Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (3): 558-564   https://doi.org/10.1007/s11684-023-1042-6
  本期目录
Identification of a novel MYO1D variant associated with laterality defects, congenital heart diseases, and sperm defects in humans
Zhuangzhuang Yuan1,2,3, Xin Zhu4, Xiaohui Xie1,2, Chenyu Wang3, Heng Gu1,2, Junlin Yang1,2, Liangliang Fan3, Rong Xiang3, Yifeng Yang1, Zhiping Tan1,2()
1. Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
2. Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha 410011, China
3. Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
4. Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha 410008, China
 全文: PDF(1288 KB)   HTML
Abstract

The establishment of left–right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of MYO1D (NM_015194: c.1531G>A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known MYO1D variant (NM_015194: c.2293C>T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that MYO1D variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and MYO1D variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.

Key wordsMYO1D    laterality defect    congenital heart disease    sperm defect    β-actin    SPAG6
收稿日期: 2023-08-03      出版日期: 2024-06-17
Corresponding Author(s): Zhiping Tan   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(3): 558-564.
Zhuangzhuang Yuan, Xin Zhu, Xiaohui Xie, Chenyu Wang, Heng Gu, Junlin Yang, Liangliang Fan, Rong Xiang, Yifeng Yang, Zhiping Tan. Identification of a novel MYO1D variant associated with laterality defects, congenital heart diseases, and sperm defects in humans. Front. Med., 2024, 18(3): 558-564.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-023-1042-6
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I3/558
Fig.1  
Semen parameter Proband Reference limits
Semen volume (mL) 5.0 1.5
Sperm concentration (106/mL) 17.8 15.0
Motility (%) 26.0 40.0
Progressive motility (%) 21.0 32.0
Normal morphology rate (%) 3.3 4.0
Tab.1  
Fig.2  
Gene Genotype Variant CADD SIFT Polyphen2 MutationTaster FATHMM PROVEAN MetaSVM MetaLR M-CAP
PKD1L2 hom NM_052892.3:NA:c.1998-2A>C 19.96 D
MYO1D hom NM_015194.2:exon12:c.1531G>A:p.D511N 23.3 D P D D D D D D
GAB4 hom NM_001037814.1:exon6:c.1141G>T:p.G381C 21.8 D P D T N T T T
CMYA5 hom NM_153610.4:exon2:c.8872G>T:p.A2958S 27.8 D D D T N T T D
SAMD9 hom NM_001193307.1:exon2:c.1246G>T:p.V416L 25.3 D D D T N T T T
PHKA1 hom NM_001122670.1:exon16:c.1685T>G:p.I562S 25 D P D D D D D D
SLFN14 hom NM_001129820.1:exon4:c.2556dup:p.T853Hfs*28 22.6
Tab.2  
Fig.3  
Fig.4  
1 M Blum, T Ott. Animal left-right asymmetry. Curr Biol 2018; 28(7): R301–R304
https://doi.org/10.1016/j.cub.2018.02.073
2 ME Pierpont, M Brueckner, WK Chung, V Garg, RV Lacro, AL McGuire, S Mital, JR Priest, WT Pu, A Roberts, SM Ware, BD Gelb, MW; American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular Russell, Nursing; Stroke, on Genomic Council, Medicine Precision. Genetic basis for congenital heart disease: Revisited: A scientific statement from the American Heart Association. Circulation 2018; 138(21): e653–e711
https://doi.org/10.1161/CIR.0000000000000606
3 C Cui, B Chatterjee, TP Lozito, Z Zhang, RJ Francis, H Yagi, LM Swanhart, S Sanker, D Francis, Q Yu, JT San Agustin, C Puligilla, T Chatterjee, T Tansey, X Liu, MW Kelley, ET Spiliotis, AV Kwiatkowski, R Tuan, GJ Pazour, NA Hukriede, CW Lo. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 2013; 11(11): e1001720
https://doi.org/10.1371/journal.pbio.1001720
4 TJ Park, SL Haigo, JB Wallingford. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet 2006; 38(3): 303–311
https://doi.org/10.1038/ng1753
5 T Juan, C Géminard, JB Coutelis, D Cerezo, S Polès, S Noselli, M Fürthauer. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. Nat Commun 2018; 9(1): 1942
https://doi.org/10.1038/s41467-018-04284-8
6 G Lebreton, C Géminard, F Lapraz, S Pyrpassopoulos, D Cerezo, P Spéder, EM Ostap, S Noselli. Molecular to organismal chirality is induced by the conserved myosin 1D. Science 2018; 362(6417): 949–952
https://doi.org/10.1126/science.aat8642
7 M Saydmohammed, H Yagi, M Calderon, MJ Clark, T Feinstein, M Sun, DB Stolz, SC Watkins, JD Amack, CW Lo, M Tsang. Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality. Nat Commun 2018; 9(1): 3381
https://doi.org/10.1038/s41467-018-05866-2
8 M Tingler, S Kurz, M Maerker, T Ott, F Fuhl, A Schweickert, JM LeBlanc-Straceski, S Noselli, M Blum. A conserved role of the unconventional myosin 1d in laterality determination. Curr Biol 2018; 28(5): 810–816.e3
https://doi.org/10.1016/j.cub.2018.01.075
9 RS Alsafwani, KK Nasser, T Shinawi, B Banaganapalli, HA ElSokary, ZF Zaher, NA Shaik, G Abdelmohsen, JY Al-Aama, AJOOAR Shapiro, O O Al-Radi, R Elango, T Alahmadi. Novel MYO1D missense variant identified through whole exome sequencing and computational biology analysis expands the spectrum of causal genes of laterality defects. Front Med (Lausanne) 2021; 8: 724826
https://doi.org/10.3389/fmed.2021.724826
10 H Huang, Y Chen, J Jin, R Du, K Tang, L Fan, R Xiang. CSRP3, p. Arg122*, is responsible for hypertrophic cardiomyopathy in a Chinese family. J Gene Med 2022; 24(1): e3390
https://doi.org/10.1002/jgm.3390
11 R Xiang, LL Fan, H Huang, YQ Chen, W He, S Guo, JJ Li, JY Jin, R Du, R Yan, K Xia. Increased reticulon 3 (RTN3) leads to obesity and hypertriglyceridemia by interacting with heat shock protein family A (Hsp70) member 5 (HSPA5). Circulation 2018; 138(17): 1828–1838
https://doi.org/10.1161/CIRCULATIONAHA.117.030718
12 GC Gabriel, CB Young, CW Lo. Role of cilia in the pathogenesis of congenital heart disease. Semin Cell Dev Biol 2021; 110: 2–10
https://doi.org/10.1016/j.semcdb.2020.04.017
13 Y Li, NT Klena, GC Gabriel, X Liu, AJ Kim, K Lemke, Y Chen, B Chatterjee, W Devine, RR Damerla, C Chang, H Yagi, JT San Agustin, M Thahir, S Anderton, C Lawhead, A Vescovi, H Pratt, J Morgan, L Haynes, CL Smith, JT Eppig, L Reinholdt, R Francis, L Leatherbury, MK Ganapathiraju, K Tobita, GJ Pazour, CW Lo. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 2015; 521(7553): 520–524
https://doi.org/10.1038/nature14269
14 NT Klena, BC Gibbs, CW Lo. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb Perspect Biol 2017; 9(8): a028266
https://doi.org/10.1101/cshperspect.a028266
15 T Rosengren, LJ Larsen, LB Pedersen, ST Christensen, LB Møller. TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms. Cell Mol Life Sci 2018; 75(14): 2663–2680
https://doi.org/10.1007/s00018-018-2761-8
16 A Sironen, A Shoemark, M Patel, MR Loebinger, HM Mitchison. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77(11): 2029–2048
https://doi.org/10.1007/s00018-019-03389-7
17 L Wang, T Bu, L Li, X Wu, CKC Wong, A Perrotta, B Silvestrini, F Sun, CY Cheng. Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2022; 121: 99–113
https://doi.org/10.1016/j.semcdb.2021.04.008
18 X Li, D Zhang, L Xu, Y Han, W Liu, W Li, Z Fan, RM Costanzo, JF Strauss Iii, Z Zhang, H Wang. Planar cell polarity defects and hearing loss in sperm-associated antigen 6 (Spag6)-deficient mice. Am J Physiol Cell Physiol 2021; 320(1): C132–C141
https://doi.org/10.1152/ajprenal.00566.2020
19 C Xu, D Tang, Z Shao, H Geng, Y Gao, K Li, Q Tan, G Wang, C Wang, H Wu, G Li, M Lv, X He, Y Cao. Homozygous SPAG6 variants can induce nonsyndromic asthenoteratozoospermia with severe MMAF. Reprod Biol Endocrin 2022; 20(1): 41
https://doi.org/10.1186/s12958-022-00916-3
20 C Tu, J Cong, Q Zhang, X He, R Zheng, X Yang, Y Gao, H Wu, M Lv, Y Gu, S Lu, C Liu, S Tian, L Meng, W Wang, C Tan, H Nie, D Li, H Zhang, F Gong, L Hu, G Lu, W Xu, G Lin, F Zhang, Y Cao, YQ Tan. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet 2021; 108(8): 1466–1477
https://doi.org/10.1016/j.ajhg.2021.06.010
21 R Wang, D Yang, C Tu, C Lei, S Ding, T Guo, L Wang, Y Liu, C Lu, B Yang, S Ouyang, K Gong, Z Tan, Y Deng, Y Tan, J Qing, H Luo. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice. Front Med 2023; 17(5): 957–971
https://doi.org/10.1007/s11684-023-0988-8
22 G Saggiorato, L Alvarez, JF Jikeli, UB Kaupp, G Gompper, J Elgeti. Human sperm steer with second harmonics of the flagellar beat. Nat Commun 2017; 8(1): 1415
https://doi.org/10.1038/s41467-017-01462-y
23 L Zhou, H Liu, S Liu, X Yang, Y Dong, Y Pan, Z Xiao, B Zheng, Y Sun, P Huang, X Zhang, J Hu, R Sun, S Feng, Y Zhu, M Liu, M Gui, J Wu. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell 2023; 186(13): 2897–2910.e19
https://doi.org/10.1016/j.cell.2023.05.009
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed