Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges
Zhichen Jiang1,2, Xiaohao Zheng3,4, Min Li5(), Mingyang Liu1()
1. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 2. Department of General Surgery, Division of Gastroenterology and Pancreas, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China 3. Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 4. Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China 5. Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
Pancreatic cancer, notorious for its late diagnosis and aggressive progression, poses a substantial challenge owing to scarce treatment alternatives. This review endeavors to furnish a holistic insight into pancreatic cancer, encompassing its epidemiology, genomic characterization, risk factors, diagnosis, therapeutic strategies, and treatment resistance mechanisms. We delve into identifying risk factors, including genetic predisposition and environmental exposures, and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer. Additionally, we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy. We also dissect the primary mechanisms underlying treatment resistance in this malignancy, illustrating the latest therapeutic options and advancements in the field. Conclusively, we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.
Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas
RNA
2020
Pancreatic cancer mice
Sun
10x Visium
Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer
RNA
2021
Pancreatic cancer
Zhou
10x Visium
Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer
RNA
2022
Pancreatic cancer
Hwang
DSP
Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment
RNA
2022
Pancreatic cancer
Barkley
10x Visium
Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment
RNA
2022
IPMN
Sans
10x Visium
Spatial transcriptomics of intraductal papillary mucinous neoplasms of the pancreas identifies NKX6-2 expression as a driver of gastric differentiation and indolent biological potential
RNA
biorxiv
IPMN
Agostini
10x Visium, GeoMx
Transcriptomic dissection of intraepithelial papillary mucinous neoplasms progression by spatial technologies identified novel markers of pancreatic carcinogenesis
RNA
biorxiv
PanIN
Bell
10x Visium
PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration
RNA
biorxiv
Tab.1
Study
Techniques
Subtypes
New subtype
Waddell
WGS
Stable, locally rearranged, scattered and unstable
Yes
Moffitt
Bulk RNA
Classical, basal-like
Yes
Rashid
Bulk RNA
No new; PurIST classifers for classical, basal-like
Faecal metagenomic classifiers based on a set of 27 microbial species
NA
NA
0.84
167
Faecal metagenomic classifiers based on a set of 27 microbial species + CA19-9
NA
NA
0.94
167
Microbiota
30 gut microbiomes
NA
NA
0.78–0.82
155
30 gut microbiomes + CA19-9
NA
NA
0.81–0.97
155
Tab.3
Fig.2
Fig.3
Theme
Target
Included population
Approach
Time
Effectiveness
DOI
Conclusion
Gem-based clinical trials
NA
Advanced PC patients
GEM+5-FU
2002
OS: 6.7 Ms; PFS: 2.2 Ms
10.1200/JCO.2002.11.149
(1) GEM-based chemotherapy can bring survival outcomes to patients with advanced PC and patients with operable PC; (2) FOLFIRINOX can bring more survival benefits than GEM, but FOLFIRINOX is more demanding for patients; (3) GEM can improve the efficacy of 5-FU-based adjuvant chemoradiotherapy, and radiotherapy can improve the therapeutic effect of GEM
GEM
OS: 5.4 Ms; PFS: 2.2 Ms
Advanced PC patients
pemetrexed+GEM
2005
OS: 6.2 Ms; PFS: 3.9 Ms
10.1093/annonc/mdi309
GEM
OS: 6.3 Ms; PFS: 3.3 Ms
Patients with complete surgical resection of PC
Postoperative: GEM
2007
MDFS: 13.4 Ms; DFS at 3 years:23.5%; DFS at 5 years:16.5%; during a median follow-up of 53 Ms, 74% had relapsed
10.1001/jama.297.3.267
Postoperative: untreated
MDFS: 6.9 Ms; DFS at 3 years: 7.5%; DFS at 5 years: 5.5%; during a median follow-up of 53 Ms, 92% had relapsed
Most of the current clinical trials of targeted therapy are unsuccessful. Even a few of them have effects, but when they enter phase III clinical trials, they cannot achieve ideal results
Matrix metalloproteinases
Unresectable PC patients
Marimastat
2001
OS: 125 Ds; 1-year survival: 20%
10.1200/JCO.2001.19.15.3447
Thymidylate synthase
Advanced PC patients
GEM+Tomudex
2003
OS: 185 Ds
10.1093/annonc/mdg150
FTase
Advanced PC patients
R115777
2003
PFS: 4.9 Ws; OS: 19.7 Ws
10.1200/JCO.2003.08.040
mTOR pathway
Patients with gemcitabine- refractory, metastatic PC
RAD001 (everolimus)
2009
PFS: 1.8 Ms; OS: 4.5 Ms
10.1200/JCO.2008.18.9514
EGFR
Patients with R0- or R1-PC
GEM+cetuximab
2013
OS: 22.4 Ms; DFS: 10.0 Ms
10.1093/annonc/mdt270
IGF1R pathway
Patients with previously untreated metastatic PC
GEM
2015
OS: 7.2 Ms
10.1093/annonc/mdv027
Ganitumab+GEM
OS: 7.0 Ms
The MEK and PI3K/AKT pathways
Patients with gemcitabine-refractory, metastatic PC
Selumetinib+MK-2206
2017
OS: 3.9 Ms; PFS: 1.9 Ms
10.1001/jamaoncol.2016.5383
mFOLFOX (oxaliplatin plus fluorouracil)
OS: 6.7 Ms; PFS: 2 Ms
Src kinase
Patients with locally advanced, non-metastatic PC
GEM+dasatinib
2017
OS: 375 Ds; PFS: 167 Ds
10.1093/annonc/mdw607
GEM
OS: 393 Ds; PFS: 166 Ds
EGFR
Untreated, unresectable, advanced/metastatic PC patients
GEM+nimotuzumab
2017
OS: 8.6 Ms; PFS: 5.1 Ms
10.1093/annonc/mdx343
GEM
OS: 6.0 Ms; PFS: 3.4 Ms
The EGFR tyrosine kinase
Patients with resectable PDAC post-R0 resection
GEM+erlotinib
2017
OS: 24.5 Ms; DFS: 11.4 Ms
10.1200/JCO.2017.72.6463
GEM
OS: 26.5 Ms; DFS: 11.4 Ms
Wee1 kinase
Newly diagnosed, locally advanced PC patients
AZD1775 (adavosertib)+GEM+radiation
2019
OS: 21.7 Ms; DFS: 9.4 Ms
10.1200/JCO.19.00730
FTase
Advanced PC patients
Tipifarnib+GEM
2004
OS: 193 Ds; PFS: 112 Ds
10.1200/JCO.2004.10.112
GEM
OS: 182 Ds; PFS: 108 Ds
Ras-dependent signaling and angiogenic pathways
Advanced PC patients
GEM+sorafenib
2012
OS: 8 Ms; PFS: 3.8 Ms; 6-month PFS: 33%
10.1093/annonc/ mds135
GEM
OS: 9.2 Ms; PFS: 5.7 Ms; 6-month PFS: 48%
JAK/STAT pathway
Patients with gemcitabine-refractory, metastatic PC
Ruxolitinib+capecitabine
2015
OS: 4.5 Ms
10.1200/JCO.2015.61.4578
Capecitabine
OS: 4.3 Ms
SHH
PC patients not suitable for curative treatment with no prior metastatic therapy
J Huang, V Lok, CH Ngai, L Zhang, J Yuan, XQ Lao, K Ng, C Chong, ZJ Zheng, MCS Wong. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology 2021; 160(3): 744–754 https://doi.org/10.1053/j.gastro.2020.10.007
6
P Maisonneuve, AB Lowenfels. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol 2015; 44(1): 186–198 https://doi.org/10.1093/ije/dyu240
7
SM Lynch, A Vrieling, JH Lubin, P Kraft, JB Mendelsohn, P Hartge, F Canzian, E Steplowski, AA Arslan, M Gross, K Helzlsouer, EJ Jacobs, A LaCroix, G Petersen, W Zheng, D Albanes, L Amundadottir, SA Bingham, P Boffetta, MC Boutron-Ruault, SJ Chanock, S Clipp, RN Hoover, K Jacobs, KC Johnson, C Kooperberg, J Luo, C Messina, D Palli, AV Patel, E Riboli, XO Shu, Suarez L Rodriguez, G Thomas, A Tjønneland, GS Tobias, E Tong, D Trichopoulos, J Virtamo, W Ye, K Yu, A Zeleniuch-Jacquette, HB Bueno-de-Mesquita, RZ Stolzenberg-Solomon. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol 2009; 170(4): 403–413 https://doi.org/10.1093/aje/kwp134
8
Y Pang, C Kartsonaki, Y Guo, F Bragg, L Yang, Z Bian, Y Chen, A Iona, IY Millwood, J Lv, C Yu, J Chen, L Li, MV Holmes, Z Chen. Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 2017; 140(8): 1781–1788 https://doi.org/10.1002/ijc.30599
9
MI Canto, JA Almario, RD Schulick, CJ Yeo, A Klein, A Blackford, EJ Shin, A Sanyal, G Yenokyan, AM Lennon, IR Kamel, EK Fishman, C Wolfgang, M Weiss, RH Hruban, M Goggins. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology 2018; 155(3): 740–751.e2 https://doi.org/10.1053/j.gastro.2018.05.035
10
JE Corral, KF Mareth, DL Riegert-Johnson, A Das, MB Wallace. Diagnostic yield from screening asymptomatic individuals at high risk for pancreatic cancer: a meta-analysis of cohort studies. Clin Gastroenterol Hepatol 2019; 17(1): 41–53 https://doi.org/10.1016/j.cgh.2018.04.065
11
C Yuan, A Babic, N Khalaf, JA Nowak, LK Brais, DA Rubinson, K Ng, AJ Aguirre, PV Pandharipande, CS Fuchs, EL Giovannucci, MJ Stampfer, MH Rosenthal, C Sander, P Kraft, BM Wolpin. Diabetes, weight change, and pancreatic cancer risk. JAMA Oncol 2020; 6(10): e202948 https://doi.org/10.1001/jamaoncol.2020.2948
12
ST Chari, CL Leibson, KG Rabe, J Ransom, M de Andrade, GM Petersen. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005; 129(2): 504–511 https://doi.org/10.1016/j.gastro.2005.05.007
13
S Gupta, E Vittinghoff, D Bertenthal, D Corley, H Shen, LC Walter, K McQuaid. New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol 2006; 4(11): 1366–1372 https://doi.org/10.1016/j.cgh.2006.06.024
14
S Munigala, A Singh, A Gelrud, B Agarwal. Predictors for pancreatic cancer diagnosis following new-onset diabetes mellitus. Clin Transl Gastroenterol 2015; 6(10): e118 https://doi.org/10.1038/ctg.2015.44
15
EJ Duell, E Lucenteforte, SH Olson, PM Bracci, D Li, HA Risch, DT Silverman, BT Ji, S Gallinger, EA Holly, EH Fontham, P Maisonneuve, HB Bueno-de-Mesquita, P Ghadirian, RC Kurtz, E Ludwig, H Yu, AB Lowenfels, D Seminara, GM Petersen, C La Vecchia, P Boffetta. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 2012; 23(11): 2964–2970 https://doi.org/10.1093/annonc/mds140
16
J Cai, H Chen, M Lu, Y Zhang, B Lu, L You, T Zhang, M Dai, Y Zhao. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett 2021; 520: 1–11 https://doi.org/10.1016/j.canlet.2021.06.027
17
C Bosetti, E Lucenteforte, DT Silverman, G Petersen, PM Bracci, BT Ji, E Negri, D Li, HA Risch, SH Olson, S Gallinger, AB Miller, HB Bueno-de-Mesquita, R Talamini, J Polesel, P Ghadirian, PA Baghurst, W Zatonski, E Fontham, WR Bamlet, EA Holly, P Bertuccio, YT Gao, M Hassan, H Yu, RC Kurtz, M Cotterchio, J Su, P Maisonneuve, EJ Duell, P Boffetta, C La Vecchia. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 2012; 23(7): 1880–1888 https://doi.org/10.1093/annonc/mdr541
18
S Iodice, S Gandini, P Maisonneuve, AB Lowenfels. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg 2008; 393(4): 535–545 https://doi.org/10.1007/s00423-007-0266-2
19
H Sung, RL Siegel, PS Rosenberg, A Jemal. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 2019; 4(3): e137–e147 https://doi.org/10.1016/S2468-2667(18)30267-6
20
JW Elena, E Steplowski, K Yu, P Hartge, GS Tobias, MJ Brotzman, SJ Chanock, RZ Stolzenberg-Solomon, AA Arslan, HB Bueno-de-Mesquita, K Helzlsouer, EJ Jacobs, A LaCroix, G Petersen, W Zheng, D Albanes, NE Allen, L Amundadottir, Y Bao, H Boeing, MC Boutron-Ruault, JE Buring, JM Gaziano, EL Giovannucci, EJ Duell, G Hallmans, BV Howard, DJ Hunter, A Hutchinson, KB Jacobs, C Kooperberg, P Kraft, JB Mendelsohn, DS Michaud, D Palli, LS Phillips, K Overvad, AV Patel, L Sansbury, XO Shu, MS Simon, N Slimani, D Trichopoulos, K Visvanathan, J Virtamo, BM Wolpin, A Zeleniuch-Jacquotte, CS Fuchs, RN Hoover, M Gross. Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes Control 2013; 24(1): 13–25 https://doi.org/10.1007/s10552-012-0078-8
21
C Bosetti, V Rosato, D Li, D Silverman, GM Petersen, PM Bracci, RE Neale, J Muscat, K Anderson, S Gallinger, SH Olson, AB Miller, H Bas Bueno-de-Mesquita, G Scelo, V Janout, I Holcatova, P Lagiou, D Serraino, E Lucenteforte, E Fabianova, PA Baghurst, W Zatonski, L Foretova, E Fontham, WR Bamlet, EA Holly, E Negri, M Hassan, A Prizment, M Cotterchio, S Cleary, RC Kurtz, P Maisonneuve, D Trichopoulos, J Polesel, EJ Duell, P Boffetta, C La Vecchia, P Ghadirian. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol 2014; 25(10): 2065–2072 https://doi.org/10.1093/annonc/mdu276
22
JM Genkinger, D Spiegelman, KE Anderson, L Bergkvist, L Bernstein, den Brandt PA van, DR English, JL Freudenheim, CS Fuchs, GG Giles, E Giovannucci, SE Hankinson, PL Horn-Ross, M Leitzmann, S Männistö, JR Marshall, ML McCullough, AB Miller, DJ Reding, K Robien, TE Rohan, A Schatzkin, VL Stevens, RZ Stolzenberg-Solomon, BA Verhage, A Wolk, RG Ziegler, SA Smith-Warner. Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev 2009; 18(3): 765–776 https://doi.org/10.1158/1055-9965.EPI-08-0880
JH Xu, JJ Fu, XL Wang, JY Zhu, XH Ye, SD Chen. Hepatitis B or C viral infection and risk of pancreatic cancer: a meta-analysis of observational studies. World J Gastroenterol 2013; 19(26): 4234–4241 https://doi.org/10.3748/wjg.v19.i26.4234
25
AB Kamiza, FH Su, WC Wang, FC Sung, SN Chang, CC Yeh. Chronic hepatitis infection is associated with extrahepatic cancer development: a nationwide population-based study in Taiwan. BMC Cancer 2016; 16(1): 861 https://doi.org/10.1186/s12885-016-2918-5
26
RD Allison, X Tong, AC Moorman, KN Ly, L Rupp, F Xu, SC Gordon, SD; Chronic Hepatitis Cohort Study (CHeCS) Investigators Holmberg. Increased incidence of cancer and cancer-related mortality among persons with chronic hepatitis C infection, 2006–2010. J Hepatol 2015; 63(4): 822–828 https://doi.org/10.1016/j.jhep.2015.04.021
27
Abe S Krull, M Inoue, N Sawada, M Iwasaki, T Shimazu, T Yamaji, S Sasazuki, E Saito, Y Tanaka, M Mizokami, S; JPHC Study Group Tsugane. Hepatitis B and C virus infection and risk of pancreatic cancer: a population-based cohort study (JPHC Study Cohort II). Cancer Epidemiol Biomarkers Prev 2016; 25(3): 555–557 https://doi.org/10.1158/1055-9965.EPI-15-1115
28
J Huang, U Zagai, G Hallmans, O Nyrén, L Engstrand, R Stolzenberg-Solomon, EJ Duell, K Overvad, VA Katzke, R Kaaks, M Jenab, JY Park, R Murillo, A Trichopoulou, P Lagiou, C Bamia, KE Bradbury, E Riboli, D Aune, KK Tsilidis, G Capellá, A Agudo, V Krogh, D Palli, S Panico, E Weiderpass, A Tjønneland, A Olsen, B Martínez, D Redondo-Sanchez, MD Chirlaque, Peeters P Hm, S Regnér, B Lindkvist, A Naccarati, E Ardanaz, N Larrañaga, MC Boutron-Ruault, V Rebours, A Barré, HB Bueno-de-Mesquita, W Ye. Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: a nested case-control study. Int J Cancer 2017; 140(8): 1727–1735 https://doi.org/10.1002/ijc.30590
29
2017 Pancreatic Cancer Collaborators GBD. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2019; 4(12): 934–947 https://doi.org/10.1016/S2468-1253(19)30347-4
30
M Zaitsu, Y Kim, HE Lee, T Takeuchi, Y Kobayashi, I Kawachi. Occupational class differences in pancreatic cancer survival: a population-based cancer registry-based study in Japan. Cancer Med 2019; 8(6): 3261–3268 https://doi.org/10.1002/cam4.2138
31
X Fan, AV Alekseyenko, J Wu, BA Peters, EJ Jacobs, SM Gapstur, MP Purdue, CC Abnet, R Stolzenberg-Solomon, G Miller, J Ravel, RB Hayes, J Ahn. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67(1): 120–127 https://doi.org/10.1136/gutjnl-2016-312580
32
M Cotterchio, E Lowcock, TJ Hudson, C Greenwood, S Gallinger. Association between allergies and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2014; 23(3): 469–480 https://doi.org/10.1158/1055-9965.EPI-13-0965
33
AD Singhi, H Ishida, SZ Ali, M Goggins, M Canto, C Wolfgang, Z Meriden, N Roberts, AP Klein, RH Hruban. A histomorphologic comparison of familial and sporadic pancreatic cancers. Pancreatology 2015; 15(4): 387–391 https://doi.org/10.1016/j.pan.2015.04.003
34
KA Overbeek, IJM Levink, BDM Koopmann, F Harinck, ICAW Konings, MGEM Ausems, A Wagner, P Fockens, Eijck CH van, Koerkamp B Groot, ORC Busch, MG Besselink, BAJ Bastiaansen, Driel LMJW van, NS Erler, FP Vleggaar, JW Poley, DL Cahen, Hooft JE van, MJ; Dutch Familial Pancreatic Cancer Surveillance Study Group Bruno. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022; 71(6): 1152–1160 https://doi.org/10.1136/gutjnl-2020-323611
35
C Wu, X Miao, L Huang, X Che, G Jiang, D Yu, X Yang, G Cao, Z Hu, Y Zhou, C Zuo, C Wang, X Zhang, Y Zhou, X Yu, W Dai, Z Li, H Shen, L Liu, Y Chen, S Zhang, X Wang, K Zhai, J Chang, Y Liu, M Sun, W Cao, J Gao, Y Ma, X Zheng, ST Cheung, Y Jia, J Xu, W Tan, P Zhao, T Wu, C Wang, D Lin. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 2012; 44: 62–66 https://doi.org/10.1038/ng.1020
36
S Holter, A Borgida, A Dodd, R Grant, K Semotiuk, D Hedley, N Dhani, S Narod, M Akbari, M Moore, S Gallinger. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015; 33(28): 3124–3129 https://doi.org/10.1200/JCO.2014.59.7401
37
RC Grant, RE Denroche, A Borgida, C Virtanen, N Cook, AL Smith, AA Connor, JM Wilson, G Peterson, NJ Roberts, AP Klein, SM Grimmond, A Biankin, S Cleary, M Moore, M Lemire, G Zogopoulos, L Stein, S Gallinger. Exome-wide association study of pancreatic cancer risk. Gastroenterology 2018; 154(3): 719–722.e3 https://doi.org/10.1053/j.gastro.2017.10.015
38
C Hu, SN Hart, EC Polley, R Gnanaolivu, H Shimelis, KY Lee, J Lilyquist, J Na, R Moore, SO Antwi, WR Bamlet, KG Chaffee, J DiCarlo, Z Wu, R Samara, PM Kasi, RR McWilliams, GM Petersen, FJ Couch. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018; 319(23): 2401–2409 https://doi.org/10.1001/jama.2018.6228
39
AP Klein. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021; 18(7): 493–502 https://doi.org/10.1038/s41575-021-00457-x
40
M Rainone, I Singh, EE Salo-Mullen, ZK Stadler, EM O’Reilly. An emerging paradigm for germline testing in pancreatic ductal adenocarcinoma and immediate implications for clinical practice: a review. JAMA Oncol 2020; 6(5): 764–771 https://doi.org/10.1001/jamaoncol.2019.5963
41
L Buscail, B Bournet, P Cordelier. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17(3): 153–168 https://doi.org/10.1038/s41575-019-0245-4
42
K Singh, M Pruski, R Bland, M Younes, S Guha, N Thosani, A Maitra, BD Cash, F McAllister, CD Logsdon, JT Chang, JM Bailey-Lundberg. Kras mutation rate precisely orchestrates ductal derived pancreatic intraepithelial neoplasia and pancreatic cancer. Lab Invest 2021; 101(2): 177–192 https://doi.org/10.1038/s41374-020-00490-5
43
Genome Atlas Research Network Cancer. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13 https://doi.org/10.1016/j.ccell.2017.07.007
44
AK Witkiewicz, EA McMillan, U Balaji, G Baek, WC Lin, J Mansour, M Mollaee, KU Wagner, P Koduru, A Yopp, MA Choti, CJ Yeo, P McCue, MA White, ES Knudsen. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 2015; 6(1): 6744 https://doi.org/10.1038/ncomms7744
45
EM O'Reilly, JF Hechtman. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann Oncol 2019; 30(Suppl_8): viii36–viii40 https://doi.org/10.1093/annonc/mdz385
46
C Heining, P Horak, S Uhrig, PL Codo, B Klink, B Hutter, M Fröhlich, D Bonekamp, D Richter, K Steiger, R Penzel, V Endris, KR Ehrenberg, S Frank, K Kleinheinz, UH Toprak, M Schlesner, R Mandal, L Schulz, H Lambertz, S Fetscher, M Bitzer, NP Malek, M Horger, NA Giese, O Strobel, T Hackert, C Springfeld, L Feuerbach, F Bergmann, E Schröck, Kalle C von, W Weichert, C Scholl, CR Ball, A Stenzinger, B Brors, S Fröhling, H Glimm. NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov 2018; 8(9): 1087–1095 https://doi.org/10.1158/2159-8290.CD-18-0036
47
MR Jones, LM Williamson, JT Topham, MKC Lee, A Goytain, J Ho, RE Denroche, G Jang, E Pleasance, Y Shen, JM Karasinska, JP McGhie, S Gill, HJ Lim, MJ Moore, HL Wong, T Ng, S Yip, W Zhang, S Sadeghi, C Reisle, AJ Mungall, KL Mungall, RA Moore, Y Ma, JJ Knox, S Gallinger, J Laskin, MA Marra, DF Schaeffer, SJM Jones, DJ Renouf. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res 2019; 25(15): 4674–4681 https://doi.org/10.1158/1078-0432.CCR-19-0191
48
A Hayashi, J Hong, CA Iacobuzio-Donahue. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021; 18(7): 469–481 https://doi.org/10.1038/s41575-021-00463-z
49
AA Connor, RE Denroche, GH Jang, M Lemire, A Zhang, M Chan-Seng-Yue, G Wilson, RC Grant, D Merico, I Lungu, JMS Bartlett, D Chadwick, SB Liang, J Eagles, F Mbabaali, JK Miller, P Krzyzanowski, H Armstrong, X Luo, LGT Jorgensen, JM Romero, P Bavi, SE Fischer, S Serra, S Hafezi-Bakhtiari, D Caglar, MHA Roehrl, S Cleary, MA Hollingsworth, GM Petersen, S Thayer, CHL Law, S Nanji, T Golan, AL Smith, A Borgida, A Dodd, D Hedley, BG Wouters, GM O’Kane, JM Wilson, G Zogopoulos, F Notta, JJ Knox, S Gallinger. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell 2019; 35(2): 267–282.e7 https://doi.org/10.1016/j.ccell.2018.12.010
50
L Cao, C Huang, Zhou D Cui, Y Hu, TM Lih, SR Savage, K Krug, DJ Clark, M Schnaubelt, L Chen, Veiga Leprevost F da, RV Eguez, W Yang, J Pan, B Wen, Y Dou, W Jiang, Y Liao, Z Shi, NV Terekhanova, S Cao, RJ Lu, Y Li, R Liu, H Zhu, P Ronning, Y Wu, MA Wyczalkowski, H Easwaran, L Danilova, AS Mer, S Yoo, JM Wang, W Liu, B Haibe-Kains, M Thiagarajan, SD Jewell, G Hostetter, CJ Newton, QK Li, MH Roehrl, D Fenyö, P Wang, AI Nesvizhskii, DR Mani, GS Omenn, ES Boja, M Mesri, AI Robles, H Rodriguez, OF Bathe, DW Chan, RH Hruban, L Ding, B Zhang, H; Clinical Proteomic Tumor Analysis Consortium Zhang. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184(19): 5031–5052.e26 https://doi.org/10.1016/j.cell.2021.08.023
51
D Xie, Z Wang, B Sun, L Qu, M Zeng, L Feng, M Guo, G Wang, J Hao, G Zhou. High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17(5): 907–923 https://doi.org/10.1007/s11684-023-1009-7
52
M Liu. Arid1a: a gatekeeper in the development of pancreatic cancer from a rare precursor lesion. Gastroenterology 2022; 163(2): 371–373 https://doi.org/10.1053/j.gastro.2022.05.046
53
ES Christenson, E Jaffee, NS Azad. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol 2020; 21(3): e135–e145 https://doi.org/10.1016/S1470-2045(19)30795-8
54
S Ahmed, AD Bradshaw, S Gera, MZ Dewan, R Xu. The TGF-β/Smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med 2017; 6(1): 5 https://doi.org/10.3390/jcm6010005
55
M Chan-Seng-Yue, JC Kim, GW Wilson, K Ng, EF Figueroa, GM O’Kane, AA Connor, RE Denroche, RC Grant, J McLeod, JM Wilson, GH Jang, A Zhang, A Dodd, SB Liang, A Borgida, D Chadwick, S Kalimuthu, I Lungu, JMS Bartlett, PM Krzyzanowski, V Sandhu, H Tiriac, FEM Froeling, JM Karasinska, JT Topham, DJ Renouf, DF Schaeffer, SJM Jones, MA Marra, J Laskin, R Chetty, LD Stein, G Zogopoulos, B Haibe-Kains, PJ Campbell, DA Tuveson, JJ Knox, SE Fischer, S Gallinger, F Notta. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 2020; 52(2): 231–240 https://doi.org/10.1038/s41588-019-0566-9
56
M Brunner, Z Wu, C Krautz, C Pilarsky, R Grützmann, GF Weber. Current clinical strategies of pancreatic cancer treatment and open molecular questions. Int J Mol Sci 2019; 20(18): 4543 https://doi.org/10.3390/ijms20184543
57
J Gao, L Wang, J Xu, J Zheng, X Man, H Wu, J Jin, K Wang, H Xiao, S Li, Z Li. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res 2013; 32(1): 86 https://doi.org/10.1186/1756-9966-32-86
58
JJ Zhang, Y Zhu, Y Zhu, JL Wu, WB Liang, R Zhu, ZK Xu, Q Du, Y Miao. Association of increased DNA methyltransferase expression with carcinogenesis and poor prognosis in pancreatic ductal adenocarcinoma. Clin Transl Oncol 2012; 14(2): 116–124 https://doi.org/10.1007/s12094-012-0770-x
59
ID Nagtegaal, RD Odze, D Klimstra, V Paradis, M Rugge, P Schirmacher, KM Washington, F Carneiro, IA; WHO Classification of Tumours Editorial Board Cree. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76(2): 182–188 https://doi.org/10.1111/his.13975
60
L Zhang, D Chen, D Song, X Liu, Y Zhang, X Xu, X Wang. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7(1): 111 https://doi.org/10.1038/s41392-022-00960-w
61
D Schäfer, S Tomiuk, LN Küster, WA Rawashdeh, J Henze, G Tischler-Höhle, DJ Agorku, J Brauner, C Linnartz, D Lock, A Kaiser, C Herbel, D Eckardt, M Lamorte, D Lenhard, J Schüler, P Ströbel, J Missbach-Guentner, D Pinkert-Leetsch, F Alves, A Bosio, O Hardt. Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic adenocarcinoma. Nat Commun 2021; 12(1): 1453 https://doi.org/10.1038/s41467-021-21774-4
62
WC Hsieh, BR Budiarto, YF Wang, CY Lin, MC Gwo, DK So, YS Tzeng, SY Chen. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci 2022; 29(1): 96 https://doi.org/10.1186/s12929-022-00879-y
63
R Moncada, D Barkley, F Wagner, M Chiodin, JC Devlin, M Baron, CH Hajdu, DM Simeone, I Yanai. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 2020; 38(3): 333–342 https://doi.org/10.1038/s41587-019-0392-8
64
WL Hwang, KA Jagadeesh, JA Guo, HI Hoffman, P Yadollahpour, JW Reeves, R Mohan, E Drokhlyansky, N Van Wittenberghe, O Ashenberg, SL Farhi, D Schapiro, P Divakar, E Miller, DR Zollinger, G Eng, JM Schenkel, J Su, C Shiau, P Yu, WA Freed-Pastor, D Abbondanza, A Mehta, J Gould, C Lambden, CBM Porter, A Tsankov, D Dionne, J Waldman, MS Cuoco, L Nguyen, T Delorey, D Phillips, JL Barth, M Kem, C Rodrigues, D Ciprani, J Roldan, P Zelga, V Jorgji, JH Chen, Z Ely, D Zhao, K Fuhrman, R Fropf, JM Beechem, JS Loeffler, DP Ryan, CD Weekes, CR Ferrone, M Qadan, MJ Aryee, RK Jain, DS Neuberg, JY Wo, TS Hong, R Xavier, AJ Aguirre, O Rozenblatt-Rosen, M Mino-Kenudson, CF Castillo, AS Liss, DT Ting, T Jacks, A Regev. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet 2022; 54(8): 1178–1191 https://doi.org/10.1038/s41588-022-01134-8
65
D Cui Zhou, RG Jayasinghe, S Chen, JM Herndon, MD Iglesia, P Navale, MC Wendl, W Caravan, K Sato, E Storrs, CK Mo, J Liu, AN Southard-Smith, Y Wu, N Naser Al Deen, JM Baer, RS Fulton, MA Wyczalkowski, R Liu, CC Fronick, LA Fulton, A Shinkle, L Thammavong, H Zhu, H Sun, LB Wang, Y Li, C Zuo, JF McMichael, SR Davies, EL Appelbaum, KJ Robbins, SE Chasnoff, X Yang, AN Reeb, C Oh, M Serasanambati, P Lal, R Varghese, JR Mashl, J Ponce, NV Terekhanova, L Yao, F Wang, L Chen, M Schnaubelt, RJ Lu, JK Schwarz, SV Puram, AH Kim, SK Song, KI Shoghi, KS Lau, T Ju, K Chen, D Chatterjee, WG Hawkins, H Zhang, S Achilefu, MG Chheda, ST Oh, WE Gillanders, F Chen, DG DeNardo, RC Fields, L Ding. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat Genet 2022; 54(9): 1390–1405 https://doi.org/10.1038/s41588-022-01157-1
66
L Tosti, Y Hang, O Debnath, S Tiesmeyer, T Trefzer, K Steiger, FW Ten, S Lukassen, S Ballke, AA Kühl, S Spieckermann, R Bottino, N Ishaque, W Weichert, SK Kim, R Eils, C Conrad. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 2021; 160(4): 1330–1344.e11 https://doi.org/10.1053/j.gastro.2020.11.010
67
D Barkley, R Moncada, M Pour, DA Liberman, I Dryg, G Werba, W Wang, M Baron, A Rao, B Xia, GS França, A Weil, DF Delair, C Hajdu, AW Lund, I Osman, I Yanai. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet 2022; 54(8): 1192–1201 https://doi.org/10.1038/s41588-022-01141-9
68
A Hayashi, J Fan, R Chen, YJ Ho, AP Makohon-Moore, N Lecomte, Y Zhong, J Hong, J Huang, H Sakamoto, MA Attiyeh, ZA Kohutek, L Zhang, A Boumiza, R Kappagantula, P Baez, J Bai, M Lisi, K Chadalavada, JP Melchor, W Wong, GJ Nanjangud, O Basturk, EM O’Reilly, DS Klimstra, RH Hruban, LD Wood, M Overholtzer, CA Iacobuzio-Donahue. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat Cancer 2020; 1(1): 59–74 https://doi.org/10.1038/s43018-019-0010-1
69
P Bailey, DK Chang, K Nones, AL Johns, AM Patch, MC Gingras, DK Miller, AN Christ, TJ Bruxner, MC Quinn, C Nourse, LC Murtaugh, I Harliwong, S Idrisoglu, S Manning, E Nourbakhsh, S Wani, L Fink, O Holmes, V Chin, MJ Anderson, S Kazakoff, C Leonard, F Newell, N Waddell, S Wood, Q Xu, PJ Wilson, N Cloonan, KS Kassahn, D Taylor, K Quek, A Robertson, L Pantano, L Mincarelli, LN Sanchez, L Evers, J Wu, M Pinese, MJ Cowley, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, LA Chantrill, A Mawson, J Humphris, A Chou, M Pajic, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Lovell, ND Merrett, CW Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, K Moran-Jones, NB Jamieson, JS Graham, F Duthie, K Oien, J Hair, R Grützmann, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, B Rusev, P Capelli, R Salvia, G Tortora, D Mukhopadhyay, GM; Australian Pancreatic Cancer Genome Initiative; Munzy DM Petersen, WE Fisher, SA Karim, JR Eshleman, RH Hruban, C Pilarsky, JP Morton, OJ Sansom, A Scarpa, EA Musgrove, UM Bailey, O Hofmann, RL Sutherland, DA Wheeler, AJ Gill, RA Gibbs, JV Pearson, N Waddell, AV Biankin, SM Grimmond. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52 https://doi.org/10.1038/nature16965
70
H Sun, D Zhang, C Huang, Y Guo, Z Yang, N Yao, X Dong, R Cheng, N Zhao, J Meng, B Sun, J Hao. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med 2021; 18(2): 616–630 https://doi.org/10.20892/j.issn.2095-3941.2021.0158
71
ATF Bell. PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration. bioRxiv 2022; 2022.07.16.500312
72
A Agostini. Transcriptomic dissection of intraepithelial papillary mucinous neoplasms progression by spatial technologies identified novel markers of pancreatic carcinogenesis. bioRxiv 2022; 2022.10.12.511894
73
M Sans, Y Makino, J Min, KI Rajapakshe, M Yip-Schneider, CM Schmidt, MW Hurd, JK Burks, JA Gomez, FI Thege, JF Fahrmann, RA Wolff, MP Kim, PA Guerrero, A Maitra. Spatial transcriptomics of intraductal papillary mucinous neoplasms of the pancreas identifies NKX6-2 as a driver of gastric differentiation and indolent biological potential. Cancer Discov 2023; 13(8): 1844–1861 https://doi.org/10.1158/2159-8290.CD-22-1200
74
J Peng, BF Sun, CY Chen, JY Zhou, YS Chen, H Chen, L Liu, D Huang, J Jiang, GS Cui, Y Yang, W Wang, D Guo, M Dai, J Guo, T Zhang, Q Liao, Y Liu, YL Zhao, DL Han, Y Zhao, YG Yang, W Wu. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725–738 https://doi.org/10.1038/s41422-019-0195-y
75
Z Ma, NK Lytle, B Chen, N Jyotsana, SW Novak, CJ Cho, L Caplan, O Ben-Levy, AC Neininger, DT Burnette, VQ Trinh, MCB Tan, EA Patterson, R Arrojo E Drigo, RR Giraddi, C Ramos, AL Means, I Matsumoto, U Manor, JC Mills, JR Goldenring, KS Lau, GM Wahl, KE DelGiorno. Single-cell transcriptomics reveals a conserved metaplasia program in pancreatic injury. Gastroenterology 2022; 162(2): 604–620.e20 https://doi.org/10.1053/j.gastro.2021.10.027
76
JJ Lee, V Bernard, A Semaan, ME Monberg, J Huang, BM Stephens, D Lin, KI Rajapakshe, BR Weston, MS Bhutani, CL Haymaker, C Bernatchez, CM Taniguchi, A Maitra, PA Guerrero. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world pancreatic cancer biopsies. Clin Cancer Res 2021; 27(21): 5912–5921 https://doi.org/10.1158/1078-0432.CCR-20-3925
77
W Lin, P Noel, EH Borazanci, J Lee, A Amini, IW Han, JS Heo, GS Jameson, C Fraser, M Steinbach, Y Woo, Y Fong, D Cridebring, DD Von Hoff, JO Park, H Han. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med 2020; 12(1): 80 https://doi.org/10.1186/s13073-020-00776-9
78
M Ligorio, S Sil, J Malagon-Lopez, LT Nieman, S Misale, M Di Pilato, RY Ebright, MN Karabacak, AS Kulkarni, A Liu, N Vincent Jordan, JW Franses, J Philipp, J Kreuzer, N Desai, KS Arora, M Rajurkar, E Horwitz, A Neyaz, E Tai, NKC Magnus, KD Vo, CN Yashaswini, F Marangoni, M Boukhali, JP Fatherree, LJ Damon, K Xega, R Desai, M Choz, F Bersani, A Langenbucher, V Thapar, R Morris, UF Wellner, O Schilling, MS Lawrence, AS Liss, MN Rivera, V Deshpande, CH Benes, S Maheswaran, DA Haber, C Fernandez-Del-Castillo, CR Ferrone, W Haas, MJ Aryee, DT Ting. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 2019; 178(1): 160–175.e27 https://doi.org/10.1016/j.cell.2019.05.012
79
E Elyada, M Bolisetty, P Laise, WF Flynn, ET Courtois, RA Burkhart, JA Teinor, P Belleau, G Biffi, MS Lucito, S Sivajothi, TD Armstrong, DD Engle, KH Yu, Y Hao, CL Wolfgang, Y Park, J Preall, EM Jaffee, A Califano, P Robson, DA Tuveson. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019; 9(8): 1102–1123 https://doi.org/10.1158/2159-8290.CD-19-0094
80
DS Foster, M Januszyk, D Delitto, KE Yost, M Griffin, J Guo, N Guardino, AE Delitto, M Chinta, AR Burcham, AT Nguyen, KE Bauer-Rowe, AL Titan, A Salhotra, RE Jones, O da Silva, HG Lindsay, CE Berry, K Chen, D Henn, S Mascharak, HE Talbott, A Kim, F Nosrati, D Sivaraj, RC Ransom, M Matthews, A Khan, D Wagh, J Coller, GC Gurtner, DC Wan, IL Wapnir, HY Chang, JA Norton, MT Longaker. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 2022; 40(11): 1392–1406.e7 https://doi.org/10.1016/j.ccell.2022.09.015
81
CX Dominguez, S Müller, S Keerthivasan, H Koeppen, J Hung, S Gierke, B Breart, O Foreman, TW Bainbridge, A Castiglioni, Y Senbabaoglu, Z Modrusan, Y Liang, MR Junttila, C Klijn, R Bourgon, SJ Turley. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 2020; 10(2): 232–253 https://doi.org/10.1158/2159-8290.CD-19-0644
82
C Hutton, F Heider, A Blanco-Gomez, A Banyard, A Kononov, X Zhang, S Karim, V Paulus-Hock, D Watt, N Steele, S Kemp, EKJ Hogg, J Kelly, RF Jackstadt, F Lopes, M Menotti, L Chisholm, A Lamarca, J Valle, OJ Sansom, C Springer, A Malliri, R Marais, di Magliano M Pasca, S Zelenay, JP Morton, C Jørgensen. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 2021; 39(9): 1227–1244.e20 https://doi.org/10.1016/j.ccell.2021.06.017
83
AN Hosein, H Huang, Z Wang, K Parmar, W Du, J Huang, A Maitra, E Olson, U Verma, RA Brekken. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 2019; 4(16): e129212 https://doi.org/10.1172/jci.insight.129212
NG Steele, ES Carpenter, SB Kemp, VR Sirihorachai, S The, L Delrosario, J Lazarus, ED Amir, V Gunchick, C Espinoza, S Bell, L Harris, F Lima, V Irizarry-Negron, D Paglia, J Macchia, AKY Chu, H Schofield, EJ Wamsteker, R Kwon, A Schulman, A Prabhu, R Law, A Sondhi, J Yu, A Patel, K Donahue, H Nathan, C Cho, MA Anderson, V Sahai, CA Lyssiotis, W Zou, BL Allen, A Rao, HC Crawford, F Bednar, TL Frankel, M Pasca di Magliano. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer 2020; 1(11): 1097–1112 https://doi.org/10.1038/s43018-020-00121-4
86
WJ Ho, R Erbe, L Danilova, Z Phyo, E Bigelow, G Stein-O’Brien, DL 2nd Thomas, S Charmsaz, N Gross, S Woolman, K Cruz, RM Munday, N Zaidi, TD Armstrong, MB Sztein, M Yarchoan, ED Thompson, EM Jaffee, EJ Fertig. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways. Genome Biol 2021; 22(1): 154 https://doi.org/10.1186/s13059-021-02363-6
87
Y Du, Y Cai, Y Lv, L Zhang, H Yang, Q Liu, M Hong, Y Teng, W Tang, R Ma, J Wu, J Wu, Q Wang, H Chen, K Li, J Feng. Single-cell RNA sequencing unveils the communications between malignant T and myeloid cells contributing to tumor growth and immunosuppression in cutaneous T-cell lymphoma. Cancer Lett 2022; 551: 215972 https://doi.org/10.1016/j.canlet.2022.215972
88
C Shiau, J Su, JA Guo, TS Hong, JY Wo, KA Jagadeesh, WL Hwang. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front Oncol 2022; 12: 929950 https://doi.org/10.3389/fonc.2022.929950
89
Y Du, Z Gu, Z Li, Z Yuan, Y Zhao, X Zheng, X Bo, H Chen, C Wang. Dynamic interplay between structural variations and 3D genome organization in pancreatic cancer. Adv Sci (Weinh) 2022; 9(18): e2200818 https://doi.org/10.1002/advs.202200818
90
D Alonso-Curbelo, YJ Ho, C Burdziak, JLV Maag, JP 4th Morris, R Chandwani, HA Chen, KM Tsanov, FM Barriga, W Luan, N Tasdemir, G Livshits, E Azizi, J Chun, JE Wilkinson, L Mazutis, SD Leach, R Koche, D Pe’er, SW Lowe. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 2021; 590(7847): 642–648 https://doi.org/10.1038/s41586-020-03147-x
91
C Burdziak, D Alonso-Curbelo, T Walle, J Reyes, FM Barriga, D Haviv, Y Xie, Z Zhao, CJ Zhao, HA Chen, O Chaudhary, I Masilionis, ZN Choo, V Gao, W Luan, A Wuest, YJ Ho, Y Wei, DF Quail, R Koche, L Mazutis, R Chaligné, T Nawy, SW Lowe, D Pe’er. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380(6645): eadd5327 https://doi.org/10.1126/science.add5327
92
F Guo, L Li, J Li, X Wu, B Hu, P Zhu, L Wen, F Tang. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 2017; 27(8): 967–988 https://doi.org/10.1038/cr.2017.82
93
X Fan, P Lu, H Wang, S Bian, X Wu, Y Zhang, Y Liu, D Fu, L Wen, J Hao, F Tang. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma. Cell Discov 2022; 8(1): 13 https://doi.org/10.1038/s41421-021-00366-y
94
N Waddell, M Pajic, AM Patch, DK Chang, KS Kassahn, P Bailey, AL Johns, D Miller, K Nones, K Quek, MC Quinn, AJ Robertson, MZ Fadlullah, TJ Bruxner, AN Christ, I Harliwong, S Idrisoglu, S Manning, C Nourse, E Nourbakhsh, S Wani, PJ Wilson, E Markham, N Cloonan, MJ Anderson, JL Fink, O Holmes, SH Kazakoff, C Leonard, F Newell, B Poudel, S Song, D Taylor, N Waddell, S Wood, Q Xu, J Wu, M Pinese, MJ Cowley, HC Lee, MD Jones, AM Nagrial, J Humphris, LA Chantrill, V Chin, AM Steinmann, A Mawson, ES Humphrey, EK Colvin, A Chou, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Pettitt, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, NB Jamieson, JS Graham, SP Niclou, R Bjerkvig, R Grützmann, D Aust, RH Hruban, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, M Falconi, G Zamboni, G Tortora, MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ Tempero, JR Eshleman, C Pilarsky, A Scarpa, EA Musgrove, JV Pearson, AV Biankin, SM Grimmond. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501 https://doi.org/10.1038/nature14169
95
RA Moffitt, R Marayati, EL Flate, KE Volmar, SG Loeza, KA Hoadley, NU Rashid, LA Williams, SC Eaton, AH Chung, JK Smyla, JM Anderson, HJ Kim, DJ Bentrem, MS Talamonti, CA Iacobuzio-Donahue, MA Hollingsworth, JJ Yeh. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 2015; 47(10): 1168–1178 https://doi.org/10.1038/ng.3398
96
F Puleo, R Nicolle, Y Blum, J Cros, L Marisa, P Demetter, E Quertinmont, M Svrcek, N Elarouci, J Iovanna, D Franchimont, L Verset, MG Galdon, J Devière, Reyniès A de, P Laurent-Puig, Laethem JL Van, JB Bachet, R Maréchal. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 2018; 155(6): 1999–2013.e3 https://doi.org/10.1053/j.gastro.2018.08.033
97
EA Collisson, A Sadanandam, P Olson, WJ Gibb, M Truitt, S Gu, J Cooc, J Weinkle, GE Kim, L Jakkula, HS Feiler, AH Ko, AB Olshen, KL Danenberg, MA Tempero, PT Spellman, D Hanahan, JW Gray. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011; 17(4): 500–503 https://doi.org/10.1038/nm.2344
98
C Maurer, SR Holmstrom, J He, P Laise, T Su, A Ahmed, H Hibshoosh, JA Chabot, PE Oberstein, AR Sepulveda, JM Genkinger, J Zhang, AC Iuga, M Bansal, A Califano, KP Olive. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 2019; 68(6): 1034–1043 https://doi.org/10.1136/gutjnl-2018-317706
99
M Jamal-Hanjani, GA Wilson, N McGranahan, NJ Birkbak, TBK Watkins, S Veeriah, S Shafi, DH Johnson, R Mitter, R Rosenthal, M Salm, S Horswell, M Escudero, N Matthews, A Rowan, T Chambers, DA Moore, S Turajlic, H Xu, SM Lee, MD Forster, T Ahmad, CT Hiley, C Abbosh, M Falzon, E Borg, T Marafioti, D Lawrence, M Hayward, S Kolvekar, N Panagiotopoulos, SM Janes, R Thakrar, A Ahmed, F Blackhall, Y Summers, R Shah, L Joseph, AM Quinn, PA Crosbie, B Naidu, G Middleton, G Langman, S Trotter, M Nicolson, H Remmen, K Kerr, M Chetty, L Gomersall, DA Fennell, A Nakas, S Rathinam, G Anand, S Khan, P Russell, V Ezhil, B Ismail, M Irvin-Sellers, V Prakash, JF Lester, M Kornaszewska, R Attanoos, H Adams, H Davies, S Dentro, P Taniere, B O’Sullivan, HL Lowe, JA Hartley, N Iles, H Bell, Y Ngai, JA Shaw, J Herrero, Z Szallasi, RF Schwarz, A Stewart, SA Quezada, Quesne J Le, Loo P Van, C Dive, A Hackshaw, C; TRACERx Consortium Swanton. Tracking the evolution of non-small-cell lung cancer. N Engl J Med 2017; 376(22): 2109–2121 https://doi.org/10.1056/NEJMoa1616288
100
NU Rashid, XL Peng, C Jin, RA Moffitt, KE Volmar, BA Belt, RZ Panni, TM Nywening, SG Herrera, KJ Moore, SG Hennessey, AB Morrison, R Kawalerski, A Nayyar, AE Chang, B Schmidt, HJ Kim, DC Linehan, JJ Yeh. Purity independent subtyping of tumors (PurIST), a clinically robust, single-sample classifier for tumor subtyping in pancreatic cancer. Clin Cancer Res 2020; 26(1): 82–92 https://doi.org/10.1158/1078-0432.CCR-19-1467
101
NA Ullman, PR Burchard, RF Dunne, DC Linehan. Immunologic strategies in pancreatic cancer: making cold tumors hot. J Clin Oncol 2022; 40(24): 2789–2805 https://doi.org/10.1200/JCO.21.02616
102
X Li, M Gulati, AC Larson, JC Solheim, M Jain, S Kumar, SK Batra. Immune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin Cancer Biol 2022; 86(Pt 2): 14–27 https://doi.org/10.1016/j.semcancer.2022.08.009
103
GP Nagaraju, RR Malla, R Basha, IG Motofei. Contemporary clinical trials in pancreatic cancer immunotherapy targeting PD-1 and PD-L1. Semin Cancer Biol 2022; 86(Pt 3): 616–621 https://doi.org/10.1016/j.semcancer.2021.11.003
104
R Xue, Q Zhang, Q Cao, R Kong, X Xiang, H Liu, M Feng, F Wang, J Cheng, Z Li, Q Zhan, M Deng, J Zhu, Z Zhang, N Zhang. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022; 612(7938): 141–147 https://doi.org/10.1038/s41586-022-05400-x
105
S Raghavan, PS Winter, AW Navia, HL Williams, A DenAdel, KE Lowder, J Galvez-Reyes, RL Kalekar, N Mulugeta, KS Kapner, MS Raghavan, AA Borah, N Liu, SA Väyrynen, AD Costa, RWS Ng, J Wang, EK Hill, DY Ragon, LK Brais, AM Jaeger, LF Spurr, YY Li, AD Cherniack, MA Booker, EF Cohen, MY Tolstorukov, I Wakiro, A Rotem, BE Johnson, JM McFarland, ET Sicinska, TE Jacks, RJ Sullivan, GI Shapiro, TE Clancy, K Perez, DA Rubinson, K Ng, JM Cleary, L Crawford, SR Manalis, JA Nowak, BM Wolpin, WC Hahn, AJ Aguirre, AK Shalek. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 2021; 184(25): 6119–6137.e26 https://doi.org/10.1016/j.cell.2021.11.017
106
A Grimont, SD Leach, R Chandwani. Uncertain beginnings: acinar and ductal cell plasticity in the development of pancreatic cancer. Cell Mol Gastroenterol Hepatol 2022; 13(2): 369–382 https://doi.org/10.1016/j.jcmgh.2021.07.014
107
HA Messal, S Alt, RMM Ferreira, C Gribben, VM Wang, CG Cotoi, G Salbreux, A Behrens. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 2019; 566(7742): 126–130 https://doi.org/10.1038/s41586-019-0891-2
S Parte, RK Nimmakayala, SK Batra, MP Ponnusamy. Acinar to ductal cell trans-differentiation: a prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877(1): 188669 https://doi.org/10.1016/j.bbcan.2021.188669
110
E Del Poggetto, IL Ho, C Balestrieri, EY Yen, S Zhang, F Citron, R Shah, D Corti, GR Diaferia, CY Li, S Loponte, F Carbone, Y Hayakawa, G Valenti, S Jiang, L Sapio, H Jiang, P Dey, S Gao, AK Deem, S Rose-John, W Yao, H Ying, AD Rhim, G Genovese, TP Heffernan, A Maitra, TC Wang, L Wang, GF Draetta, A Carugo, G Natoli, A Viale. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 2021; 373(6561): eabj0486 https://doi.org/10.1126/science.abj0486
111
O JP De La, LL Emerson, JL Goodman, SC Froebe, BE Illum, AB Curtis, LC Murtaugh. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 2008; 105(48): 18907–18912 https://doi.org/10.1073/pnas.0810111105
112
H Huang, M He, Y Zhang, B Zhang, Z Niu, Y Zheng, W Li, P Cui, X Wang, Q Sun. Identification and validation of heterotypic cell-in-cell structure as an adverse prognostic predictor for young patients of resectable pancreatic ductal adenocarcinoma. Signal Transduct Target Ther 2020; 5(1): 246 https://doi.org/10.1038/s41392-020-00346-w
113
J Song, R Ruze, Y Chen, R Xu, X Yin, C Wang, Q Xu, Y Zhao. Construction of a novel model based on cell-in-cell-related genes and validation of KRT7 as a biomarker for predicting survival and immune microenvironment in pancreatic cancer. BMC Cancer 2022; 22(1): 894 https://doi.org/10.1186/s12885-022-09983-6
AS Bais, D Kostka. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics 2020; 36(4): 1150–1158 https://doi.org/10.1093/bioinformatics/btz698
116
VK Singh, D Yadav, PK Garg. Diagnosis and management of chronic pancreatitis: a review. JAMA 2019; 322(24): 2422–2434 https://doi.org/10.1001/jama.2019.19411
117
W Greenhalf, P Lévy, T Gress, V Rebours, RE Brand, S Pandol, S Chari, MT Jørgensen, J Mayerle, MM Lerch, P Hegyi, J Kleeff, CF Castillo, S Isaji, T Shimosegawa, A Sheel, CM Halloran, P Garg, K Takaori, MG Besselink, CE Forsmark, CM Wilcox, P Maisonneuve, D Yadav, D Whitcomb, J; Working group for the International (IAP – APA – JPS – EPC) Consensus Guidelines for Chronic Pancreatitis Neoptolemos. International consensus guidelines on surveillance for pancreatic cancer in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20(5): 910–918 https://doi.org/10.1016/j.pan.2020.05.011
118
P Hegyi, A Párniczky, MM Lerch, ARG Sheel, V Rebours, CE Forsmark, Chiaro M Del, J Rosendahl, E de-Madaria, Á Szücs, K Takaori, D Yadav, C Gheorghe, Z Jr Rakonczay, X Molero, K Inui, A Masamune, Castillo C Fernandez-Del, T Shimosegawa, JP Neoptolemos, DC Whitcomb, M; Working Group for the International (IAP–APA–JPS–EPC) Consensus Guidelines for Chronic Pancreatitis Sahin-Tóth. International consensus guidelines for risk factors in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20(4): 579–585 https://doi.org/10.1016/j.pan.2020.03.014
119
C Sun, M Liu, W An, X Mao, H Jiang, W Zou, H Wu, Z Liao, Z Li. Heterozygous Spink1 c.194+2T>C mutant mice spontaneously develop chronic pancreatitis. Gut 2020; 69(5): 967–968 https://doi.org/10.1136/gutjnl-2019-318790
120
A Geisz, M Sahin-Tóth. A preclinical model of chronic pancreatitis driven by trypsinogen autoactivation. Nat Commun 2018; 9(1): 5033 https://doi.org/10.1038/s41467-018-07347-y
121
E Hegyi, M Sahin-Tóth. Human CPA1 mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut 2019; 68(2): 301–312 https://doi.org/10.1136/gutjnl-2018-315994
P Storz. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol 2017; 14(5): 296–304 https://doi.org/10.1038/nrgastro.2017.12
124
CB Westphalen, Y Takemoto, T Tanaka, M Macchini, Z Jiang, BW Renz, X Chen, S Ormanns, K Nagar, Y Tailor, R May, Y Cho, S Asfaha, DL Worthley, Y Hayakawa, AM Urbanska, M Quante, M Reichert, J Broyde, PS Subramaniam, H Remotti, GH Su, AK Rustgi, RA Friedman, B Honig, A Califano, CW Houchen, KP Olive, TC Wang. Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell 2016; 18(4): 441–455 https://doi.org/10.1016/j.stem.2016.03.016
125
JM Bailey, J Alsina, ZA Rasheed, FM McAllister, YY Fu, R Plentz, H Zhang, PJ Pasricha, N Bardeesy, W Matsui, A Maitra, SD Leach. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 2014; 146(1): 245–256 https://doi.org/10.1053/j.gastro.2013.09.050
126
FM Ferguson, B Nabet, S Raghavan, Y Liu, AL Leggett, M Kuljanin, RL Kalekar, A Yang, S He, J Wang, RWS Ng, R Sulahian, L Li, EJ Poulin, L Huang, J Koren, N Dieguez-Martinez, S Espinosa, Z Zeng, CR Corona, JD Vasta, R Ohi, T Sim, ND Kim, W Harshbarger, JM Lizcano, MB Robers, S Muthaswamy, CY Lin, AT Look, KM Haigis, JD Mancias, BM Wolpin, AJ Aguirre, WC Hahn, KD Westover, NS Gray. Discovery of a selective inhibitor of doublecortin like kinase 1. Nat Chem Biol 2020; 16(6): 635–643 https://doi.org/10.1038/s41589-020-0506-0
127
O Basturk, SM Hong, LD Wood, NV Adsay, J Albores-Saavedra, AV Biankin, LA Brosens, N Fukushima, M Goggins, RH Hruban, Y Kato, DS Klimstra, G Klöppel, A Krasinskas, DS Longnecker, H Matthaei, GJ Offerhaus, M Shimizu, K Takaori, B Terris, S Yachida, I Esposito, T; Baltimore Consensus Meeting Furukawa. A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol 2015; 39(12): 1730–1741 https://doi.org/10.1097/PAS.0000000000000533
128
ST Liffers, L Godfrey, L Frohn, L Haeberle, A Yavas, R Vesce, W Goering, FV Opitz, N Stoecklein, WT Knoefel, AM Schlitter, G Klöppel, E Espinet, A Trumpp, JT Siveke, I Esposito. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype. Gut 2023; 72(3): 522–534 https://doi.org/10.1136/gutjnl-2021-326550
129
M Felsenstein, M Noë, DL Masica, W Hosoda, P Chianchiano, CG Fischer, G Lionheart, LAA Brosens, A Pea, J Yu, G Gemenetzis, VP Groot, MA Makary, J He, MJ Weiss, JL Cameron, CL Wolfgang, RH Hruban, NJ Roberts, R Karchin, MG Goggins, LD Wood. IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut 2018; 67(9): 1652–1662 https://doi.org/10.1136/gutjnl-2017-315062
130
A Scarpa, FX Real, C Luchini. Genetic unrelatedness of co-occurring pancreatic adenocarcinomas and IPMNs challenges current views of clinical management. Gut 2018; 67(9): 1561–1563 https://doi.org/10.1136/gutjnl-2018-316151
131
A Mafficini, M Simbolo, T Shibata, SM Hong, A Pea, LA Brosens, L Cheng, D Antonello, C Sciammarella, C Cantù, P Mattiolo, SV Taormina, G Malleo, G Marchegiani, E Sereni, V Corbo, G Paolino, C Ciaparrone, N Hiraoka, D Pallaoro, C Jansen, M Milella, R Salvia, RT Lawlor, V Adsay, A Scarpa, C Luchini. Integrative characterization of intraductal tubulopapillary neoplasm (ITPN) of the pancreas and associated invasive adenocarcinoma. Mod Pathol 2022; 35(12): 1929–1943 https://doi.org/10.1038/s41379-022-01143-2
132
H Yamaguchi, M Shimizu, S Ban, I Koyama, T Hatori, I Fujita, M Yamamoto, S Kawamura, M Kobayashi, K Ishida, T Morikawa, F Motoi, M Unno, A Kanno, K Satoh, T Shimosegawa, H Orikasa, T Watanabe, K Nishimura, Y Ebihara, N Koike, T Furukawa. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2009; 33(8): 1164–1172 https://doi.org/10.1097/PAS.0b013e3181a162e5
133
G Paolino, I Esposito, SM Hong, O Basturk, P Mattiolo, T Kaneko, N Veronese, A Scarpa, V Adsay, C Luchini. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology 2022; 81(3): 297–309 https://doi.org/10.1111/his.14698
134
Y Fukunaga, A Fukuda, M Omatsu, M Namikawa, M Sono, T Masuda, O Araki, M Nagao, T Yoshikawa, S Ogawa, Y Hiramatsu, Y Muta, M Tsuda, T Maruno, Y Nakanishi, J Ferrer, T Tsuruyama, T Masui, E Hatano, H Seno. Loss of Arid1a and Pten in pancreatic ductal cells induces intraductal tubulopapillary neoplasm via the YAP/TAZ pathway. Gastroenterology 2022; 163(2): 466–480.e6 https://doi.org/10.1053/j.gastro.2022.04.020
135
O Basturk, MF Berger, H Yamaguchi, V Adsay, G Askan, UK Bhanot, A Zehir, F Carneiro, SM Hong, G Zamboni, E Dikoglu, V Jobanputra, KO Wrzeszczynski, S Balci, P Allen, N Ikari, S Takeuchi, H Akagawa, A Kanno, T Shimosegawa, T Morikawa, F Motoi, M Unno, R Higuchi, M Yamamoto, K Shimizu, T Furukawa, DS Klimstra. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Mod Pathol 2017; 30(12): 1760–1772 https://doi.org/10.1038/modpathol.2017.60
136
K Sakihama, Y Koga, T Yamamoto, Y Shimada, Y Yamada, J Kawat, K Shindo, M Nakamura, Y Oda. RNF43 as a predictor of malignant transformation of pancreatic mucinous cystic neoplasm. Virchows Arch 2022; 480(6): 1189–1199 https://doi.org/10.1007/s00428-022-03277-9
137
JR Conner, AM Enríquez, MM Kenudso, E Garcia, MB Pitman, LM Sholl, A Srivastava, LA Doyle. Genomic characterization of low- and high-grade pancreatic mucinous cystic neoplasms reveals recurrent kras alterations in “high-risk” lesions. Pancreas 2017; 46(5): 665–671 https://doi.org/10.1097/MPA.0000000000000805
138
Y Maimaitiaili, Y Fukumura, K Hirabayashi, Y Kinowaki, Y Naito, A Saito, L Rong, J Nakahodo, T Yao. Investigation of -PRKACA/-PRKACB fusion genes in oncocytic tumors of the pancreatobiliary and other systems. Virchows Arch 2022; 481(6): 865–876 https://doi.org/10.1007/s00428-022-03415-3
139
AD Singhi, LD Wood, E Parks, MS Torbenson, M Felsenstein, RH Hruban, MN Nikiforova, AI Wald, C Kaya, YE Nikiforov, L Favazza, J He, K McGrath, KE Fasanella, RE Brand, AM Lennon, A Furlan, AK Dasyam, AH Zureikat, HJ Zeh, K Lee, DL Bartlett, A Slivka. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 2020; 158(3): 573–582.e2 https://doi.org/10.1053/j.gastro.2019.10.028
140
T Wang, G Askan, V Adsay, P Allen, WR Jarnagin, B Memis, C Sigel, IE Seven, DS Klimstra, O Basturk. Intraductal oncocytic papillary neoplasms: clinical-pathologic characterization of 24 cases, with an emphasis on associated invasive carcinomas. Am J Surg Pathol 2019; 43(5): 656–661 https://doi.org/10.1097/PAS.0000000000001226
141
RMM Ferreira, R Sancho, HA Messal, E Nye, B Spencer-Dene, RK Stone, G Stamp, I Rosewell, A Quaglia, A Behrens. Duct- and acinar-derived pancreatic ductal adenocarcinomas show distinct tumor progression and marker expression. Cell Rep 2017; 21(4): 966–978 https://doi.org/10.1016/j.celrep.2017.09.093
142
AP Makohon-Moore, K Matsukuma, M Zhang, JG Reiter, JM Gerold, Y Jiao, L Sikkema, MA Attiyeh, S Yachida, C Sandone, RH Hruban, DS Klimstra, N Papadopoulos, MA Nowak, KW Kinzler, B Vogelstein, CA Iacobuzio-Donahue. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 2018; 561(7722): 201–205 https://doi.org/10.1038/s41586-018-0481-8
143
D Hutchings, KM Waters, MJ Weiss, CL Wolfgang, MA Makary, J He, JL Cameron, LD Wood, RH Hruban. Cancerization of the pancreatic ducts: demonstration of a common and under-recognized process using immunolabeling of paired duct lesions and invasive pancreatic ductal adenocarcinoma for p53 and Smad4 expression. Am J Surg Pathol 2018; 42(11): 1556–1561 https://doi.org/10.1097/PAS.0000000000001148
144
Y Matsuda, T Furukawa, S Yachida, M Nishimura, A Seki, K Nonaka, J Aida, K Takubo, T Ishiwata, W Kimura, T Arai, M Mino-Kenudson. The prevalence and clinicopathological characteristics of high-grade pancreatic intraepithelial neoplasia: autopsy study evaluating the entire pancreatic parenchyma. Pancreas 2017; 46(5): 658–664 https://doi.org/10.1097/MPA.0000000000000786
145
M Goggins, RH Hruban, SE Kern. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 2000; 156(5): 1767–1771 https://doi.org/10.1016/S0002-9440(10)65047-X
FN Al-Shaheri, MSS Alhamdani, AS Bauer, N Giese, MW Büchler, T Hackert, JD Hoheisel. Blood biomarkers for differential diagnosis and early detection of pancreatic cancer. Cancer Treat Rev 2021; 96: 102193 https://doi.org/10.1016/j.ctrv.2021.102193
148
G Luo, K Jin, S Deng, H Cheng, Z Fan, Y Gong, Y Qian, Q Huang, Q Ni, C Liu, X Yu. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188409 https://doi.org/10.1016/j.bbcan.2020.188409
149
Y Deng, Z Sun, L Wang, M Wang, J Yang, G Li. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front Med 2022; 16(2): 157–175 https://doi.org/10.1007/s11684-021-0884-z
150
AW Berger, D Schwerdel, A Reinacher-Schick, W Uhl, H Algül, H Friess, KP Janssen, A König, M Ghadimi, E Gallmeier, DK Bartsch, M Geissler, L Staib, A Tannapfel, A Kleger, A Beutel, LA Schulte, M Kornmann, TJ Ettrich, T Seufferlein. A blood-based multi marker assay supports the differential diagnosis of early-stage pancreatic cancer. Theranostics 2019; 9(5): 1280–1287 https://doi.org/10.7150/thno.29247
151
B Thibault, F Ramos-Delgado, E Pons-Tostivint, N Therville, C Cintas, S Arcucci, S Cassant-Sourdy, G Reyes-Castellanos, M Tosolini, AV Villard, C Cayron, R Baer, J Bertrand-Michel, D Pagan, Da Mota D Ferreira, H Yan, C Falcomatà, F Muscari, B Bournet, JP Delord, E Aksoy, A Carrier, P Cordelier, D Saur, C Basset, J Guillermet-Guibert. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Mol Med 2021; 13(7): e13502 https://doi.org/10.15252/emmm.202013502
152
VP Groot, S Mosier, AA Javed, JA Teinor, G Gemenetzis, D Ding, LM Haley, J Yu, RA Burkhart, A Hasanain, M Debeljak, H Kamiyama, A Narang, DA Laheru, L Zheng, MT Lin, CD Gocke, EK Fishman, RH Hruban, MG Goggins, IQ Molenaar, JL Cameron, MJ Weiss, VE Velculescu, J He, CL Wolfgang, JR Eshleman. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res 2019; 25(16): 4973–4984 https://doi.org/10.1158/1078-0432.CCR-19-0197
153
H Li, AR Warden, W Su, J He, X Zhi, K Wang, L Zhu, G Shen, X Ding. Highly sensitive and portable mRNA detection platform for early cancer detection. J Nanobiotechnology 2021; 19(1): 287 https://doi.org/10.1186/s12951-021-01039-4
154
SA Melo, LB Luecke, C Kahlert, AF Fernandez, ST Gammon, J Kaye, VS LeBleu, EA Mittendorf, J Weitz, N Rahbari, C Reissfelder, C Pilarsky, MF Fraga, D Piwnica-Worms, R Kalluri. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177–182 https://doi.org/10.1038/nature14581
155
N Nagata, S Nishijima, Y Kojima, Y Hisada, K Imbe, T Miyoshi-Akiyama, W Suda, M Kimura, R Aoki, K Sekine, M Ohsugi, K Miki, T Osawa, K Ueki, S Oka, M Mizokami, E Kartal, TSB Schmidt, E Molina-Montes, L Estudillo, N Malats, J Trebicka, S Kersting, M Langheinrich, P Bork, N Uemura, T Itoi, T Kawai. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 2022; 163(1): 222–238 https://doi.org/10.1053/j.gastro.2022.03.054
156
Y Pang, C Wang, L Lu, C Wang, Z Sun, R Xiao. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron 2019; 130: 204–213 https://doi.org/10.1016/j.bios.2019.01.039
F Jin, L Yang, W Wang, N Yuan, S Zhan, P Yang, X Chen, T Ma, Y Wang. A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 2021; 20(1): 95 https://doi.org/10.1186/s12943-021-01389-5
159
S Zhan, P Yang, S Zhou, Y Xu, R Xu, G Liang, C Zhang, X Chen, L Yang, F Jin, Y Wang. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16(2): 216–226 https://doi.org/10.1007/s11684-022-0920-7
160
S Majumder, WR Taylor, PH Foote, CK Berger, CW Wu, DW Mahoney, WR Bamlet, KN Burger, N Postier, J de la Fuente, KA Doering, GP Lidgard, HT Allawi, GM Petersen, ST Chari, DA Ahlquist, JB Kisiel. High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9. Clin Cancer Res 2021; 27(9): 2523–2532 https://doi.org/10.1158/1078-0432.CCR-20-0235
161
Y Kim, I Yeo, I Huh, J Kim, D Han, JY Jang, Y Kim. Development and multiple validation of the protein multi-marker panel for diagnosis of pancreatic cancer. Clin Cancer Res 2021; 27(8): 2236–2245 https://doi.org/10.1158/1078-0432.CCR-20-3929
162
UM Mahajan, B Oehrle, S Sirtl, A Alnatsha, E Goni, I Regel, G Beyer, M Vornhülz, J Vielhauer, A Chromik, M Bahra, F Klein, W Uhl, T Fahlbusch, M Distler, J Weitz, R Grützmann, C Pilarsky, FU Weiss, MG Adam, JP Neoptolemos, H Kalthoff, R Rad, N Christiansen, B Bethan, B Kamlage, MM Lerch, J Mayerle. Independent validation and assay standardization of improved metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gastroenterology 2022; 163(5): 1407–1422 https://doi.org/10.1053/j.gastro.2022.07.047
163
H Nam, SS Hong, KH Jung, S Kang, MS Park, S Kang, HS Kim, VH Mai, J Kim, H Lee, W Lee, YJ Suh, JH Lim, SY Kim, SC Kim, SH Kim, S Park. A serum marker for early pancreatic cancer with a possible link to diabetes. J Natl Cancer Inst 2022; 114(2): 228–234 https://doi.org/10.1093/jnci/djab191
164
D Wolrab, R Jirásko, E Cífková, M Höring, D Mei, M Chocholoušková, O Peterka, J Idkowiak, T Hrnčiarová, L Kuchař, R Ahrends, R Brumarová, D Friedecký, G Vivo-Truyols, P Škrha, J Škrha, R Kučera, B Melichar, G Liebisch, R Burkhardt, MR Wenk, A Cazenave-Gassiot, P Karásek, I Novotný, K Greplová, R Hrstka, M Holčapek. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022; 13(1): 124 https://doi.org/10.1038/s41467-021-27765-9
165
B Staal, Y Liu, D Barnett, P Hsueh, Z He, C Gao, K Partyka, MW Hurd, AD Singhi, RR Drake, Y Huang, A Maitra, RE Brand, BB Haab. The sTRA plasma biomarker: blinded validation of improved accuracy over CA19-9 in pancreatic cancer diagnosis. Clin Cancer Res 2019; 25(9): 2745–2754 https://doi.org/10.1158/1078-0432.CCR-18-3310
166
S Debernardi, H O’Brien, AS Algahmdi, N Malats, GD Stewart, M Plješa-Ercegovac, E Costello, W Greenhalf, A Saad, R Roberts, A Ney, SP Pereira, HM Kocher, S Duffy, O Blyuss, T Crnogorac-Jurcevic. A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: a case-control study. PLoS Med 2020; 17(12): e1003489 https://doi.org/10.1371/journal.pmed.1003489
167
K Nesteruk, IJM Levink, E de Vries, IJ Visser, MP Peppelenbosch, DL Cahen, GM Fuhler, MJ Bruno. Extracellular vesicle-derived microRNAs in pancreatic juice as biomarkers for detection of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22(5): 626–635 https://doi.org/10.1016/j.pan.2022.04.010
168
E Kartal, TSB Schmidt, E Molina-Montes, S Rodríguez-Perales, J Wirbel, OM Maistrenko, WA Akanni, Alhamwe B Alashkar, RJ Alves, A Carrato, HP Erasmus, L Estudillo, F Finkelmeier, A Fullam, AM Glazek, P Gómez-Rubio, R Hercog, F Jung, S Kandels, S Kersting, M Langheinrich, M Márquez, X Molero, A Orakov, Rossum T Van, R Torres-Ruiz, A Telzerow, K; MAGIC Study investigators; PanGenEU Study investigators; Benes V Zych, G Zeller, J Trebicka, FX Real, N Malats, P Bork. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71(7): 1359–1372 https://doi.org/10.1136/gutjnl-2021-324755
Y Du, Y Ma, Q Zhu, Y Fu, Y Li, Y Zhang, M Li, F Feng, P Yuan, X Wang. GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma. Front Med 2023; 17(1): 119–131 https://doi.org/10.1007/s11684-022-0949-7
171
M Capula, M Perán, G Xu, V Donati, D Yee, A Gregori, YG Assaraf, E Giovannetti, D Deng. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat 2022; 64: 100864 https://doi.org/10.1016/j.drup.2022.100864
172
M Erkan, J Kleeff, A Gorbachevski, C Reiser, T Mitkus, I Esposito, T Giese, MW Büchler, NA Giese, H Friess. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 2007; 132(4): 1447–1464 https://doi.org/10.1053/j.gastro.2007.01.031
173
M Yu, IF Tannock. Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer?. Cancer Cell 2012; 21(3): 327–329 https://doi.org/10.1016/j.ccr.2012.03.002
174
H Chamma, IK Vila, C Taffoni, A Turtoi, N Laguette. Activation of STING in the pancreatic tumor microenvironment: a novel therapeutic opportunity. Cancer Lett 2022; 538: 215694 https://doi.org/10.1016/j.canlet.2022.215694
175
Y Huang, M Kanada, J Ye, Y Deng, Q He, Z Lei, Y Chen, Y Li, P Qin, J Zhang, J Wei. Exosome-mediated remodeling of the tumor microenvironment: from local to distant intercellular communication. Cancer Lett 2022; 543: 215796 https://doi.org/10.1016/j.canlet.2022.215796
176
N Starling, EA Hawkes, I Chau, D Watkins, J Thomas, J Webb, G Brown, K Thomas, Y Barbachano, J Oates, D Cunningham. A dose escalation study of gemcitabine plus oxaliplatin in combination with imatinib for gemcitabine-refractory advanced pancreatic adenocarcinoma. Ann Oncol 2012; 23(4): 942–947 https://doi.org/10.1093/annonc/mdr317
177
C Hu, R Xia, X Zhang, T Li, Y Ye, G Li, R He, Z Li, Q Lin, S Zheng, R Chen. circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer 2022; 21(1): 24 https://doi.org/10.1186/s12943-022-01501-3
178
S Malik, JM Westcott, RA Brekken, FJ Burrows. CXCL12 in pancreatic cancer: its function and potential as a therapeutic drug target. Cancers (Basel) 2021; 14(1): 86 https://doi.org/10.3390/cancers14010086
179
L Wei, Q Lin, Y Lu, G Li, L Huang, Z Fu, R Chen, Q Zhou. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis 2021; 12(4): 334 https://doi.org/10.1038/s41419-021-03574-2
180
X Zhang, S Zheng, C Hu, G Li, H Lin, R Xia, Y Ye, R He, Z Li, Q Lin, R Chen, Q Zhou. Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene 2022; 41(16): 2372–2389 https://doi.org/10.1038/s41388-022-02253-6
181
Y Guo, H Wu, J Xiong, S Gou, J Cui, T Peng. miR-222-3p-containing macrophage-derived extracellular vesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway in pancreatic cancer. Cell Biol Toxicol 2023; 39(4): 1203–1214 https://doi.org/10.1007/s10565-022-09736-y
182
CJ Halbrook, C Pontious, I Kovalenko, L Lapienyte, S Dreyer, HJ Lee, G Thurston, Y Zhang, J Lazarus, P Sajjakulnukit, HS Hong, DM Kremer, BS Nelson, S Kemp, L Zhang, D Chang, A Biankin, J Shi, TL Frankel, HC Crawford, JP Morton, M Pasca di Magliano, CA Lyssiotis. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab 2019; 29(6): 1390–1399.e6 https://doi.org/10.1016/j.cmet.2019.02.001
183
W Huanwen, L Zhiyong, S Xiaohua, R Xinyu, W Kai, L Tonghua. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer 2009; 8: 125 https://doi.org/10.1186/1476-4598-8-125
184
KE Richards, AE Zeleniak, ML Fishel, J Wu, LE Littlepage, R Hill. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 2017; 36(13): 1770–1778 https://doi.org/10.1038/onc.2016.353
185
KE Richards, W Xiao, R Hill, Behalf Of The Usc Pancreas Research Team On. Cancer-associated fibroblasts confer gemcitabine resistance to pancreatic cancer cells through PTEN-targeting miRNAs in exosomes. Cancers (Basel) 2022; 14(11): 2812 https://doi.org/10.3390/cancers14112812
186
GK Patel, MA Khan, A Bhardwaj, SK Srivastava, H Zubair, MC Patton, S Singh, M Khushman, AP Singh. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 2017; 116(5): 609–619 https://doi.org/10.1038/bjc.2017.18
187
MK Chan, JY Chung, PC Tang, AS Chan, JY Ho, TP Lin, J Chen, KT Leung, KF To, HY Lan, PM Tang. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550: 215925 https://doi.org/10.1016/j.canlet.2022.215925
188
M Cioffi, SM Trabulo, Y Sanchez-Ripoll, I Miranda-Lorenzo, E Lonardo, J Dorado, Vieira C Reis, JC Ramirez, M Hidalgo, A Aicher, S Hahn, B Jr Sainz, C Heeschen. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015; 64(12): 1936–1948 https://doi.org/10.1136/gutjnl-2014-308470
189
MC Yang, HC Wang, YC Hou, HL Tung, TJ Chiu, YS Shan. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 2015; 14(1): 179 https://doi.org/10.1186/s12943-015-0449-3
190
X Zheng, JL Carstens, J Kim, M Scheible, J Kaye, H Sugimoto, CC Wu, VS LeBleu, R Kalluri. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527(7579): 525–530 https://doi.org/10.1038/nature16064
191
B Tang, Y Yang, M Kang, Y Wang, Y Wang, Y Bi, S He, F Shimamoto. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 2020; 19(1): 3 https://doi.org/10.1186/s12943-019-1128-6
192
M Akada, T Crnogorac-Jurcevic, S Lattimore, P Mahon, R Lopes, M Sunamura, S Matsuno, NR Lemoine. Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 2005; 11(8): 3094–3101 https://doi.org/10.1158/1078-0432.CCR-04-1785
193
J Gu, W Huang, X Wang, J Zhang, T Tao, Y Zheng, S Liu, J Yang, ZS Chen, CY Cai, J Li, H Wang, Y Fan. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemcitabine resistance in pancreatic cancer. Mol Cancer 2022; 21(1): 112 https://doi.org/10.1186/s12943-022-01587-9
194
C Zhou, C Yi, Y Yi, W Qin, Y Yan, X Dong, X Zhang, Y Huang, R Zhang, J Wei, DW Ali, M Michalak, XZ Chen, J Tang. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 2020; 19: 118 https://doi.org/10.1186/s12943-020-01237-y
195
G Xiong, C Liu, G Yang, M Feng, J Xu, F Zhao, L You, L Zhou, L Zheng, Y Hu, X Wang, T Zhang, Y Zhao. Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. J Hematol Oncol 2019; 12(1): 97 https://doi.org/10.1186/s13045-019-0777-7
196
ZW Chen, JF Hu, ZW Wang, CY Liao, FP Kang, CF Lin, Y Huang, L Huang, YF Tian, S Chen. Circular RNA circ-MTHFD1L induces HR repair to promote gemcitabine resistance via the miR-615-3p/RPN6 axis in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41(1): 153 https://doi.org/10.1186/s13046-022-02343-z
197
M Tu, H Li, N Lv, C Xi, Z Lu, J Wei, J Chen, F Guo, K Jiang, G Song, W Gao, Y Miao. Vasohibin 2 reduces chemosensitivity to gemcitabine in pancreatic cancer cells via Jun proto-oncogene dependent transactivation of ribonucleotide reductase regulatory subunit M2. Mol Cancer 2017; 16(1): 66 https://doi.org/10.1186/s12943-017-0619-6
198
H Jr Biliran, Y Wang, S Banerjee, H Xu, H Heng, A Thakur, A Bollig, FH Sarkar, JD Liao. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 2005; 11(16): 6075–6086 https://doi.org/10.1158/1078-0432.CCR-04-2419
199
D Melisi, Q Xia, G Paradiso, J Ling, T Moccia, C Carbone, A Budillon, JL Abbruzzese, PJ Chiao. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 2011; 103(15): 1190–1204 https://doi.org/10.1093/jnci/djr243
200
BE Kadera, PA Toste, N Wu, L Li, AH Nguyen, DW Dawson, TR Donahue. Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res 2015; 21(1): 157–165 https://doi.org/10.1158/1078-0432.CCR-14-0610
201
L Wu, Y Ge, Y Yuan, H Li, H Sun, C Xu, Y Wang, T Zhao, X Wang, J Liu, S Gao, A Chang, J Hao, C Huang. Genome-wide CRISPR screen identifies MTA3 as an inducer of gemcitabine resistance in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548: 215864 https://doi.org/10.1016/j.canlet.2022.215864
202
P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front Med 2022; 16(3): 322–338 https://doi.org/10.1007/s11684-021-0901-2
203
P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front Med 2022; 16(3): 322–338 https://doi.org/10.1007/s11684-021-0901-2
204
K Yang, J Li, L Zhao, Z Sun, C Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors. Front Med 2022; 16(5): 773–783 https://doi.org/10.1007/s11684-021-0902-1
205
R Xu, S Du, J Zhu, F Meng, B Liu. Neoantigen-targeted TCR-T cell therapy for solid tumors: how far from clinical application. Cancer Lett 2022; 546: 215840 https://doi.org/10.1016/j.canlet.2022.215840
YH Zhu, JH Zheng, QY Jia, ZH Duan, HF Yao, J Yang, YW Sun, SH Jiang, DJ Liu, YM Huo. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46(1): 17–48 https://doi.org/10.1007/s13402-022-00741-1
208
L Ostios-Garcia, J Villamayor, E Garcia-Lorenzo, D Vinal, J Feliu. Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer. World J Gastroenterol 2021; 27(40): 6775–6793 https://doi.org/10.3748/wjg.v27.i40.6775
209
TW Chen, WZ Hung, SF Chiang, WT Chen, TW Ke, JA Liang, CY Huang, PC Yang, KC Huang, KSC Chao. Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 2022; 543: 215795 https://doi.org/10.1016/j.canlet.2022.215795
210
K Hadlandsmyth, M Conrad, KS Steffensmeier, J Van Tiem, A Obrecht, JJ Cullen, MW Vander Weg. Enhancing the biopsychosocial approach to perioperative care: a pilot randomized trial of the perioperative pain self-management (PePS) intervention. Ann Surg 2022; 275(1): e8–e14 https://doi.org/10.1097/SLA.0000000000004671
211
H Wang, Q Shao, J Wang, L Zhao, L Wang, Z Cheng, C Yue, W Chen, H Wang, Y Zhang. Decreased CXCR2 expression on circulating monocytes of colorectal cancer impairs recruitment and induces Re-education of tumor-associated macrophages. Cancer Lett 2022; 529: 112–125 https://doi.org/10.1016/j.canlet.2022.01.004
212
QY Chen, B Gao, D Tong, C Huang. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552: 215979 https://doi.org/10.1016/j.canlet.2022.215979
213
Y Pylayeva-Gupta, KE Lee, CH Hajdu, G Miller, D Bar-Sagi. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21(6): 836–847 https://doi.org/10.1016/j.ccr.2012.04.024
214
P Monti, BE Leone, F Marchesi, G Balzano, A Zerbi, F Scaltrini, C Pasquali, G Calori, F Pessi, C Sperti, V Di Carlo, P Allavena, L Piemonti. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63(21): 7451–7461
215
J Li, KT Byrne, F Yan, T Yamazoe, Z Chen, T Baslan, LP Richman, JH Lin, YH Sun, AJ Rech, D Balli, CA Hay, Y Sela, AJ Merrell, SM Liudahl, N Gordon, RJ Norgard, S Yuan, S Yu, T Chao, S Ye, TSK Eisinger-Mathason, RB Faryabi, JW Tobias, SW Lowe, LM Coussens, EJ Wherry, RH Vonderheide, BZ Stanger. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 2018; 49(1): 178–193.e7 https://doi.org/10.1016/j.immuni.2018.06.006
216
A Zhang, Y Qian, Z Ye, H Chen, H Xie, L Zhou, Y Shen, S Zheng. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med 2017; 6(2): 463–470 https://doi.org/10.1002/cam4.993
217
X Yang, Y Lin, Y Shi, B Li, W Liu, W Yin, Y Dang, Y Chu, J Fan, R He. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res 2016; 76(14): 4124–4135 https://doi.org/10.1158/0008-5472.CAN-15-2973
T Hackert, M Sachsenmaier, U Hinz, L Schneider, CW Michalski, C Springfeld, O Strobel, D Jäger, A Ulrich, MW Büchler. Locally advanced pancreatic cancer: neoadjuvant therapy with folfirinox results in resectability in 60% of the patients. Ann Surg 2016; 264(3): 457–463 https://doi.org/10.1097/SLA.0000000000001850
221
JE Murphy, JY Wo, DP Ryan, JW Clark, W Jiang, BY Yeap, LC Drapek, L Ly, CV Baglini, LS Blaszkowsky, CR Ferrone, AR Parikh, CD Weekes, RD Nipp, EL Kwak, JN Allen, RB Corcoran, DT Ting, JE Faris, AX Zhu, L Goyal, DL Berger, M Qadan, KD Lillemoe, N Talele, RK Jain, TF DeLaney, DG Duda, Y Boucher, Castillo C Fernández-Del, TS Hong. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol 2019; 5(7): 1020–1027 https://doi.org/10.1001/jamaoncol.2019.0892
222
JE Murphy, JY Wo, DP Ryan, W Jiang, BY Yeap, LC Drapek, LS Blaszkowsky, EL Kwak, JN Allen, JW Clark, JE Faris, AX Zhu, L Goyal, KD Lillemoe, TF DeLaney, Castillo C Fernández-Del, CR Ferrone, TS Hong. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol 2018; 4(7): 963–969 https://doi.org/10.1001/jamaoncol.2018.0329
223
T Hackert, W Niesen, U Hinz, C Tjaden, O Strobel, A Ulrich, CW Michalski, MW Büchler. Radical surgery of oligometastatic pancreatic cancer. Eur J Surg Oncol 2017; 43(2): 358–363 https://doi.org/10.1016/j.ejso.2016.10.023
224
M Tachezy, F Gebauer, M Janot, W Uhl, A Zerbi, M Montorsi, J Perinel, M Adham, C Dervenis, C Agalianos, G Malleo, L Maggino, A Stein, JR Izbicki, M Bockhorn. Synchronous resections of hepatic oligometastatic pancreatic cancer: disputing a principle in a time of safe pancreatic operations in a retrospective multicenter analysis. Surgery 2016; 160(1): 136–144 https://doi.org/10.1016/j.surg.2016.02.019
225
O Strobel, J Neoptolemos, D Jäger, MW Büchler. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11–26 https://doi.org/10.1038/s41571-018-0112-1
226
JW Valle, D Palmer, R Jackson, T Cox, JP Neoptolemos, P Ghaneh, CL Rawcliffe, C Bassi, DD Stocken, D Cunningham, D O’Reilly, D Goldstein, BA Robinson, C Karapetis, A Scarfe, F Lacaine, J Sand, JR Izbicki, J Mayerle, C Dervenis, A Oláh, G Butturini, PA Lind, MR Middleton, A Anthoney, K Sumpter, R Carter, MW Büchler. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: ongoing lessons from the ESPAC-3 study. J Clin Oncol 2014; 32(6): 504–512 https://doi.org/10.1200/JCO.2013.50.7657
227
I Nassour, SC Wang, A Christie, MM Augustine, MR Porembka, AC Yopp, MA Choti, JC Mansour, XJ Xie, PM Polanco, RM Minter. Minimally invasive versus open pancreaticoduodenectomy: a propensity-matched study from a national cohort of patients. Ann Surg 2018; 268(1): 151–157 https://doi.org/10.1097/SLA.0000000000002259
228
M Raoof, PHG Ituarte, Y Woo, SG Warner, G Singh, Y Fong, L Melstrom. Propensity score-matched comparison of oncological outcomes between laparoscopic and open distal pancreatic resection. Br J Surg 2018; 105(5): 578–586 https://doi.org/10.1002/bjs.10747
229
Hilst J van, Rooij T de, S Klompmaker, M Rawashdeh, F Aleotti, B Al-Sarireh, A Alseidi, Z Ateeb, G Balzano, F Berrevoet, B Björnsson, U Boggi, OR Busch, G Butturini, R Casadei, Chiaro M Del, S Chikhladze, F Cipriani, Dam R van, I Damoli, Dieren S van, S Dokmak, B Edwin, Eijck C van, JM Fabre, M Falconi, O Farges, L Fernández-Cruz, A Forgione, I Frigerio, D Fuks, F Gavazzi, B Gayet, A Giardino, Koerkamp B Groot, T Hackert, M Hassenpflug, I Kabir, T Keck, I Khatkov, M Kusar, C Lombardo, G Marchegiani, R Marshall, KV Menon, M Montorsi, M Orville, Pastena M de, A Pietrabissa, I Poves, J Primrose, R Pugliese, C Ricci, K Roberts, B Røsok, MA Sahakyan, S Sánchez-Cabús, P Sandström, L Scovel, L Solaini, Z Soonawalla, FR Souche, RP Sutcliffe, GA Tiberio, A Tomazic, R Troisi, U Wellner, S White, UA Wittel, A Zerbi, C Bassi, MG Besselink, Hilal M; European Consortium on Minimally Invasive Pancreatic Surgery (E-MIPS) Abu. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (DIPLOMA): a pan-European propensity score matched study. Ann Surg 2019; 269(1): 10–17 https://doi.org/10.1097/SLA.0000000000002561
230
MA Tempero, MP Malafa, M Al-Hawary, SW Behrman, AB Benson, DB Cardin, EG Chiorean, V Chung, B Czito, M Del Chiaro, M Dillhoff, TR Donahue, E Dotan, CR Ferrone, C Fountzilas, J Hardacre, WG Hawkins, K Klute, AH Ko, JW Kunstman, N LoConte, AM Lowy, C Moravek, EK Nakakura, AK Narang, J Obando, PM Polanco, S Reddy, M Reyngold, C Scaife, J Shen, C Vollmer, RA Wolff, BM Wolpin, B Lynn, GV George. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19(4): 439–457 https://doi.org/10.6004/jnccn.2021.0017
231
Y Zhang, C Yang, H Cheng, Z Fan, Q Huang, Y Lu, K Fan, G Luo, K Jin, Z Wang, C Liu, X Yu. Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions. J Hematol Oncol 2018; 11(1): 14 https://doi.org/10.1186/s13045-017-0551-7
232
S Jones, X Zhang, DW Parsons, JC Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, H Kamiyama, A Jimeno, SM Hong, B Fu, MT Lin, ES Calhoun, M Kamiyama, K Walter, T Nikolskaya, Y Nikolsky, J Hartigan, DR Smith, M Hidalgo, SD Leach, AP Klein, EM Jaffee, M Goggins, A Maitra, C Iacobuzio-Donahue, JR Eshleman, SE Kern, RH Hruban, R Karchin, N Papadopoulos, G Parmigiani, B Vogelstein, VE Velculescu, KW Kinzler. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801–1806 https://doi.org/10.1126/science.1164368
233
J Zhong, H Bai, Z Wang, J Duan, W Zhuang, D Wang, R Wan, J Xu, K Fei, Z Ma, X Zhang, J Wang. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17(1): 18–42 https://doi.org/10.1007/s11684-022-0976-4
234
H Zhao, F Luo, J Xue, S Li, RH Xu. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828 https://doi.org/10.1007/s11684-021-0886-x
235
JQ Mi, J Xu, J Zhou, W Zhao, Z Chen, JJ Melenhorst, S Chen. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Front Med 2021; 15(6): 783–804 https://doi.org/10.1007/s11684-021-0904-z
236
S Chen, W Zhao, J Li, D; Lymphoid Disease Group Wu, Society of Hematology Chinese, Medical Association Chinese. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition). Front Med 2022; 16(5): 815–826 https://doi.org/10.1007/s11684-021-0891-0
237
AS Bear, RH Vonderheide, MH O’Hara. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 2020; 38(6): 788–802 https://doi.org/10.1016/j.ccell.2020.08.004
238
Y Li, S Wang, M Lin, C Hou, C Li, G Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Front Med 2022; 16(3): 307–321 https://doi.org/10.1007/s11684-022-0927-0
239
T Heumann, C Judkins, K Li, SJ Lim, J Hoare, R Parkinson, H Cao, T Zhang, J Gai, B Celiker, Q Zhu, T McPhaul, J Durham, K Purtell, R Klein, D Laheru, A De Jesus-Acosta, DT Le, A Narang, R Anders, R Burkhart, W Burns, K Soares, C Wolfgang, E Thompson, E Jaffee, H Wang, J He, L Zheng. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat Commun 2023; 14(1): 3650 https://doi.org/10.1038/s41467-023-39196-9