, R Minari, P Perego, E Giovannetti, M Tiseo. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121(9): 725–737 https://doi.org/10.1038/s41416-019-0573-8
pmid: 31564718
54
J He, Z Huang, L Han, Y Gong, C Xie. Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review). Int J Oncol 2021; 59(5): 90 https://doi.org/10.3892/ijo.2021.5270
pmid: 34558640
55
BC Cho, E Felip, H Hayashi, M Thomas, S Lu, B Besse, T Sun, M Martinez, SN Sethi, SM Shreeve, AI Spira. MARIPOSA: phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol 2022; 18(6): 639–647 https://doi.org/10.2217/fon-2021-0923
pmid: 34911336
56
D WuJ Li MH YaoYH ZhengCY FengYH Yang. Clinicopathological significance in non-small cell lung cancer with mutations and co-mutations of EGFR, ALK and ROS1. Chin J Pathol (Zhonghua Bing Li Xue Za Zhi) 2021; 50(3): 251–253 (in Chinese)
pmid: 33677892
57
X Yang, J Zhong, Z Yu, M Zhuo, M Zhang, R Chen, X Xia, J Zhao. Genetic and treatment profiles of patients with concurrent epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. BMC Cancer 2021; 21(1): 1107 https://doi.org/10.1186/s12885-021-08824-2
pmid: 34654390
58
J Fan, X Dai, Z Wang, B Huang, H Shi, D Luo, J Zhang, W Cai, X Nie, FR Hirsch. Concomitant EGFR mutation and EML4-ALK rearrangement in lung adenocarcinoma is more frequent in multifocal lesions. Clin Lung Cancer 2019; 20(4): e517–e530 https://doi.org/10.1016/j.cllc.2019.04.008
pmid: 31138506
59
YJ Zhu, X Qu, DD Zhan, HH Chen, HP Li, LR Liu, X Chen, YH Liu, Y Li, JP Bai, S Ye, HB Zhang. Specific gene co-variation acts better than number of concomitant altered genes in predicting EGFR-TKI efficacy in non-small-cell lung cancer. Clin Lung Cancer 2021; 22(1): e98–e111 https://doi.org/10.1016/j.cllc.2020.09.003
pmid: 32916309
60
F Skoulidis, JV Heymach. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 2019; 19(9): 495–509 https://doi.org/10.1038/s41568-019-0179-8
pmid: 31406302
61
NN Lou, XC Zhang, HJ Chen, Q Zhou, LX Yan, Z Xie, J Su, ZH Chen, HY Tu, HH Yan, Z Wang, CR Xu, BY Jiang, BC Wang, XY Bai, WZ Zhong, YL Wu, JJ Yang. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations. Oncotarget 2016; 7(40): 65185–65195 https://doi.org/10.18632/oncotarget.11218
pmid: 27533086
62
K Kunimasa, Y Hirotsu, Y Kukita, Y Ueda, Y Sato, M Kimura, T Otsuka, Y Hamamoto, M Tamiya, T Inoue, T Kawamura, K Nishino, K Amemiya, T Goto, H Mochizuki, K Honma, M Omata, T Kumagai. EML4-ALK fusion variant.3 and co-occurrent PIK3CA E542K mutation exhibiting primary resistance to three generations of ALK inhibitors. Cancer Genet 2021; 256-257: 131–135 https://doi.org/10.1016/j.cancergen.2021.05.010
pmid: 34130229
63
C Lu, XR Dong, J Zhao, XC Zhang, HJ Chen, Q Zhou, HY Tu, XH Ai, XF Chen, GL An, J Bai, JL Shan, YN Wang, SY Yang, X Liu, W Zhuang, HT Wu, B Zhu, XF Xia, RR Chen, DJ Gu, HM Xu, YL Wu, JJ Yang. Association of genetic and immuno-characteristics with clinical outcomes in patients with RET-rearranged non-small cell lung cancer: a retrospective multicenter study. J Hematol Oncol 2020; 13(1): 37 https://doi.org/10.1186/s13045-020-00866-6
pmid: 32295619
64
F Skoulidis, BT Li, GK Dy, TJ Price, GS Falchook, J Wolf, A Italiano, M Schuler, H Borghaei, F Barlesi, T Kato, A Curioni-Fontecedro, A Sacher, A Spira, SS Ramalingam, T Takahashi, B Besse, A Anderson, A Ang, Q Tran, O Mather, H Henary, G Ngarmchamnanrith, G Friberg, V Velcheti, R Govindan. Sotorasib for lung cancers with KRAS p. G12C mutation. N Engl J Med 2021; 384(25): 2371–2381 https://doi.org/10.1056/NEJMoa2103695
pmid: 34096690
65
FV Moiseenko, NM Volkov, AS Zhabina, ML Stepanova, NA Rysev, VV Klimenko, AV Myslik, EV Artemieva, VV Egorenkov, NH Abduloeva, AO Ivantsov, ES Kuligina, EN Imyanitov, VM Moiseyenko. Monitoring of the presence of EGFR-mutated DNA during EGFR-targeted therapy may assist in the prediction of treatment outcome. Cancer Treat Res Commun 2022; 31: 100524 https://doi.org/10.1016/j.ctarc.2022.100524
pmid: 35101831
66
A Buder, MJ Hochmair, U Setinek, R Pirker, M Filipits. EGFR mutation tracking predicts survival in advanced EGFR-mutated non-small cell lung cancer patients treated with osimertinib. Transl Lung Cancer Res 2020; 9(2): 239–245 https://doi.org/10.21037/tlcr.2020.03.02
pmid: 32420063
67
M Provencio, R Serna-Blasco, F Franco, V Calvo, A Royuela, M Auglytė, A Sánchez-Hernández, Julián Campayo M de, C García-Girón, M Dómine, A Blasco, JM Sánchez, J Oramas, J Bosch-Barrera, MÁ Sala, M Sereno, AL Ortega, L Chara, B Hernández, A Padilla, J Coves, R Blanco, J Balsalobre, X Mielgo, C Bueno, E Jantus-Lewintre, MÁ Molina-Vila, A Romero. Analysis of circulating tumour DNA to identify patients with epidermal growth factor receptor-positive non-small cell lung cancer who might benefit from sequential tyrosine kinase inhibitor treatment. Eur J Cancer 2021; 149: 61–72 https://doi.org/10.1016/j.ejca.2021.02.031
pmid: 33831609
68
W Wang, X Sun, Z Hui. Treatment optimization for brain metastasis from anaplastic lymphoma kinase rearrangement non-small-cell lung cancer. Oncol Res Treat 2019; 42(11): 599–606 https://doi.org/10.1159/000502755
pmid: 31527380
69
R Mazzola, BA Jereczek-Fossa, D Franceschini, S Tubin, AR Filippi, M Tolia, A Lancia, G Minniti, S Corradini, S Arcangeli, M Scorsetti, F Alongi. Oligometastasis and local ablation in the era of systemic targeted and immunotherapy. Radiat Oncol 2020; 15(1): 92 https://doi.org/10.1186/s13014-020-01544-0
pmid: 32366258
70
DR Gomez, GR Jr Blumenschein, JJ Lee, M Hernandez, R Ye, DR Camidge, RC Doebele, F Skoulidis, LE Gaspar, DL Gibbons, JA Karam, BD Kavanagh, C Tang, R Komaki, AV Louie, DA Palma, AS Tsao, B Sepesi, WN William, J Zhang, Q Shi, XS Wang, SG Swisher, JV Heymach. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol 2016; 17(12): 1672–1682 https://doi.org/10.1016/S1470-2045(16)30532-0
pmid: 27789196
71
DR Gomez, C Tang, J Zhang, GR Jr Blumenschein, M Hernandez, JJ Lee, R Ye, DA Palma, AV Louie, DR Camidge, RC Doebele, F Skoulidis, LE Gaspar, JW Welsh, DL Gibbons, JA Karam, BD Kavanagh, AS Tsao, B Sepesi, SG Swisher, JV Heymach. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J Clin Oncol 2019; 37(18): 1558–1565 https://doi.org/10.1200/JCO.19.00201
pmid: 31067138
72
AJ Weickhardt, B Scheier, JM Burke, G Gan, X Lu, PA Jr Bunn, DL Aisner, LE Gaspar, BD Kavanagh, RC Doebele, DR Camidge. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 2012; 7(12): 1807–1814 https://doi.org/10.1097/JTO.0b013e3182745948
pmid: 23154552
73
B Qiu, Y Liang, Q Li, G Liu, F Wang, Z Chen, M Liu, M Zhao, H Liu. Local therapy for oligoprogressive disease in patients with advanced stage non-small-cell lung cancer harboring epidermal growth factor receptor mutation. Clin Lung Cancer 2017; 18(6): e369–e373 https://doi.org/10.1016/j.cllc.2017.04.002
pmid: 28465010
74
BA Weir, MS Woo, G Getz, S Perner, L Ding, R Beroukhim, WM Lin, MA Province, A Kraja, LA Johnson, K Shah, M Sato, RK Thomas, JA Barletta, IB Borecki, S Broderick, AC Chang, DY Chiang, LR Chirieac, J Cho, Y Fujii, AF Gazdar, T Giordano, H Greulich, M Hanna, BE Johnson, MG Kris, A Lash, L Lin, N Lindeman, ER Mardis, JD McPherson, JD Minna, MB Morgan, M Nadel, MB Orringer, JR Osborne, B Ozenberger, AH Ramos, J Robinson, JA Roth, V Rusch, H Sasaki, F Shepherd, C Sougnez, MR Spitz, MS Tsao, D Twomey, RG Verhaak, GM Weinstock, DA Wheeler, W Winckler, A Yoshizawa, S Yu, MF Zakowski, Q Zhang, DG Beer, II Wistuba, MA Watson, LA Garraway, M Ladanyi, WD Travis, W Pao, MA Rubin, SB Gabriel, RA Gibbs, HE Varmus, RK Wilson, ES Lander, M Meyerson. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007; 450(7171): 893–898 https://doi.org/10.1038/nature06358
pmid: 17982442
75
X Ni, M Zhuo, Z Su, J Duan, Y Gao, Z Wang, C Zong, H Bai, AR Chapman, J Zhao, L Xu, T An, Q Ma, Y Wang, M Wu, Y Sun, S Wang, Z Li, X Yang, J Yong, XD Su, Y Lu, F Bai, XS Xie, J Wang. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 2013; 110(52): 21083–21088 https://doi.org/10.1073/pnas.1320659110
pmid: 24324171
76
N Beaubier, M Bontrager, R Huether, C Igartua, D Lau, R Tell, AM Bobe, S Bush, AL Chang, DC Hoskinson, AA Khan, E Kudalkar, BD Leibowitz, A Lozachmeur, J Michuda, J Parsons, JF Perera, A Salahudeen, KP Shah, T Taxter, W Zhu, KP White. Integrated genomic profiling expands clinical options for patients with cancer. Nat Biotechnol 2019; 37(11): 1351–1360 https://doi.org/10.1038/s41587-019-0259-z
pmid: 31570899
77
U Testa, E Pelosi, G Castelli. Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 2022; 22(1): 77–100 https://doi.org/10.1080/14737159.2022.2017774
pmid: 34894979
78
YJ Chen, TI Roumeliotis, YH Chang, CT Chen, CL Han, MH Lin, HW Chen, GC Chang, YL Chang, CT Wu, MW Lin, MS Hsieh, YT Wang, YR Chen, I Jonassen, FZ Ghavidel, ZS Lin, KT Lin, CW Chen, PY Sheu, CT Hung, KC Huang, HC Yang, PY Lin, TC Yen, YW Lin, JH Wang, L Raghav, CY Lin, YS Chen, PS Wu, CT Lai, SH Weng, KY Su, WH Chang, PY Tsai, AI Robles, H Rodriguez, YJ Hsiao, WH Chang, TY Sung, JS Chen, SL Yu, JS Choudhary, HY Chen, PC Yang, YJ Chen. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 2020; 182(1): 226–244.e17 https://doi.org/10.1016/j.cell.2020.06.012
pmid: 32649875
79
TG Bivona, RC Doebele. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med 2016; 22(5): 472–478 https://doi.org/10.1038/nm.4091
pmid: 27149220
80
JK Lee, JY Shin, S Kim, S Lee, C Park, JY Kim, Y Koh, B Keam, HS Min, TM Kim, YK Jeon, DW Kim, DH Chung, DS Heo, SH Lee, JI Kim. Primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive EGFR mutations: an exploratory study. Ann Oncol 2013; 24(8): 2080–2087 https://doi.org/10.1093/annonc/mdt127
pmid: 23559152
81
D Jackman, W Pao, GJ Riely, JA Engelman, MG Kris, PA Jänne, T Lynch, BE Johnson, VA Miller. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010; 28(2): 357–360 https://doi.org/10.1200/JCO.2009.24.7049
pmid: 19949011
82
JJ Yang, HJ Chen, HH Yan, XC Zhang, Q Zhou, J Su, Z Wang, CR Xu, YS Huang, BC Wang, XN Yang, WZ Zhong, Q Nie, RQ Liao, BY Jiang, S Dong, YL Wu. Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non-small cell lung cancer. Lung Cancer 2013; 79(1): 33–39 https://doi.org/10.1016/j.lungcan.2012.09.016
pmid: 23079155
83
SR Yang, AM Schultheis, H Yu, D Mandelker, M Ladanyi, R Büttner. Precision medicine in non-small cell lung cancer: current applications and future directions. Semin Cancer Biol 2022; 84: 184–198 https://doi.org/10.1016/j.semcancer.2020.07.009
pmid: 32730814
84
JP Robichaux, X Le, RSK Vijayan, JK Hicks, S Heeke, YY Elamin, HY Lin, H Udagawa, F Skoulidis, H Tran, S Varghese, J He, F Zhang, MB Nilsson, L Hu, A Poteete, W Rinsurongkawong, X Zhang, C Ren, X Liu, L Hong, J Zhang, L Diao, R Madison, AB Schrock, J Saam, V Raymond, B Fang, J Wang, MJ Ha, JB Cross, JE Gray, JV Heymach. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature 2021; 597(7878): 732–737 https://doi.org/10.1038/s41586-021-03898-1
pmid: 34526717
YL Choi, M Soda, Y Yamashita, T Ueno, J Takashima, T Nakajima, Y Yatabe, K Takeuchi, T Hamada, H Haruta, Y Ishikawa, H Kimura, T Mitsudomi, Y Tanio, H; ALK Lung Cancer Study Group Mano. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010; 363(18): 1734–1739 https://doi.org/10.1056/NEJMoa1007478
pmid: 20979473
88
CE McCoach, AT Le, D Aisner, K Gowan, KL Jones, D Merrick, PA Bunn, WT Purcell, M Varella-Garcia, DR Camidge, RC Doebele. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. J Clin Oncol 2016; 34(15 suppl): 9065 https://doi.org/10.1200/JCO.2016.34.15_suppl.9065
89
JJ Lin, SV Liu, CE McCoach, VW Zhu, AC Tan, S Yoda, J Peterson, A Do, K Prutisto-Chang, I Dagogo-Jack, LV Sequist, LJ Wirth, JK Lennerz, AN Hata, M Mino-Kenudson, V Nardi, SI Ou, DS Tan, JF Gainor. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol 2020; 31(12): 1725–1733 https://doi.org/10.1016/j.annonc.2020.09.015
pmid: 33007380
90
N Tanaka, JJ Lin, C Li, MB Ryan, J Zhang, LA Kiedrowski, AG Michel, MU Syed, KA Fella, M Sakhi, I Baiev, D Juric, JF Gainor, SJ Klempner, JK Lennerz, G Siravegna, L Bar-Peled, AN Hata, RS Heist, RB Corcoran. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov 2021; 11(8): 1913–1922 https://doi.org/10.1158/2159-8290.CD-21-0365
pmid: 33824136
91
MM Awad, S Liu, II Rybkin, KC Arbour, J Dilly, VW Zhu, ML Johnson, RS Heist, T Patil, GJ Riely, JO Jacobson, X Yang, NS Persky, DE Root, KE Lowder, H Feng, SS Zhang, KM Haigis, YP Hung, LM Sholl, BM Wolpin, J Wiese, J Christiansen, J Lee, AB Schrock, LP Lim, K Garg, M Li, LD Engstrom, L Waters, JD Lawson, P Olson, P Lito, SI Ou, JG Christensen, PA Jänne, AJ Aguirre. Acquired resistance to KRASG12C inhibition in cancer. N Engl J Med 2021; 384(25): 2382–2393 https://doi.org/10.1056/NEJMoa2105281
pmid: 34161704
92
T Koga, K Suda, T Fujino, S Ohara, A Hamada, M Nishino, M Chiba, M Shimoji, T Takemoto, T Arita, M Gmachl, MH Hofmann, J Soh, T Mitsudomi. KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, sotorasib and adagrasib, and overcoming strategies: insights from in vitro experiments. J Thorac Oncol 2021; 16(8): 1321–1332 https://doi.org/10.1016/j.jtho.2021.04.015
pmid: 33971321
93
TM Kim, A Song, DW Kim, S Kim, YO Ahn, B Keam, YK Jeon, SH Lee, DH Chung, DS Heo. Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J Thorac Oncol 2015; 10(12): 1736–1744 https://doi.org/10.1097/JTO.0000000000000688
pmid: 26473643
94
RC Doebele, AB Pilling, DL Aisner, TG Kutateladze, AT Le, AJ Weickhardt, KL Kondo, DJ Linderman, LE Heasley, WA Franklin, M Varella-Garcia, DR Camidge. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 2012; 18(5): 1472–1482 https://doi.org/10.1158/1078-0432.CCR-11-2906
pmid: 22235099
95
G Hua, X Zhang, M Zhang, Q Wang, X Chen, R Yu, H Bao, J Liu, X Wu, Y Shao, B Liang, K Lu. Real-world circulating tumor DNA analysis depicts resistance mechanism and clonal evolution in ALK inhibitor-treated lung adenocarcinoma patients. ESMO Open 2022; 7(1): 100337 https://doi.org/10.1016/j.esmoop.2021.100337
pmid: 34175504
R Zandi, AB Larsen, P Andersen, MT Stockhausen, HS Poulsen. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 2007; 19(10): 2013–2023 https://doi.org/10.1016/j.cellsig.2007.06.023
pmid: 17681753
98
EM Tricker, C Xu, S Uddin, M Capelletti, D Ercan, A Ogino, CA Pratilas, N Rosen, NS Gray, KK Wong, PA Jänne. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov 2015; 5(9): 960–971 https://doi.org/10.1158/2159-8290.CD-15-0063
pmid: 26036643
99
CC Ho, WY Liao, CA Lin, JY Shih, CJ Yu, JC Yang. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J Thorac Oncol 2017; 12(3): 567–572 https://doi.org/10.1016/j.jtho.2016.11.2231
pmid: 27923714
100
KA Gold, JJ Lee, N Harun, X Tang, J Price, JD Kawedia, HT Tran, JJ Erasmus, GR Blumenschein, WN William, II Wistuba, FM Johnson. A phase I/II study combining erlotinib and dasatinib for non-small cell lung cancer. Oncologist 2014; 19(10): 1040–1041 https://doi.org/10.1634/theoncologist.2014-0228
pmid: 25170013
101
Z Zhang, JC Lee, L Lin, V Olivas, V Au, T LaFramboise, M Abdel-Rahman, X Wang, AD Levine, JK Rho, YJ Choi, CM Choi, SW Kim, SJ Jang, YS Park, WS Kim, DH Lee, JS Lee, VA Miller, M Arcila, M Ladanyi, P Moonsamy, C Sawyers, TJ Boggon, PC Ma, C Costa, M Taron, R Rosell, B Halmos, TG Bivona. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 2012; 44(8): 852–860 https://doi.org/10.1038/ng.2330
pmid: 22751098
Y Zhao, YR Murciano-Goroff, JY Xue, A Ang, J Lucas, TT Mai, AF Da Cruz Paula, AY Saiki, D Mohn, P Achanta, AE Sisk, KS Arora, RS Roy, D Kim, C Li, LP Lim, M Li, A Bahr, BR Loomis, E de Stanchina, JS Reis-Filho, B Weigelt, M Berger, G Riely, KC Arbour, JR Lipford, BT Li, P Lito. Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature 2021; 599(7886): 679–683 https://doi.org/10.1038/s41586-021-04065-2
pmid: 34759319
104
CSL Ho, AI Tüns, HU Schildhaus, M Wiesweg, BM Grüner, B Hegedus, M Schuler, A Schramm, S Oeck. HER2 mediates clinical resistance to the KRASG12C inhibitor sotorasib, which is overcome by co-targeting SHP2. Eur J Cancer 2021; 159: 16–23 https://doi.org/10.1016/j.ejca.2021.10.003
pmid: 34715459
105
S Suzuki, K Yonesaka, T Teramura, T Takehara, R Kato, H Sakai, K Haratani, J Tanizaki, H Kawakami, H Hayashi, K Sakai, K Nishio, K Nakagawa. KRAS inhibitor resistance in MET-amplified KRASG12C non-small cell lung cancer induced by RAS- and non-RAS-mediated cell signaling mechanisms. Clin Cancer Res 2021; 27(20): 5697–5707 https://doi.org/10.1158/1078-0432.CCR-21-0856
pmid: 34365406
106
C Wang, Z Zhang, Y Sun, S Wang, M Wu, Q Ou, Y Xu, Z Chen, Y Shao, H Liu, P Hou. RET fusions as primary oncogenic drivers and secondary acquired resistance to EGFR tyrosine kinase inhibitors in patients with non-small-cell lung cancer. J Transl Med 2022; 20(1): 390 https://doi.org/10.1186/s12967-022-03593-3
pmid: 33007380
107
A Gower, WH Hsu, ST Hsu, Y Wang, G Giaccone. EMT is associated with, but does not drive resistance to ALK inhibitors among EML4-ALK non-small cell lung cancer. Mol Oncol 2016; 10(4): 601–609 https://doi.org/10.1016/j.molonc.2015.11.007
pmid: 26639656
108
M Offin, JM Chan, M Tenet, HA Rizvi, R Shen, GJ Riely, N Rekhtman, Y Daneshbod, A Quintanal-Villalonga, A Penson, MD Hellmann, ME Arcila, M Ladanyi, D Pe'er, MG Kris, CM Rudin, HA Yu. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol 2019; 14(10): 1784–1793 https://doi.org/10.1016/j.jtho.2019.06.002
pmid: 31228622
109
N Marcoux, SN Gettinger, G O’Kane, KC Arbour, JW Neal, H Husain, TL Evans, JR Brahmer, A Muzikansky, PD Bonomi, Prete S Del, A Wurtz, AF Farago, D Dias-Santagata, M Mino-Kenudson, KL Reckamp, HA Yu, HA Wakelee, FA Shepherd, Z Piotrowska, LV Sequist. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J Clin Oncol 2019; 37(4): 278–285 https://doi.org/10.1200/JCO.18.01585
pmid: 30550363
110
Y Adachi, K Ito, Y Hayashi, R Kimura, TZ Tan, R Yamaguchi, H Ebi. Epithelial-to-mesenchymal transition is a cause of both intrinsic and acquired resistance to KRAS G12C inhibitor in KRAS G12C-mutant non-small cell lung cancer. Clin Cancer Res 2020; 26(22): 5962–5973 https://doi.org/10.1158/1078-0432.CCR-20-2077
pmid: 32900796
111
E Tulchinsky, O Demidov, M Kriajevska, NA Barlev, E Imyanitov. EMT: a mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 2019; 1871(1): 29–39 https://doi.org/10.1016/j.bbcan.2018.10.003
pmid: 30419315
X Huang. The potential role of HGF-MET signaling and autophagy in the war of alectinib versus crizotinib against ALK-positive NSCLC. J Exp Clin Cancer Res 2018; 37(1): 33 https://doi.org/10.1186/s13046-018-0707-5
pmid: 29463284
114
X Le, M Nilsson, J Goldman, M Reck, K Nakagawa, T Kato, LP Ares, B Frimodt-Moller, K Wolff, C Visseren-Grul, JV Heymach, EB Garon. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol 2021; 16(2): 205–215 https://doi.org/10.1016/j.jtho.2020.10.006
pmid: 33096270
115
Y Itatani, K Kawada, T Yamamoto, Y Sakai. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci 2018; 19(4): 1232 https://doi.org/10.3390/ijms19041232
pmid: 29670046
116
J Zhong, ZX Li, J Zhao, JC Duan, H Bai, TT An, XD Yang, J Wang. Analysis of BIM (BCL-2 like 11 gene) deletion polymorphism in Chinese non-small cell lung cancer patients. Thorac Cancer 2014; 5(6): 509–516 https://doi.org/10.1111/1759-7714.12119
pmid: 26767045
117
TG Bivona, H Hieronymus, J Parker, K Chang, M Taron, R Rosell, P Moonsamy, K Dahlman, VA Miller, C Costa, G Hannon, CL Sawyers. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 2011; 471(7339): 523–526 https://doi.org/10.1038/nature09870
pmid: 21430781
118
NR Budha, A Frymoyer, GS Smelick, JY Jin, MR Yago, MJ Dresser, SN Holden, LZ Benet, JA Ware. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy?. Clin Pharmacol Ther 2012; 92(2): 203–213 https://doi.org/10.1038/clpt.2012.73
pmid: 22739140
119
ZF Lim, PC Ma. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12(1): 134 https://doi.org/10.1186/s13045-019-0818-2
pmid: 31815659
120
X Luo, X Gong, L Su, H Lin, Z Yang, X Yan, J Gao. Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy. Angew Chem Int Ed Engl 2021; 60(3): 1403–1410 https://doi.org/10.1002/anie.202012237
pmid: 33029903
121
DA Cross, SE Ashton, S Ghiorghiu, C Eberlein, CA Nebhan, PJ Spitzler, JP Orme, MR Finlay, RA Ward, MJ Mellor, G Hughes, A Rahi, VN Jacobs, M Red Brewer, E Ichihara, J Sun, H Jin, P Ballard, K Al-Kadhimi, R Rowlinson, T Klinowska, GH Richmond, M Cantarini, DW Kim, MR Ranson, W Pao. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4(9): 1046–1061 https://doi.org/10.1158/2159-8290.CD-14-0337
pmid: 24893891
122
E Giroux-Leprieur, C Dumenil, T Chinet. Combination of crizotinib and osimertinib or erlotinib might overcome MET-mediated resistance to EGFR tyrosine kinase inhibitor in EGFR-mutated adenocarcinoma. J Thorac Oncol 2018; 13(11): e232–e234 https://doi.org/10.1016/j.jtho.2018.07.012
pmid: 30368417
123
Z Piotrowska, H Isozaki, JK Lennerz, JF Gainor, IT Lennes, VW Zhu, N Marcoux, MK Banwait, SR Digumarthy, W Su, S Yoda, AK Riley, V Nangia, JJ Lin, RJ Nagy, RB Lanman, D Dias-Santagata, M Mino-Kenudson, AJ Iafrate, RS Heist, AT Shaw, EK Evans, C Clifford, SI Ou, B Wolf, AN Hata, LV Sequist. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov 2018; 8(12): 1529–1539 https://doi.org/10.1158/2159-8290.CD-18-1022
pmid: 30257958
124
SG Wu, JY Shih. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 2018; 17(1): 38 https://doi.org/10.1186/s12943-018-0777-1
pmid: 29455650
125
L Yu, L Bazhenova, K Gold, L Tran, V Hilburn, P Vu, SP Patel. Clinicopathologic and molecular characteristics of EGFR-mutant lung adenocarcinomas that transform to small cell lung cancer after TKI therapy. Transl Lung Cancer Res 2022; 11(3): 452–461 https://doi.org/10.21037/tlcr-21-665
pmid: 30550363
126
S Arulananda, H Do, A Musafer, P Mitchell, A Dobrovic, T John. Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer. J Thorac Oncol 2017; 12(11): 1728–1732 https://doi.org/10.1016/j.jtho.2017.08.006
pmid: 28843359
127
J Zhao, M Zou, J Lv, Y Han, G Wang, G Wang. Effective treatment of pulmonary adenocarcinoma harboring triple EGFR mutations of L858R, T790M, and cis-C797S by osimertinib, bevacizumab, and brigatinib combination therapy: a case report. OncoTargets Ther 2018; 11: 5545–5550 https://doi.org/10.2147/OTT.S170358
pmid: 30233215
128
L Scalvini, R Castelli, S La Monica, M Tiseo, R Alfieri. Fighting tertiary mutations in EGFR-driven lung-cancers: current advances and future perspectives in medicinal chemistry. Biochem Pharmacol 2021; 190: 114643 https://doi.org/10.1016/j.bcp.2021.114643
pmid: 34097913
129
J Neijssen, RMF Cardoso, KM Chevalier, L Wiegman, T Valerius, GM Anderson, SL Moores, J Schuurman, PWHI Parren, WR Strohl, ML Chiu. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296: 100641 https://doi.org/10.1016/j.jbc.2021.100641
pmid: 33839159
130
H Sato, H Yamamoto, M Sakaguchi, K Shien, S Tomida, T Shien, H Ikeda, M Hatono, H Torigoe, K Namba, T Yoshioka, E Kurihara, Y Ogoshi, Y Takahashi, J Soh, S Toyooka. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer. Cancer Sci 2018; 109(10): 3183–3196 https://doi.org/10.1111/cas.13763
pmid: 30098066
131
C Zhou, X Li, Q Wang, G Gao, Y Zhang, J Chen, Y Shu, Y Hu, Y Fan, J Fang, G Chen, J Zhao, J He, F Wu, J Zou, X Zhu, X Lin. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm, phase II study. J Clin Oncol 2020; 38(24): 2753–2761 https://doi.org/10.1200/JCO.20.00297
pmid: 32614698
132
S Watanabe, T Yoshida, H Kawakami, N Takegawa, J Tanizaki, H Hayashi, M Takeda, K Yonesaka, J Tsurutani, K Nakagawa. T790M-selective EGFR-TKI combined with dasatinib as an optimal strategy for overcoming EGFR-TKI resistance in T790M-positive non-small cell lung cancer. Mol Cancer Ther 2017; 16(11): 2563–2571 https://doi.org/10.1158/1535-7163.MCT-17-0351
pmid: 28839001
133
N Okura, N Nishioka, T Yamada, H Taniguchi, K Tanimura, Y Katayama, A Yoshimura, S Watanabe, T Kikuchi, S Shiotsu, T Kitazaki, A Nishiyama, M Iwasaku, Y Kaneko, J Uchino, H Uehara, M Horinaka, T Sakai, K Tanaka, R Kozaki, S Yano, K Takayama. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res 2020; 26(9): 2244–2256 https://doi.org/10.1158/1078-0432.CCR-19-2321
pmid: 31953310
134
SS Ramalingam, Y Cheng, C Zhou, Y Ohe, F Imamura, BC Cho, MC Lin, M Majem, R Shah, Y Rukazenkov, A Todd, A Markovets, JC Barrett, J Chmielecki, J Gray. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol 2018; 29(suppl_8): VIII740 https://doi.org/10.1093/annonc/mdy424.063
135
X Yin, Y Li, H Wang, T Jia, E Wang, Y Luo, Y Wei, Z Qin, X Ma. Small cell lung cancer transformation: from pathogenesis to treatment. Semin Cancer Biol 2022; 86(Pt 2): 595–606 https://doi.org/10.1016/j.semcancer.2022.03.006
pmid: 35276343
136
AJ Schoenfeld, JM Chan, D Kubota, H Sato, H Rizvi, Y Daneshbod, JC Chang, PK Paik, M Offin, ME Arcila, MA Davare, U Shinde, D Pe′er, N Rekhtman, MG Kris, R Somwar, GJ Riely, M Ladanyi, HA Yu. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin Cancer Res 2020; 26(11): 2654–2663 https://doi.org/10.1158/1078-0432.CCR-19-3563
pmid: 31911548
137
A Russo, AF Cardona, C Caglevic, P Manca, A Ruiz-Patiño, O Arrieta, C Rolfo. Overcoming TKI resistance in fusion-driven NSCLC: new generation inhibitors and rationale for combination strategies. Transl Lung Cancer Res 2020; 9(6): 2581–2598 https://doi.org/10.21037/tlcr-2019-cnsclc-06
pmid: 33489820
138
AT Shaw, BJ Solomon, B Besse, TM Bauer, CC Lin, RA Soo, GJ Riely, SI Ou, JS Clancy, S Li, A Abbattista, H Thurm, M Satouchi, DR Camidge, S Kao, R Chiari, SM Gadgeel, E Felip, JF Martini. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol 2019; 37(16): 1370–1379 https://doi.org/10.1200/JCO.18.02236
pmid: 30892989
139
BW Murray, D Zhai, W Deng, X Zhang, J Ung, V Nguyen, H Zhang, M Barrera, A Parra, J Cowell, DJ Lee, H Aloysius, E Rogers. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol Cancer Ther 2021; 20(9): 1499–1507 https://doi.org/10.1158/1535-7163.MCT-21-0221
pmid: 34158340
140
I Dagogo-Jack, S Yoda, JK Lennerz, A Langenbucher, JJ Lin, MM Rooney, K Prutisto-Chang, A Oh, NA Adams, BY Yeap, E Chin, A Do, HD Marble, SE Stevens, SR Digumarthy, A Saxena, RJ Nagy, CH Benes, CG Azzoli, MS Lawrence, JF Gainor, AT Shaw, AN Hata. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin Cancer Res 2020; 26(11): 2535–2545 https://doi.org/10.1158/1078-0432.CCR-19-3906
pmid: 32086345
141
CE McCoach, AT Le, K Gowan, K Jones, L Schubert, A Doak, A Estrada-Bernal, KD Davies, DT Merrick, PA Jr Bunn, WT Purcell, R Dziadziuszko, M Varella-Garcia, DL Aisner, DR Camidge, RC Doebele. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. Clin Cancer Res 2018; 24(14): 3334–3347 https://doi.org/10.1158/1078-0432.CCR-17-2452
pmid: 29636358
142
F Facchinetti, Y Loriot, MS Kuo, L Mahjoubi, L Lacroix, D Planchard, B Besse, F Farace, N Auger, J Remon, JY Scoazec, F André, JC Soria, L Friboulet. Crizotinib-resistant ROS1 mutations reveal a predictive kinase inhibitor sensitivity model for ROS1- and ALK-rearranged lung cancers. Clin Cancer Res 2016; 22(24): 5983–5991 https://doi.org/10.1158/1078-0432.CCR-16-0917
pmid: 27401242
143
R Katayama, AT Shaw, TM Khan, M Mino-Kenudson, BJ Solomon, B Halmos, NA Jessop, JC Wain, AT Yeo, C Benes, L Drew, JC Saeh, K Crosby, LV Sequist, AJ Iafrate, JA Engelman. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 2012; 4(120): 120ra17 https://doi.org/10.1126/scitranslmed.3003316
pmid: 22277784
144
A Drilon, R Somwar, JP Wagner, NA Vellore, CA Eide, MS Zabriskie, ME Arcila, JF Hechtman, L Wang, RS Smith, MG Kris, GJ Riely, BJ Druker, T O’Hare, M Ladanyi, MA Davare. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res 2016; 22(10): 2351–2358 https://doi.org/10.1158/1078-0432.CCR-15-2013
pmid: 26673800
145
JF Gainor, D Tseng, S Yoda, I Dagogo-Jack, L Friboulet, JJ Lin, HG Hubbeling, L Dardaei, AF Farago, KR Schultz, LA Ferris, Z Piotrowska, J Hardwick, D Huang, M Mino-Kenudson, AJ Iafrate, AN Hata, BY Yeap, AT Shaw. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol 2017; 2017: PO.17.00063 https://doi.org/10.1200/PO.17.00063
pmid: 29333528
146
M Cui, Y Han, P Li, J Zhang, Q Ou, X Tong, R Zhao, N Dong, X Wu, W Li, G Jiang. Molecular and clinicopathological characteristics of ROS1-rearranged non-small-cell lung cancers identified by next-generation sequencing. Mol Oncol 2020; 14(11): 2787–2795 https://doi.org/10.1002/1878-0261.12789
pmid: 32871626
147
V Subbiah, T Shen, SS Terzyan, X Liu, X Hu, KP Patel, M Hu, M Cabanillas, A Behrang, F Meric-Bernstam, PTT Vo, BHM Mooers, J Wu. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol 2021; 32(2): 261–268 https://doi.org/10.1016/j.annonc.2020.10.599
pmid: 33161056
148
SK Nelson-Taylor, AT Le, M Yoo, L Schubert, KM Mishall, A Doak, M Varella-Garcia, AC Tan, RC Doebele. Resistance to RET-inhibition in RET-rearranged NSCLC is mediated by reactivation of RAS/MAPK signaling. Mol Cancer Ther 2017; 16(8): 1623–1633 https://doi.org/10.1158/1535-7163.MCT-17-0008
pmid: 28500237
149
LM Drusbosky, E Rodriguez, R Dawar, CV Ikpeazu. Therapeutic strategies in RET gene rearranged non-small cell lung cancer. J Hematol Oncol 2021; 14(1): 50 https://doi.org/10.1186/s13045-021-01063-9
pmid: 33771190
150
Y Shimizu, K Maruyama, M Suzuki, H Kawachi, SK Low, T Oh-Hara, K Takeuchi, N Fujita, S Nagayama, R Katayama. Acquired resistance to BRAF inhibitors is mediated by BRAF splicing variants in BRAF V600E mutation-positive colorectal neuroendocrine carcinoma. Cancer Lett 2022; 543: 215799 https://doi.org/10.1016/j.canlet.2022.215799
pmid: 35724767
151
A Kulkarni, H Al-Hraishawi, S Simhadri, KM Hirshfield, S Chen, S Pine, C Jeyamohan, L Sokol, S Ali, ML Teo, E White, L Rodriguez-Rodriguez, JM Mehnert, S Ganesan. BRAF fusion as a novel mechanism of acquired resistance to vemurafenib in BRAFV600E mutant melanoma. Clin Cancer Res 2017; 23(18): 5631–5638 https://doi.org/10.1158/1078-0432.CCR-16-0758
pmid: 28539463
152
DB Johnson, AM Menzies, L Zimmer, Z Eroglu, F Ye, S Zhao, H Rizos, A Sucker, RA Scolyer, R Gutzmer, H Gogas, RF Kefford, JF Thompson, JC Becker, C Berking, F Egberts, C Loquai, SM Goldinger, GM Pupo, W Hugo, X Kong, LA Garraway, JA Sosman, A Ribas, RS Lo, GV Long, D Schadendorf. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer 2015; 51(18): 2792–2799 https://doi.org/10.1016/j.ejca.2015.08.022
pmid: 26608120
153
I Proietti, N Skroza, N Bernardini, E Tolino, V Balduzzi, A Marchesiello, S Michelini, S Volpe, A Mambrin, G Mangino, G Romeo, P Maddalena, C Rees, C Potenza. Mechanisms of acquired BRAF inhibitor resistance in melanoma: a systematic review. Cancers (Basel) 2020; 12(10): 2801 https://doi.org/10.3390/cancers12102801
pmid: 33003483
154
CM Rudin, K Hong, M Streit. Molecular characterization of acquired resistance to the BRAF inhibitor dabrafenib in a patient with BRAF-mutant non-small-cell lung cancer. J Thorac Oncol 2013; 8(5): e41–e42 https://doi.org/10.1097/JTO.0b013e31828bb1b3
pmid: 23524406
155
G Ding, J Wang, P Ding, Y Wen, L Yang. Case report: HER2 amplification as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. Cancer Biol Ther 2019; 20(6): 837–842 https://doi.org/10.1080/15384047.2019.1566049
pmid: 30744539
156
M Bahcall, MM Awad, LM Sholl, FH Wilson, M Xu, S Wang, S Palakurthi, J Choi, EV Ivanova, GC Leonardi, BC Ulrich, CP Paweletz, PT Kirschmeier, M Watanabe, H Baba, M Nishino, RJ Nagy, RB Lanman, M Capelletti, ES Chambers, AJ Redig, PA VanderLaan, DB Costa, Y Imamura, PA Jänne. Amplification of wild-type KRAS imparts resistance to crizotinib in MET exon 14 mutant non-small cell lung cancer. Clin Cancer Res 2018; 24(23): 5963–5976 https://doi.org/10.1158/1078-0432.CCR-18-0876
pmid: 30072474
157
I Dagogo-Jack, D Fabrizio, J Lennerz, AB Schrock, L Young, M Mino-Kenudson, SR Digumarthy, RS Heist, SM Ali, VA Miller, AT Shaw. Circulating tumor DNA identifies EGFR coamplification as a mechanism of resistance to crizotinib in a patient with advanced MET-amplified lung adenocarcinoma. J Thorac Oncol 2017; 12(10): e155–e157 https://doi.org/10.1016/j.jtho.2017.04.023
pmid: 28499860
158
Y Yu, Y Ren, J Fang, L Cao, Z Liang, Q Guo, S Han, Z Ji, Y Wang, Y Sun, Y Chen, X Li, H Xu, J Zhou, L Jiang, Y Cheng, Z Han, J Shi, G Chen, R Ma, Y Fan, S Sun, L Jiao, X Jia, L Wang, P Lu, J Li, Q Xu, X Luo, W Su, S Lu. ctDNA analysis in the savolitinib phase II study in non-small cell lung cancer (NSCLC) patients (pts) harboring MET exon 14 skipping alterations (METex14). Cancer Res 2021; 81(13_Supplement): CT158 https://doi.org/10.1158/1538-7445.AM2021-CT158
159
B Shen, F Wu, J Ye, R Liang, R Wang, R Yu, X Wu, YW Shao, J Feng. Crizotinib-resistant MET mutations in gastric cancer patients are sensitive to type II tyrosine kinase inhibitors. Future Oncol 2019; 15(22): 2585–2593 https://doi.org/10.2217/fon-2019-0140
pmid: 31339066
160
R Guo, M Offin, AR Brannon, J Chang, A Chow, L Delasos, J Girshman, O Wilkins, CG McCarthy, A Makhnin, C Falcon, K Scott, Y Tian, F Cecchi, T Hembrough, D Alex, R Shen, R Benayed, BT Li, CM Rudin, MG Kris, ME Arcila, N Rekhtman, P Paik, A Zehir, A Drilon. MET exon 14-altered lung cancers and MET inhibitor resistance. Clin Cancer Res 2021; 27(3): 799–806 https://doi.org/10.1158/1078-0432.CCR-20-2861
pmid: 33172896
161
T Koga, Y Kobayashi, K Tomizawa, K Suda, T Kosaka, Y Sesumi, T Fujino, M Nishino, S Ohara, M Chiba, M Shimoji, T Takemoto, M Suzuki, PA Jänne, T Mitsudomi. Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: an in vitro study. Lung Cancer 2018; 126: 72–79 https://doi.org/10.1016/j.lungcan.2018.10.019
pmid: 30527195
162
JC Chuang, H Stehr, Y Liang, M Das, J Huang, M Diehn, HA Wakelee, JW Neal. ERBB2-mutated metastatic non-small cell lung cancer: response and resistance to targeted therapies. J Thorac Oncol 2017; 12(5): 833–842 https://doi.org/10.1016/j.jtho.2017.01.023
pmid: 28167203
163
X Yu, T Wang, Y Lou, Y Li. Combination of in silico analysis and in vitro assay to investigate drug response to human epidermal growth factor receptor 2 mutations in lung cancer. Mol Inform 2016; 35(1): 25–35 https://doi.org/10.1002/minf.201500030
pmid: 27491651
164
SJ Antonia, A Villegas, D Daniel, D Vicente, S Murakami, R Hui, T Yokoi, A Chiappori, KH Lee, Wit M de, BC Cho, M Bourhaba, X Quantin, T Tokito, T Mekhail, D Planchard, YC Kim, CS Karapetis, S Hiret, G Ostoros, K Kubota, JE Gray, L Paz-Ares, Castro Carpeño J de, C Wadsworth, G Melillo, H Jiang, Y Huang, PA Dennis, M; PACIFIC Investigators Özgüroğlu. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 2017; 377(20): 1919–1929 https://doi.org/10.1056/NEJMoa1709937
pmid: 28885881
165
SJ Antonia, A Villegas, D Daniel, D Vicente, S Murakami, R Hui, T Kurata, A Chiappori, KH Lee, Wit M de, BC Cho, M Bourhaba, X Quantin, T Tokito, T Mekhail, D Planchard, YC Kim, CS Karapetis, S Hiret, G Ostoros, K Kubota, JE Gray, L Paz-Ares, Castro Carpeño J de, C Faivre-Finn, M Reck, J Vansteenkiste, DR Spigel, C Wadsworth, G Melillo, M Taboada, PA Dennis, M; PACIFIC Investigators Özgüroğlu. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 2018; 379(24): 2342–2350 https://doi.org/10.1056/NEJMoa1809697
pmid: 30280658
166
C Faivre-Finn, D Vicente, T Kurata, D Planchard, L Paz-Ares, JF Vansteenkiste, DR Spigel, MC Garassino, M Reck, S Senan, J Naidoo, A Rimner, YL Wu, JE Gray, M Özgüroğlu, KH Lee, BC Cho, T Kato, Wit M de, M Newton, L Wang, P Thiyagarajah, SJ Antonia. Four-year survival with durvalumab after chemoradiotherapy in stage III NSCLC—an update from the PACIFIC trial. J Thorac Oncol 2021; 16(5): 860–867 https://doi.org/10.1016/j.jtho.2020.12.015
pmid: 33476803
167
CK Lee, J Man, S Lord, W Cooper, M Links, V Gebski, RS Herbst, RJ Gralla, T Mok, JC Yang. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol 2018; 4(2): 210–216 https://doi.org/10.1001/jamaoncol.2017.4427
pmid: 29270615
168
MC Garassino, BC Cho, JH Kim, J Mazières, J Vansteenkiste, H Lena, Jaime J Corral, JE Gray, J Powderly, C Chouaid, P Bidoli, P Wheatley-Price, K Park, RA Soo, Y Huang, C Wadsworth, PA Dennis, NA; ATLANTIC Investigators Rizvi. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol 2018; 19(4): 521–536 https://doi.org/10.1016/S1470-2045(18)30144-X
pmid: 29545095
169
H Hayashi, Y Chiba, K Sakai, T Fujita, H Yoshioka, D Sakai, C Kitagawa, T Naito, K Takeda, I Okamoto, T Mitsudomi, Y Kawakami, K Nishio, S Nakamura, N Yamamoto, K Nakagawa. A randomized phase II study comparing nivolumab with carboplatin-pemetrexed for patients with EGFR mutation-positive nonsquamous non-small-cell lung cancer who acquire resistance to tyrosine kinase inhibitors not due to a secondary T790M mutation: rationale and protocol design for the WJOG8515L study. Clin Lung Cancer 2017; 18(6): 719–723 https://doi.org/10.1016/j.cllc.2017.05.012
pmid: 28623122
170
K Streicher, C Morehouse, Y Sebastian, M Kuziora, BW Higgs, K Ranade. Gene expression analysis of tumor biopsies from a trial of durvalumab to identify subsets of NSCLC with shared immune pathways. J Clin Oncol 2017; 35(15 suppl): 3041 https://doi.org/10.1200/JCO.2017.35.15_suppl.3041
171
P Martin, A Spitzmueller, S Wu, M Widmaier, R Korn, S Althammer, J Zha, BW Higgs, Z Cooper, K Steele. Mutually exclusive expression of CD73 and PDL1 in tumors from patients (pt) with NSCLC, gastroesophageal (GE) and urothelial bladder carcinoma (UBC). J Clin Oncol 2017; 35(15 suppl): 3079 https://doi.org/10.1200/JCO.2017.35.15_suppl.3079
172
M Offin, H Rizvi, M Tenet, A Ni, F Sanchez-Vega, BT Li, A Drilon, MG Kris, CM Rudin, N Schultz, ME Arcila, M Ladanyi, GJ Riely, H Yu, MD Hellmann. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 2019; 25(3): 1063–1069 https://doi.org/10.1158/1078-0432.CCR-18-1102
pmid: 30045933
173
K Haratani, H Hayashi, T Tanaka, H Kaneda, Y Togashi, K Sakai, K Hayashi, S Tomida, Y Chiba, K Yonesaka, Y Nonagase, T Takahama, J Tanizaki, K Tanaka, T Yoshida, K Tanimura, M Takeda, H Yoshioka, T Ishida, T Mitsudomi, K Nishio, K Nakagawa. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol 2017; 28(7): 1532–1539 https://doi.org/10.1093/annonc/mdx183
pmid: 28407039
174
K Isomoto, K Haratani, H Hayashi, S Shimizu, S Tomida, T Niwa, T Yokoyama, Y Fukuda, Y Chiba, R Kato, J Tanizaki, K Tanaka, M Takeda, T Ogura, T Ishida, A Ito, K Nakagawa. Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 2020; 26(8): 2037–2046 https://doi.org/10.1158/1078-0432.CCR-19-2027
pmid: 31937613
175
S Liu, F Wu, X Li, C Zhao, Y Jia, K Jia, R Han, M Qiao, W Li, J Yu, F Zhou, A Xiong, B Chen, J Fan, S Ren, C Zhou. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC. Front Oncol 2021; 11: 639947 https://doi.org/10.3389/fonc.2021.639947
pmid: 33777802
176
K Hastings, HA Yu, W Wei, F Sanchez-Vega, M DeVeaux, J Choi, H Rizvi, A Lisberg, A Truini, CA Lydon, Z Liu, BS Henick, A Wurtz, G Cai, AJ Plodkowski, NM Long, DF Halpenny, J Killam, I Oliva, N Schultz, GJ Riely, ME Arcila, M Ladanyi, D Zelterman, RS Herbst, SB Goldberg, MM Awad, EB Garon, S Gettinger, MD Hellmann, K Politi. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol 2019; 30(8): 1311–1320 https://doi.org/10.1093/annonc/mdz141
pmid: 31086949
177
K Seegobin, U Majeed, N Wiest, R Manochakian, Y Lou, Y Zhao. Immunotherapy in non-small cell lung cancer with actionable mutations other than EGFR. Front Oncol 2021; 11: 750657 https://doi.org/10.3389/fonc.2021.750657
pmid: 34926258
178
J Mazieres, A Drilon, A Lusque, L Mhanna, AB Cortot, L Mezquita, AA Thai, C Mascaux, S Couraud, R Veillon, den Heuvel M Van, J Neal, N Peled, M Früh, TL Ng, V Gounant, S Popat, J Diebold, J Sabari, VW Zhu, SI Rothschild, P Bironzo, A Martinez-Marti, A Curioni-Fontecedro, R Rosell, M Lattuca-Truc, M Wiesweg, B Besse, B Solomon, F Barlesi, RD Schouten, H Wakelee, DR Camidge, G Zalcman, S Novello, SI Ou, J Milia, O Gautschi. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol 2019; 30(8): 1321–1328 https://doi.org/10.1093/annonc/mdz167
pmid: 31125062
179
I Tanaka, M Morise. Current immunotherapeutic strategies targeting the PD-1/PD-L1 axis in non-small cell lung cancer with oncogenic driver mutations. Int J Mol Sci 2021; 23(1): 245 https://doi.org/10.3390/ijms23010245
pmid: 35008669
180
MV Negrao, F Skoulidis, M Montesion, K Schulze, I Bara, V Shen, H Xu, S Hu, D Sui, YY Elamin, X Le, ME Goldberg, K Murugesan, CJ Wu, J Zhang, DS Barreto, JP Robichaux, A Reuben, T Cascone, CM Gay, KG Mitchell, L Hong, W Rinsurongkawong, JA Roth, SG Swisher, J Lee, A Tsao, V Papadimitrakopoulou, DL Gibbons, BS Glisson, G Singal, VA Miller, B Alexander, G Frampton, LA Albacker, D Shames, J Zhang, JV Heymach. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer 2021; 9(8): e002891 https://doi.org/10.1136/jitc-2021-002891
pmid: 34376553
181
B Ricciuti, J Son, JJ Okoro, A Mira, E Patrucco, Y Eum, X Wang, R Paranal, H Wang, M Lin, HM Haikala, J Li, Y Xu, JV Alessi, C Chhoeu, AJ Redig, J Köhler, KH Dholakia, Y Chen, E Richard, MJ Nokin, D Santamaria, PC Gokhale, MM Awad, PA Jänne, C Ambrogio. Comparative analysis and isoform-specific therapeutic vulnerabilities of KRAS Mutations in non-small cell lung cancer. Clin Cancer Res 2022; 28(8): 1640–1650 https://doi.org/10.1158/1078-0432.CCR-21-2719
pmid: 35091439
A Gavralidis, JF Gainor. Immunotherapy in EGFR-mutant and ALK-positive lung cancer: implications for oncogene-driven lung cancer. Cancer J 2020; 26(6): 517–524 https://doi.org/10.1097/PPO.0000000000000491
pmid: 33298723
184
KKW To, W Fong, WCS Cho. Immunotherapy in treating EGFR-mutant lung cancer: current challenges and new strategies. Front Oncol 2021; 11: 635007 https://doi.org/10.3389/fonc.2021.635007
pmid: 34113560
185
JC Yang, FA Shepherd, DW Kim, GW Lee, JS Lee, GC Chang, SS Lee, YF Wei, YG Lee, G Laus, B Collins, F Pisetzky, L Horn. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J Thorac Oncol 2019; 14(5): 933–939 https://doi.org/10.1016/j.jtho.2019.02.001
pmid: 30763730
186
S Gettinger, MD Hellmann, LQM Chow, H Borghaei, S Antonia, JR Brahmer, JW Goldman, DE Gerber, RA Juergens, FA Shepherd, SA Laurie, TC Young, X Li, WJ Geese, N Rizvi. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J Thorac Oncol 2018; 13(9): 1363–1372 https://doi.org/10.1016/j.jtho.2018.05.015
pmid: 29802888
187
GR Oxnard, JC Yang, H Yu, SW Kim, H Saka, L Horn, K Goto, Y Ohe, H Mann, KS Thress, MM Frigault, K Vishwanathan, D Ghiorghiu, SS Ramalingam, MJ Ahn. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 2020; 31(4): 507–516 https://doi.org/10.1016/j.annonc.2020.01.013
pmid: 30529597
188
BC Creelan, TC Yeh, SW Kim, N Nogami, DW Kim, LQM Chow, S Kanda, R Taylor, W Tang, M Tang, HK Angell, MP Roudier, M Marotti, DL Gibbons. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer. Br J Cancer 2021; 124(2): 383–390 https://doi.org/10.1038/s41416-020-01099-7
pmid: 33012782
189
JC Yang, SM Gadgeel, LV Sequist, CL Wu, VA Papadimitrakopoulou, WC Su, J Fiore, S Saraf, H Raftopoulos, A Patnaik. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol 2019; 14(3): 553–559 https://doi.org/10.1016/j.jtho.2018.11.028
pmid: 30529597
190
SJ AntoniaNA RivziLQ ChowH BorghaeiJR Brahmer R JuergensFA ShepherdSA ShepherdDE GerberJ Gerber Y ShenC HarbisonAC HarbisonS Gettinger. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinumbased doublet chemotherapy (Pt-DC) or erlotinib in advanced non small cell lung cancer (NSCLC). J Thorac Oncol 2014; 32(5s): abstr 8113
AJ Schoenfeld, KC Arbour, H Rizvi, AN Iqbal, SM Gadgeel, J Girshman, MG Kris, GJ Riely, HA Yu, MD Hellmann. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol 2019; 30(5): 839–844 https://doi.org/10.1093/annonc/mdz077
pmid: 30847464
193
H Latif, SV Liu. Combining immunotherapy and epidermal growth factor receptor kinase inhibitors: worth the risk?. Ann Transl Med 2019; 7(Suppl 3): S76 https://doi.org/10.21037/atm.2019.03.6
pmid: 31576285
194
M Reck, TSK Mok, M Nishio, RM Jotte, F Cappuzzo, F Orlandi, D Stroyakovskiy, N Nogami, D Rodríguez-Abreu, D Moro-Sibilot, CA Thomas, F Barlesi, G Finley, A Lee, S Coleman, Y Deng, M Kowanetz, G Shankar, W Lin, MA Socinski, M Reck, TSK Mok, M Nishio, RM Jotte, F Cappuzzo, F Orlandi, D Stroyakovskiy, N Nogami, D Rodríguez-Abreu, D Moro-Sibilot, CA Thomas, F Barlesi, G Finley, A Lee, S Coleman, Y Deng, M Kowanetz, G Shankar, W Lin, MA; IMpower150 Study Group Socinski. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med 2019; 7(5): 387–401 https://doi.org/10.1016/S2213-2600(19)30084-0
pmid: 30922878
195
M Nagasaka, SI Ou. ORIENT-31 as the Sakigake “Charging Samurai” born of IMpower150 but will MARIPOSA-2 IMPRESS in the “Meiji Modernization” of post-3G EGFR TKI progression?. Lung Cancer (Auckl) 2022; 13: 13–21 https://doi.org/10.2147/LCTT.S355503
pmid: 35378922
196
S Gadgeel, K Dziubek, M Nagasaka, T Braun, K Hassan, H Cheng, A Wozniak, B Halmos, J Stevenson, P Patil, N Pennell, MJ Fidler, P Bonomi, A Qin, Z Niu, S Nagrath, G Kalemkerian. OA09.03 Pembrolizumab in combination with platinum-based chemotherapy in recurrent EGFR/ALK-positive non-small cell lung cancer (NSCLC). J Thorac Oncol 2021; 16(10): S863 https://doi.org/10.1016/j.jtho.2021.08.063
197
B Han, P Tian, Y Zhao, X Yu, Q Guo, Z Yu, X Zhang, Y Li, L Chen, X Shi, Y Zhang, J Wang. 148P A phase II study of tislelizumab plus chemotherapy in EGFR mutated advanced non-squamous NSCLC patients failed to EGFR TKI therapies: first analysis. Ann Oncol 2021; 32: S1443–S1444 https://doi.org/10.1016/j.annonc.2021.10.167
198
C Zhou, G Gao, F Wu, X Chen, W Li, A Xiong, CX Su, W Cai, S Ren, T Jiang, YN Wang, X Kang, Q Wang. A phase Ib study of SHR-1210 plus apatinib for heavily previously treated advanced non-squamous non-small cell lung cancer (NSCLC) patients. J Clin Oncol 2018; 36(15 suppl): e21017 https://doi.org/10.1200/JCO.2018.36.15_suppl.e21017
199
EJ Lipson, H A-H Tawbi, D Schadendorf, PA Ascierto, L Matamala, EC Gutiérrez, P Rutkowski, H Gogas, CD Lao, Menezes JJ de, S Dalle, AM Arance, J-J Grob, S Srivastava, M Abaskharoun, KL Simonsen, B Li, GV Long, FS Hodi. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047). J Clin Oncol 2021; 39(15_suppl): 9503 https://doi.org/10.1200/JCO.2021.39.15_suppl.9503
200
JJ Harding, A Patnaik, V Moreno, M Stein, AM Jankowska, NV de Mendizabal, ZT Liu, M Koneru, E Calvo. A phase Ia/Ib study of an anti-TIM-3 antibody (LY3321367) monotherapy or in combination with an anti-PD-L1 antibody (LY3300054): interim safety, efficacy, and pharmacokinetic findings in advanced cancers. J Clin Oncol 2019; 37(8_suppl): 12 https://doi.org/10.1200/JCO.2019.37.8_suppl.12
201
D Rodriguez-Abreu, ML Johnson, MA Hussein, M Cobo, AJ Patel, NM Secen, KH Lee, B Massuti, S Hiret, J C-H Yang, F Barlesi, DH Lee, LG Paz-Ares, RW Hsieh, K Miller, N Patil, P Twomey, AV Kapp, R Meng, BC Cho. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 2020; 38(15_suppl): 9503 https://doi.org/10.1200/JCO.2020.38.15_suppl.9503
202
R Jin, L Liu, Y Xing, T Meng, L Ma, J Pei, Y Cong, X Zhang, Z Ren, X Wang, J Shen, K Yu. Dual mechanisms of novel CD73-targeted antibody and antibody-drug conjugate in inhibiting lung tumor growth and promoting antitumor immune-effector function. Mol Cancer Ther 2020; 19(11): 2340–2352 https://doi.org/10.1158/1535-7163.MCT-20-0076
pmid: 32943546
203
A Passarelli, M Aieta, A Sgambato, C Gridelli. Targeting immunometabolism mediated by CD73 pathway in EGFR-mutated non-small cell lung cancer: a new hope for overcoming immune resistance. Front Immunol 2020; 11: 1479 https://doi.org/10.3389/fimmu.2020.01479
pmid: 32760402
204
C Genova, C Dellepiane, P Carrega, S Sommariva, G Ferlazzo, P Pronzato, R Gangemi, G Filaci, S Coco, M Croce. Therapeutic implications of tumor microenvironment in lung cancer: focus on immune checkpoint blockade. Front Immunol 2022; 12: 799455 https://doi.org/10.3389/fimmu.2021.799455
pmid: 35069581
205
A Montisci, MT Vietri, V Palmieri, S Sala, F Donatelli, C Napoli. Cardiac toxicity associated with cancer immunotherapy and biological drugs. Cancers (Basel) 2021; 13(19): 4797 https://doi.org/10.3390/cancers13194797
pmid: 34638281
206
L Xia, L Wen, S Wang. SHP2 inhibition benefits epidermal growth factor receptor-mutated non-small cell lung cancer therapy. Mini Rev Med Chem 2021; 21(11): 1314–1321 https://doi.org/10.2174/1389557520666201127104104
pmid: 33245269
207
Y Song, M Zhao, H Zhang, B Yu. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2022; 230: 107966 https://doi.org/10.1016/j.pharmthera.2021.107966
pmid: 34403682
208
J Laskin, SV Liu, K Tolba, C Heining, RF Schlenk, P Cheema, J Cadranel, MR Jones, A Drilon, A Cseh, S Gyorffy, F Solca, M Duruisseaux. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol 2020; 31(12): 1693–1703 https://doi.org/10.1016/j.annonc.2020.08.2335
pmid: 32916265
209
D Rosas, LE Raez, A Russo, C Rolfo. Neuregulin 1 gene (NRG1). A potentially new targetable alteration for the treatment of lung cancer. Cancers (Basel) 2021; 13(20): 5038 https://doi.org/10.3390/cancers13205038
pmid: 34680187
210
HK Gan, M Millward, M Jalving, I Garrido-Laguna, JD Lickliter, JHM Schellens, MP Lolkema, Herpen CLM Van, B Hug, L Tang, R O’Connor-Semmes, R Gagnon, C Ellis, G Ganji, C Matheny, A Drilon. A phase I, first-in-human study of GSK2849330, an anti-HER3 monoclonal antibody, in HER3-expressing solid tumors. Oncologist 2021; 26(10): e1844–e1853 https://doi.org/10.1002/onco.13860
pmid: 34132450
211
PA Jänne, C Baik, WC Su, ML Johnson, H Hayashi, M Nishio, DW Kim, M Koczywas, KA Gold, CE Steuer, H Murakami, JC Yang, SW Kim, M Vigliotti, R Shi, Z Qi, Y Qiu, L Zhao, D Sternberg, C Yu, HA Yu. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov 2022; 12(1): 74–89 https://doi.org/10.1158/2159-8290.CD-21-0715
pmid: 34548309