Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2023, Vol. 17 Issue (5): 972-992   https://doi.org/10.1007/s11684-023-0990-1
  本期目录
ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis
Zhiqian Bi1, Jia Chen1, Xiaoyao Chang1, Dangran Li1, Yingying Yao1, Fangfang Cai1,3, Huangru Xu1, Jian Cheng4(), Zichun Hua1,2,3(), Hongqin Zhuang1()
1. The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
2. Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, China
3. School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
4. Institute of Neuroscience, Soochow University, Suzhou 215123, China
 全文: PDF(7502 KB)   HTML
Abstract

Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.

Key wordsinflammatory bowel disease    ADT-OH    intestinal permeability    gut microbiota
收稿日期: 2022-05-04      出版日期: 2023-12-07
Corresponding Author(s): Jian Cheng,Zichun Hua,Hongqin Zhuang   
 引用本文:   
. [J]. Frontiers of Medicine, 2023, 17(5): 972-992.
Zhiqian Bi, Jia Chen, Xiaoyao Chang, Dangran Li, Yingying Yao, Fangfang Cai, Huangru Xu, Jian Cheng, Zichun Hua, Hongqin Zhuang. ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis. Front. Med., 2023, 17(5): 972-992.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-0990-1
https://academic.hep.com.cn/fmd/CN/Y2023/V17/I5/972
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 SJS Rubin, L Bai, Y Haileselassie, G Garay, C Yun, L Becker, SE Streett, SR Sinha, A Habtezion. Mass cytometry reveals systemic and local immune signatures that distinguish inflammatory bowel diseases. Nat Commun 2019; 10(1): 2686–2699
https://doi.org/10.1038/s41467-019-10387-7
2 J Zhou, S Huang, Z Wang, J Huang, L Xu, X Tang, YY Wan, QJ Li, ALJ Symonds, H Long, B Zhu. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun 2019; 10(1): 2427–2437
https://doi.org/10.1038/s41467-019-10176-2
3 TC Liu, TS Stappenbeck. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol 2016; 11(1): 127–148
https://doi.org/10.1146/annurev-pathol-012615-044152
4 S Danese, C Fiocchi. Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol 2006; 12(30): 4807–4812
https://doi.org/10.3748/wjg.v12.i30.4807
5 YZ Zhang, YY Li. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014; 20(1): 91–99
https://doi.org/10.3748/wjg.v20.i1.91
6 CN Bernstein. Treatment of IBD: where we are and where we are going. Am J Gastroenterol 2015; 110(1): 114–126
https://doi.org/10.1038/ajg.2014.357
7 LE TargownikCN Bernstein. Infectious and malignant complications of TNF inhibitor therapy in IBD. Am J Gastroenterol 2013; 108(12): 1835–1842, quiz 1843 doi:10.1038/ajg.2013.294
pmid: 24042192
8 TS Stappenbeck, JD Rioux, A Mizoguchi, T Saitoh, A Huett, A Darfeuille-Michaud, T Wileman, N Mizushima, S Carding, S Akira, M Parkes, RJ Xavier. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy 2011; 7(4): 355–374
https://doi.org/10.4161/auto.7.4.13074
9 JB Meddings, LR Sutherland, GR May. Intestinal permeability in patients with Crohn’s disease. Gut 1994; 35(11): 1675–1676
https://doi.org/10.1136/gut.35.11.1675-b
10 A Nusrat, CA Parkos, P Verkade, CS Foley, TW Liang, W Innis-Whitehouse, KK Eastburn, JL Madara. Tight junctions are membrane microdomains. J Cell Sci 2000; 113(10): 1771–1781
https://doi.org/10.1242/jcs.113.10.1771
11 KR GroschwitzSP Hogan. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124(1): 3–20, quiz 21–22 doi:10.1016/j.jaci.2009.05.038
pmid: 19560575
12 JR Turner, BK Rill, SL Carlson, D Carnes, R Kerner, RJ Mrsny, JL Madara. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 1997; 273(4): C1378–C1385
https://doi.org/10.1152/ajpcell.1997.273.4.C1378
13 WS Garrett, JI Gordon, LH Glimcher. Homeostasis and inflammation in the intestine. Cell 2010; 140(6): 859–870
https://doi.org/10.1016/j.cell.2010.01.023
14 XC Morgan, TL Tickle, H Sokol, D Gevers, KL Devaney, DV Ward, JA Reyes, SA Shah, N LeLeiko, SB Snapper, A Bousvaros, J Korzenik, BE Sands, RJ Xavier, C Huttenhower. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): R79
https://doi.org/10.1186/gb-2012-13-9-r79
15 Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012; 9(4): 219–230 doi:10.1038/nrgastro.2012.14
pmid: 22349170
16 A Lavelle, G Lennon, O O'Sullivan, N Docherty, A Balfe, A Maguire, HE Mulcahy, G Doherty, D O'Donoghue, J Hyland, RP Ross, JC Coffey, K Sheahan, PD Cotter, F Shanahan, DC Winter, PR O'Connell. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 2015; 64(10): 1553–1561
https://doi.org/10.1136/gutjnl-2014-307873
17 M Wang, G Molin, S Ahrné, D Adawi, B Jeppsson. High proportions of proinflammatory bacteria on the colonic mucosa in a young patient with ulcerative colitis as revealed by cloning and sequencing of 16S rRNA genes. Dig Dis Sci 2007; 52(3): 620–627
https://doi.org/10.1007/s10620-006-9461-1
18 SB Singh, HC Lin. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 2015; 3(4): 866–889
https://doi.org/10.3390/microorganisms3040866
19 C Szabo, MR Hellmich. Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle 2013; 12(18): 2915–2916
https://doi.org/10.4161/cc.26064
20 EF Burguera, R Meijide-Failde, FJ Blanco. Hydrogen sulfide and inflammatory joint diseases. Curr Drug Targets 2017; 18(14): 1641–1652
21 S Fiorucci, S Orlandi, A Mencarelli, G Caliendo, V Santagada, E Distrutti, L Santucci, G Cirino, JL Wallace. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 2007; 150(8): 996–1002
https://doi.org/10.1038/sj.bjp.0707193
22 N Muniraj, LK Stamp, A Badiei, A Hegde, V Cameron, M Bhatia. Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 2017; 20(2): 182–189
https://doi.org/10.1111/1756-185X.12472
23 X Miao, X Meng, G Wu, Z Ju, HH Zhang, S Hu, GY Xu. Upregulation of cystathionine-β-synthetase expression contributes to inflammatory pain in rat temporomandibular joint. Mol Pain 2014; 10: 9
https://doi.org/10.1186/1744-8069-10-9
24 A AhmadC Szabo. Both the H2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H2S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 2016; 113(Pt A):348–355
25 HX Zhang, SJ Liu, XL Tang, GL Duan, X Ni, XY Zhu, YJ Liu, CNH Wang. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell Physiol Biochem 2016; 40(6): 1603–1612
https://doi.org/10.1159/000453210
26 IZ Bátai, CP Sár, Á Horváth, É Borbély, K Bölcskei, Á Kemény, Z Sándor, B Nemes, Z Helyes, A Perkecz, A Mócsai, G Pozsgai, E Pintér. TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis. Front Pharmacol 2019; 10(10): 964
https://doi.org/10.3389/fphar.2019.00964
27 F Cai, H Xu, N Cao, X Zhang, J Liu, Y Lu, J Chen, Y Yang, J Cheng, ZC Hua, H Zhuang. ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis 2020; 11(1): 33–47
https://doi.org/10.1038/s41419-020-2222-9
28 MJ De Long, P Dolan, AB Santamaria, E Bueding. 1,2-Dithiol-3-thione analogs: effects on NAD(P)H: quinone reductase and glutathione levels in murine hepatoma cells. Carcinogenesis 1986; 7(6): 977–980
https://doi.org/10.1093/carcin/7.6.977
29 Zhang Y, Munday R. Dithiolethiones for cancer chemoprevention: where do we stand? Mol Cancer Ther 2008; 7(11): 3470–3479 doi:10.1158/1535-7163.MCT-08-0625
pmid: 19001432
30 S Lam, C MacAulay, JC Le Riche, Y Dyachkova, A Coldman, M Guillaud, E Hawk, MO Christen, AF Gazdar. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J Natl Cancer Inst 2002; 94(13): 1001–1009
https://doi.org/10.1093/jnci/94.13.1001
31 BS Reddy, CV Rao, A Rivenson, G Kelloff. Chemoprevention of colon carcinogenesis by organosulfur compounds. Cancer Res 1993; 53(15): 3493–3498
32 K Chegaev, B Rolando, D Cortese, E Gazzano, I Buondonno, L Lazzarato, M Fanelli, CM Hattinger, M Serra, C Riganti, R Fruttero, D Ghigo, A Gasco. H2S-donating doxorubicins may overcome cardiotoxicity and multidrug resistance. J Med Chem 2016; 59(10): 4881–4889
https://doi.org/10.1021/acs.jmedchem.6b00184
33 Y Wang, J Jia, G Ao, L Hu, H Liu, Y Xiao, H Du, NJ Alkayed, CF Liu, J Cheng. Hydrogen sulfide protects blood-brain barrier integrity following cerebral ischemia. J Neurochem 2014; 129(5): 827–838
https://doi.org/10.1111/jnc.12695
34 X Zhou, Y Cao, G Ao, L Hu, H Liu, J Wu, X Wang, M Jin, S Zheng, X Zhen, NJ Alkayed, J Jia, J Cheng. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal 2014; 21(12): 1741–1758
https://doi.org/10.1089/ars.2013.5587
35 I Hirata, Y Naito, T Takagi, K Mizushima, T Suzuki, T Omatsu, O Handa, H Ichikawa, H Ueda, T Yoshikawa. Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 2011; 56(5): 1379–1386
https://doi.org/10.1007/s10620-010-1461-5
36 M Meir, N Burkard, H Ungewiß, M Diefenbacher, S Flemming, F Kannapin, CT Germer, M Schweinlin, M Metzger, J Waschke, N Schlegel. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest 2019; 129(7): 2824–2840
https://doi.org/10.1172/JCI120261
37 M Leonard, E Creed, D Brayden, AW Baird. Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport. Pharm Res 2000; 17(10): 1181–1188
https://doi.org/10.1023/A:1026454427621
38 K Rahman, C Desai, SS Iyer, NE Thorn, P Kumar, Y Liu, T Smith, AS Neish, H Li, S Tan, P Wu, X Liu, Y Yu, AB Farris, A Nusrat, CA Parkos, FA Anania. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 2016; 151(4): 733–746.e12
https://doi.org/10.1053/j.gastro.2016.06.022
39 JG Caporaso, CL Lauber, WA Walters, D Berg-Lyons, CA Lozupone, PJ Turnbaugh, N Fierer, R Knight. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4516–4522
https://doi.org/10.1073/pnas.1000080107
40 RP Fordham, OJ Sansom. Colon contradictions: NF-κB signaling in intestinal tumorigenesis. J Exp Med 2015; 212(13): 2185
https://doi.org/10.1084/jem.21213insight2
41 S Blankenberg, S Barbaux, L Tiret. Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170(2): 191–203
https://doi.org/10.1016/S0021-9150(03)00097-2
42 CW Howden, I Gillanders, AJ Morris, A Duncan, B Danesh, RI Russell. Intestinal permeability in patients with Crohn’s disease and their first-degree relatives. Am J Gastroenterol 1994; 89(8): 1175–1176
43 M Cao, P Wang, C Sun, W He, F Wang. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One 2013; 8(5): e61944
https://doi.org/10.1371/journal.pone.0061944
44 C Li, Y Zhao, J Cheng, J Guo, Q Zhang, X Zhang, J Ren, F Wang, J Huang, H Hu, R Wang, J Zhang. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv Sci (Weinh) 2019; 6(18): 1900610
https://doi.org/10.1002/advs.201900610
45 FF Guo, TC Yu, J Hong, JY Fang. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol 2016; 7: 156
https://doi.org/10.3389/fphys.2016.00156
46 JL Wallace, G Caliendo, V Santagada, G Cirino, S Fiorucci. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007; 132(1): 261–271
https://doi.org/10.1053/j.gastro.2006.11.042
47 L Liu, J Cui, CJ Song, JS Bian, A Sparatore, PD Soldato, XY Wang, CDH Yan. H2S-releasing aspirin protects against aspirin-induced gastric injury via reducing oxidative stress. PLoS One 2012; 7(9): e46301
https://doi.org/10.1371/journal.pone.0046301
48 E Marutani, S Kosugi, K Tokuda, A Khatri, R Nguyen, DN Atochin, K Kida, K Van Leyen, K Arai, F Ichinose. A novel hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonist prevents ischemic neuronal death. J Biol Chem 2012; 287(38): 32124–32135
https://doi.org/10.1074/jbc.M112.374124
49 N Sen, BD Paul, MM Gadalla, AK Mustafa, T Sen, R Xu, S Kim, SH Snyder. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 2012; 45(1): 13–24
https://doi.org/10.1016/j.molcel.2011.10.021
50 Y Chen, C Zhu, Z Yang, J Chen, Y He, Y Jiao, W He, L Qiu, J Cen, Z Guo. A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew Chem Int Ed Engl 2013; 52(6): 1688–1691
https://doi.org/10.1002/anie.201207701
51 B Nam, W Lee, S Sarkar, JH Kim, A Bhise, H Park, JY Kim, PT Huynh, S Rajkumar, K Lee, YS Ha, SH Cho, JE Lim, KW Kim, KC Lee, K Suk, J Yoo. In vivo detection of hydrogen sulfide in the brain of live mouse: application in neuroinflammation models. Eur J Nucl Med Mol Imaging 2022; 49(12): 4073–4087
https://doi.org/10.1007/s00259-022-05854-1
52 B Renga. Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm Allergy Drug Targets 2011; 10(2): 85–91
https://doi.org/10.2174/187152811794776286
53 K Shatalin, E Shatalina, A Mironov, E Nudler. H2S: a universal defense against antibiotics in bacteria. Science 2011; 334(6058): 986–990
https://doi.org/10.1126/science.1209855
54 J Zhang, Q Zhang, Y Wang, J Li, Z Bai, Q Zhao, Z Wang, D He, J Zhang, Y Chen. Toxicities and beneficial protection of H2S donors based on nonsteroidal anti-inflammatory drugs. MedChemComm 2019; 10(5): 742–756
https://doi.org/10.1039/C8MD00611C
55 S Ghosh, R Panaccione. Anti-adhesion molecule therapy for inflammatory bowel disease. Therap Adv Gastroenterol 2010; 3(4): 239–258
https://doi.org/10.1177/1756283X10373176
56 G Velikova, RE Banks, A Gearing, I Hemingway, MA Forbes, SR Preston, M Jones, J Wyatt, K Miller, U Ward, J Al-Maskatti, SM Singh, NS Ambrose, JN Primrose, PJ Selby. Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. Br J Cancer 1997; 76(11): 1398–1404
https://doi.org/10.1038/bjc.1997.569
57 XH Wang, F Wang, SJ You, YJ Cao, LD Cao, Q Han, CF Liu, LF Hu. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 2013; 25(11): 2255–2262
https://doi.org/10.1016/j.cellsig.2013.07.010
58 WC Lin, WY Pan, CK Liu, WX Huang, HL Song, KS Chang, MJ Li, HW Sung. In situ self-spray coating system that can uniformly disperse a poorly water-soluble H2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 2018; 182: 289–298
https://doi.org/10.1016/j.biomaterials.2018.07.044
59 N Egge, SLB Arneaud, P Wales, M Mihelakis, J McClendon, RS Fonseca, C Savelle, I Gonzalez, A Ghorashi, S Yadavalli, WJ Lehman, H Mirzaei, PM Douglas. Age-onset phosphorylation of a minor actin variant promotes intestinal barrier dysfunction. Dev Cell 2019; 51(5): 587–601.e7
https://doi.org/10.1016/j.devcel.2019.11.001
60 DR Clayburgh, L Shen, JR Turner. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 2004; 84(3): 282–291
https://doi.org/10.1038/labinvest.3700050
61 H Shi, Y Yu, D Lin, P Zheng, P Zhang, M Hu, Q Wang, W Pan, X Yang, T Hu, Q Li, R Tang, F Zhou, K Zheng, XF Huang. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 2020; 8(1): 143
https://doi.org/10.1186/s40168-020-00920-y
62 Y Zhou, ZZ Xu, Y He, Y Yang, L Liu, Q Lin, Y Nie, M Li, F Zhi, S Liu, A Amir, A González, A Tripathi, M Chen, GD Wu, R Knight, H Zhou, Y Chen. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 2018; 3(1): e00188–17
https://doi.org/10.1128/mSystems.00188-17
63 L Shang, H Liu, H Yu, M Chen, T Yang, X Zeng, S Qiao. Core altered microorganisms in colitis mouse model: a comprehensive time-point and fecal microbiota transplantation analysis. Antibiotics (Basel) 2021; 10(6): 643
https://doi.org/10.3390/antibiotics10060643
64 BJ Parker, PA Wearsch, ACM Veloo, A Rodriguez-Palacios. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 2020; 11: 906
https://doi.org/10.3389/fimmu.2020.00906
65 AL Li, WW Ni, QM Zhang, Y Li, X Zhang, HY Wu, P Du, JC Hou, Y Zhang. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol 2020; 64(1): 23–32
https://doi.org/10.1111/1348-0421.12749
66 Y Hu, JP Liu, Y Zhu, NH Lu. The importance of Toll-like receptors in NF-κB signaling pathway activation by Helicobacter pylori infection and the regulators of this response. Helicobacter 2016; 21(5): 428–440
https://doi.org/10.1111/hel.12292
67 H Wang, J Huang, Y Ding, J Zhou, G Gao, H Han, J Zhou, L Ke, P Rao, T Chen, L Zhang. Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice. Front Nutr 2022; 9: 821404
https://doi.org/10.3389/fnut.2022.821404
[1] FMD-23009-OF-ZHQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed