Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2024, Vol. 18 Issue (5): 896-910   https://doi.org/10.1007/s11684-024-1062-x
  本期目录
Dronedarone inhibits the proliferation of esophageal squamous cell carcinoma through the CDK4/CDK6-RB1 axis in vitro and in vivo
Bo Li1,2, Jing Zhang1,2, Yin Yu1,2, Yinhua Li1, Yingying Chen1, Xiaokun Zhao1, Ang Li1, Lili Zhao1, Mingzhu Li1, Zitong Wang1, Xuebo Lu1, Wenjie Wu1, Yueteng Zhang1, Zigang Dong1,2,3,4,5,6, Kangdong Liu1,2,3,4,5,6(), Yanan Jiang1,2,3,4()
. The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001 China
. China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
. Basic Medicine Sciences Research Center, Zhengzhou University, Zhengzhou 450052, China
. State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
. Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
. Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
 全文: PDF(27086 KB)   HTML
Abstract

Treatment options for patients with esophageal squamous cell carcinoma (ESCC) often result in poor prognosis and declining health-related quality of life. Screening FDA-approved drugs for cancer chemoprevention is a promising and cost-efficient strategy. Here, we found that dronedarone, an antiarrhythmic drug, could inhibit the proliferation of ESCC cells. Moreover, we conducted phosphorylomics analysis to investigate the mechanism of dronedarone-treated ESCC cells. Through computational docking models and pull-down assays, we demonstrated that dronedarone could directly bind to CDK4 and CDK6 kinases. We also proved that dronedarone effectively inhibited ESCC proliferation by targeting CDK4/CDK6 and blocking the G0/G1 phase through RB1 phosphorylation inhibition by in vitro kinase assays and cell cycle assays. Subsequently, we found that knocking out CDK4 and CDK6 decreased the susceptibility of ESCC cells to dronedarone. Furthermore, dronedarone suppressed the growth of ESCC in patient-derived tumor xenograft models in vivo. Thus, our study demonstrated that dronedarone could be repurposed as a CDK4/6 inhibitor for ESCC chemoprevention.

Key wordsdronedarone    CDK4/6    RB1    esophageal squamous cell carcinoma    chemoprevention    PDX model
收稿日期: 2023-07-04      出版日期: 2024-10-29
Corresponding Author(s): Kangdong Liu,Yanan Jiang   
 引用本文:   
. [J]. Frontiers of Medicine, 2024, 18(5): 896-910.
Bo Li, Jing Zhang, Yin Yu, Yinhua Li, Yingying Chen, Xiaokun Zhao, Ang Li, Lili Zhao, Mingzhu Li, Zitong Wang, Xuebo Lu, Wenjie Wu, Yueteng Zhang, Zigang Dong, Kangdong Liu, Yanan Jiang. Dronedarone inhibits the proliferation of esophageal squamous cell carcinoma through the CDK4/CDK6-RB1 axis in vitro and in vivo. Front. Med., 2024, 18(5): 896-910.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-024-1062-x
https://academic.hep.com.cn/fmd/CN/Y2024/V18/I5/896
Fig.1  
IC50 (μmol/L)
24 h 48 h
SHEE 24.654 14.921
KYSE150 12.498 5.914
KYSE450 5.188 3.974
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
https://doi.org/10.3322/caac.21660
2 CC Abnet, M Arnold, WQ Wei. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology 2018; 154(2): 360–373
https://doi.org/10.1053/j.gastro.2017.08.023
3 J Lagergren, E Smyth, D Cunningham, P Lagergren. Oesophageal cancer. Lancet 2017; 390(10110): 2383–2396
https://doi.org/10.1016/S0140-6736(17)31462-9
4 P Anandavadivelan, P Lagergren. Cachexia in patients with oesophageal cancer. Nat Rev Clin Oncol 2016; 13(3): 185–198
https://doi.org/10.1038/nrclinonc.2015.200
5 PSN van Rossum, NH Mohammad, FP Vleggaar, R van Hillegersberg. Treatment for unresectable or metastatic oesophageal cancer: current evidence and trends. Nat Rev Gastroenterol Hepatol 2018; 15(4): 235–249
https://doi.org/10.1038/nrgastro.2017.162
6 S Umezawa, T Higurashi, Y Komiya, J Arimoto, N Horita, T Kaneko, M Iwasaki, H Nakagama, A Nakajima. Chemoprevention of colorectal cancer: past, present, and future. Cancer Sci 2019; 110(10): 3018–3026
https://doi.org/10.1111/cas.14149
7 K Mokbel, U Wazir, K Mokbel. Chemoprevention of prostate cancer by natural agents: evidence from molecular and epidemiological studies. Anticancer Res 2019; 39(10): 5231–5259
https://doi.org/10.21873/anticanres.13720
8 RL Keith. Chemoprevention of lung cancer. Proc Am Thorac Soc 2009; 6(2): 187–193
https://doi.org/10.1513/pats.200807-067LC
9 A Mohammed, JT Fox, MS Miller. Cancer chemoprevention: preclinical in vivo alternate dosing strategies to reduce drug toxicities. Toxicol Sci 2019; 170(2): 251–259
https://doi.org/10.1093/toxsci/kfz104
10 WK Hong, MB Sporn. Recent advances in chemoprevention of cancer. Science 1997; 278(5340): 1073–1077
https://doi.org/10.1126/science.278.5340.1073
11 C Patel, GX Yan, PR Kowey. Dronedarone. Circulation 2009; 120(7): 636–644
https://doi.org/10.1161/CIRCULATIONAHA.109.858027
12 S Goel, MJ DeCristo, SS McAllister, JJ Zhao. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol 2018; 28(11): 911–925
https://doi.org/10.1016/j.tcb.2018.07.002
13 C Costa, Y Wang, A Ly, Y Hosono, E Murchie, CS Walmsley, T Huynh, C Healy, R Peterson, S Yanase, CT Jakubik, LE Henderson, LJ Damon, D Timonina, I Sanidas, CJ Pinto, M Mino-Kenudson, JR Stone, NJ Dyson, LW Ellisen, A Bardia, H Ebi, CH Benes, JA Engelman, D Juric. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov 2020; 10(1): 72–85
https://doi.org/10.1158/2159-8290.CD-18-0830
14 CL Alves, S Ehmsen, MG Terp, N Portman, M Tuttolomondo, OL Gammelgaard, MF Hundebøl, K Kaminska, LE Johansen, M Bak, G Honeth, A Bosch, E Lim, HJ Ditzel. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12(1): 5112
https://doi.org/10.1038/s41467-021-25422-9
15 ZY Shen, S Cen, LY Xu, WJ Cai, MH Chen, J Shen, Y Zeng. E6/E7 genes of human papilloma virus type 18 induced immortalization of human fetal esophageal epithelium. Oncol Rep 2003; 10(5): 1431–1436
https://doi.org/10.3892/or.10.5.1431
16 ZY Shen, LY Xu, EM Li, WJ Cai, J Shen, MH Chen, S Cen, SW Tsao, Y Zeng. The multistage process of carcinogenesis in human esophageal epithelial cells induced by human papillomavirus. Oncol Rep 2004; 11(3): 647–654
https://doi.org/10.3892/or.11.3.647
17 N Conte, JC Mason, C Halmagyi, S Neuhauser, A Mosaku, G Yordanova, A Chatzipli, DA Begley, DM Krupke, H Parkinson, TF Meehan, CC Bult. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res 2019; 47(D1): D1073–D1079
https://doi.org/10.1093/nar/gky984
18 HK Matthews, C Bertoli, R de Bruin. Cell cycle control in cancer. Nat Rev Mol Cell Biol 2022; 23(1): 74–88
https://doi.org/10.1038/s41580-021-00404-3
19 WJ Qin, YG Su, XL Ding, R Zhao, ZJ Zhao, YY Wang. CDK4/6 inhibitor enhances the radiosensitization of esophageal squamous cell carcinoma (ESCC) by activating autophagy signaling via the suppression of mTOR. Am J Transl Res 2022; 14(3): 1616–1627
20 TK Fung, RY Poon. A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol 2005; 16(3): 335–342
https://doi.org/10.1016/j.semcdb.2005.02.014
21 XL Gao, M Zheng, HF Wang, LL Dai, XH Yu, X Yang, X Pang, L Li, M Zhang, SS Wang, JB Wu, YJ Tang, XH Liang, YL Tang. NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway. BMC Cancer 2019; 19(1): 743
https://doi.org/10.1186/s12885-019-5925-5
22 XL Gao, M Zhang, YL Tang, XH Liang. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. OncoTargets Ther 2017; 10: 5219–5228
https://doi.org/10.2147/OTT.S140854
23 A Belur Nagaraj, P Joseph, O Kovalenko, Q Wang, R Xu, A DiFeo. Evaluating class III antiarrhythmic agents as novel MYC targeting drugs in ovarian cancer. Gynecol Oncol 2018; 151(3): 525–532
https://doi.org/10.1016/j.ygyno.2018.09.019
24 AS Tsao, ES Kim, WK Hong. Chemoprevention of cancer. CA Cancer J Clin 2004; 54(3): 150–180
https://doi.org/10.3322/canjclin.54.3.150
25 LK Penny, HM Wallace. The challenges for cancer chemoprevention. Chem Soc Rev 2015; 44(24): 8836–8847
https://doi.org/10.1039/C5CS00705D
26 L Ricciardiello, DJ Ahnen, PM Lynch. Chemoprevention of hereditary colon cancers: time for new strategies. Nat Rev Gastroenterol Hepatol 2016; 13(6): 352–361
https://doi.org/10.1038/nrgastro.2016.56
27 T Suemasu, A Shimomura, C Shimizu, K Hashimoto, D Kitagawa. Regarding the appropriate target and duration of chemoprevention in breast cancer. J Clin Oncol 2021; 39(26): 2965–2966
https://doi.org/10.1200/JCO.21.01060
28 MJ Elliott, KJ Jerzak, JG Cockburn, Z Safikhani, WD Gwynne, JA Hassell, A Bane, J Silvester, KL Thu, B Haibe-Kains, TW Mak, DW Cescon. The antiarrhythmic drug, dronedarone, demonstrates cytotoxic effects in breast cancer independent of thyroid hormone receptor alpha 1 (THRα1) antagonism. Sci Rep 2018; 8(1): 16562
https://doi.org/10.1038/s41598-018-34348-0
29 J Liu, Y Peng, W Wei. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol 2022; 32(1): 30–44
https://doi.org/10.1016/j.tcb.2021.07.001
30 JM Suski, M Braun, V Strmiska, P Sicinski. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39(6): 759–778
https://doi.org/10.1016/j.ccell.2021.03.010
31 M Bury, Calvé B Le, G Ferbeyre, V Blank, F Lessard. New insights into CDK regulators: novel opportunities for cancer therapy. Trends Cell Biol 2021; 31(5): 331–344
https://doi.org/10.1016/j.tcb.2021.01.010
32 JM Suski, M Braun, V Strmiska, P Sicinski. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39(6): 759–778
https://doi.org/10.1016/j.ccell.2021.03.010
33 B O’Leary, RS Finn, NC Turner. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 2016; 13(7): 417–430
https://doi.org/10.1038/nrclinonc.2016.26
34 ME Klein, M Kovatcheva, LE Davis, WD Tap, A Koff. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell 2018; 34(1): 9–20
https://doi.org/10.1016/j.ccell.2018.03.023
35 M Álvarez-Fernández, M Malumbres. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell 2020; 37(4): 514–529
https://doi.org/10.1016/j.ccell.2020.03.010
36 A Fatehi Hassanabad, R Chehade, D Breadner, J Raphael. Esophageal carcinoma: towards targeted therapies. Cell Oncol (Dordr) 2020; 43(2): 195–209
https://doi.org/10.1007/s13402-019-00488-2
37 J Zhou, Z Wu, Z Zhang, L Goss, J McFarland, A Nagaraja, Y Xie, S Gu, K Peng, Y Zeng, X Zhang, H Long, H Nakagawa, A Rustgi, JA Diehl, M Meyerson, KK Wong, A Bass. Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut 2022; 71(4): 665–675
https://doi.org/10.1136/gutjnl-2020-323276
38 FT Wegener, JR Ehrlich, SH Hohnloser. Dronedarone: an emerging agent with rhythm- and rate-controlling effects. J Cardiovasc Electrophysiol 2006; 17(s2 Suppl 2): S17–S20
https://doi.org/10.1111/j.1540-8167.2006.00583.x
39 J Herrmann. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 2020; 17(8): 474–502
https://doi.org/10.1038/s41569-020-0348-1
40 MS Ewer, SM Ewer. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 2015; 12(9): 547–558
https://doi.org/10.1038/nrcardio.2015.65
41 CL Braal, EM Jongbloed, SM Wilting, RHJ Mathijssen, SLW Koolen, A Jager. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: similarities and differences. Drugs 2021; 81(3): 317–331
https://doi.org/10.1007/s40265-020-01461-2
42 D Tripathy, SA Im, M Colleoni, F Franke, A Bardia, N Harbeck, SA Hurvitz, L Chow, J Sohn, KS Lee, S Campos-Gomez, R Villanueva Vazquez, KH Jung, KG Babu, P Wheatley-Price, M De Laurentiis, YH Im, S Kuemmel, N El-Saghir, MC Liu, G Carlson, G Hughes, I Diaz-Padilla, C Germa, S Hirawat, YS Lu. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 2018; 19(7): 904–915
https://doi.org/10.1016/S1470-2045(18)30292-4
43 CB Christiansen, C Torp-Pedersen, L Køber. Efficacy and safety of dronedarone: a review of randomized trials. Expert Opin Drug Saf 2010; 9(1): 189–199
https://doi.org/10.1517/14740330903514105
[1] FMD-24004-OF-JYN_suppl_1 Download
[2] FMD-24004-OF-JYN_suppl_2 Download
[3] FMD-24004-OF-JYN_suppl_3 Download
[4] FMD-24004-OF-JYN_suppl_4 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed