Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2014, Vol. 8 Issue (1) : 113-117
Are the SNPs of NKX2-1 associated with papillary thyroid carcinoma in the Han population of Northern China?
Lizhe Ai1, Yaqin Yu1, Xiaoli Liu2, Chong Wang1, Jieping Shi1, Hui Sun2, Qiong Yu1()
1. Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; 2. Jilin Provincial Key Laboratory of Surgical Translational Medicine, Department of Thyroid and Parathyroid Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
 Download: PDF(106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Papillary thyroid carcinoma (PTC) is one of the most common tumors of the thyroid gland. The common risk factors of PTC include ionizing radiation, positive family history, and thyroid nodular disease. PTC was identified in Europeans by conducting a genome-wide association study, and a strong association signal with PTC was observed in rs944289 and NKX2-1 (located at the 14q13.3 locus), which was probably the genetic risk factor of PTC. This study aimed to examine the association of this gene with PTC in Chinese. A total of 354 patients with PTC and 360 healthy control subjects from the Han population of Northern China were recruited in the study. These individuals were genotyped to determine rs12589672, rs12894724, rs2076751, and rs944289. The association of rs944289 with PTC was obtained (C vs. T, P=0.027, OR=1.264, 95% CI=1.026-1.557; and C/C-C/T vs. T/T, P=0.034, OR=1.474, 95% CI=1.028-2.112). Conducting a subgroup analysis, we found a marginal difference in the allele frequency distribution of rs944289 (adjusted P=0.062) between the patients with PTC and multi-nodular goiter and the control subjects. We also observed an interaction (P=0.029; OR=2.578, 95% CI=1.104-6.023) between rs944289 and diabetes in patients with PTC. In conclusion, rs944289 was associated with an increased risk of PTC in the Han population of Northern China, but no clear association was observed in either of the tag single nucleotide polymorphisms of NKX2-1.

Keywords NKX2-1      papillary thyroid carcinoma      the Han population of Northern China      association     
Corresponding Author(s): Yu Qiong,   
Issue Date: 26 April 2014
 Cite this article:   
Lizhe Ai,Yaqin Yu,Xiaoli Liu, et al. Are the SNPs of NKX2-1 associated with papillary thyroid carcinoma in the Han population of Northern China?[J]. Front Med, 2014, 8(1): 113-117.
SNPsPrimer sequence
Tab.1  Primer sequences of SNPs
Reference allele frequencyVariant allele frequencyH-W equilibrium P valueχ2POR (95% CI)
rs12589672 (A/Ta)All62763781830.2140.2520.0030.9590.991 (0.716-1.373)
MNG (+)46763751830.7320.2520.8830.347*0.838 (0.580-1.212)*
MNG (-)16063730830.2080.2522.5100.226*1.439 (0.858-2.413)*
rs12894724 (C/Ta)All63364275780.2550.6720.0220.8830.975 (0.697-1.364)
MNG (+)47364245780.9720.6721.5510.213*0.783 (0.532-1.152)*
MNG (-)16064230780.2080.6723.5300.120*1.543 (0.917-2.598)*
rs2076751 (G/Ta)All5855861231340.2200.3900.3710.5430.919 (0.702-1.205)
MNG (+)426586921340.4360.3900.1460.702*0.944 (0.704-1.266)*
MNG (-)159586311340.2690.3900.5340.702*0.853 (0.523-1.391)*
rs944289 (C/Ta)All3624103463100.4620.8744.8600.0271.264 (1.026-1.557)
MNG (+)2634102553100.2400.8744.6260.062*1.282 (0.989-1.662)*
MNG(-)99410913100.6010.8741.4280.232*1.216 (0.882-1.675)*
Tab.2  Association between allelic distributions of SNPs and PTC in a Northern Chinese Han population
ModelGenotypeCaseControlχ2POR (95% CI)
A/T67690.985 (0.678-1.431)
C/T63680.930 (0.636-1.358)
G/T951140.792 (0.573-1.094)
T/T88661.474 (1.028-2.112)
Tab.3  Association results of the genotypic distributions of SNPs in patients with PTC and control subjects from Northern Chinese Han population
Ionizing radiationFamily historyDiabetes
POR (95% CI)POR (95% CI)POR (95% CI)
rs125896720.7791.102 (0.558-2.178)0.0640.152 (0.021-1.118)0.1622.057 (0.749-5.625)
rs128947240.5621.225 (0.617-2.430)0.0780.166 (0.023-1.224)0.1062.307 (0.837-6.361)
rs20767510.4190.773 (0.414-1.444)0.8831.084 (0.511-2.302)0.6850.799 (0.270-2.366)
rs9442890.4630.845 (0.539-1.325)0.2500.705 (0.389-1.278)0.0292.578 (1.104-6.023)
Tab.4  Interactions between allele frequencies of SNPs and exposed risk factors of patients with PTC from Northern Chinese Han population
1 Lang BH, Lo CY, Chan WF, Lam KY, Wan KY. Staging systems for papillary thyroid carcinoma: a review and comparison. Ann Surg 2007; 245(3): 366-378
doi: 10.1097/01.sla.0000250445.92336.2a pmid:17435543
2 Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer 2002; 99(2): 260-266
doi: 10.1002/ijc.10332 pmid:11979442
3 Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6(4): 292-306
doi: 10.1038/nrc1836 pmid:16557281
4 DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol 2006; 94(8): 662-669
doi: 10.1002/jso.20700 pmid:17131411
5 Meinhold CL, Ron E, Schonfeld SJ, Alexander BH, Freedman DM, Linet MS, Berrington de González A. Nonradiation risk factors for thyroid cancer in the US Radiologic Technologists Study. Am J Epidemiol 2010; 171(2): 242-252
doi: 10.1093/aje/kwp354 pmid:19951937
6 Leux C, Truong T, Petit C, Baron-Dubourdieu D, Guénel P. Family history of malignant and benign thyroid diseases and risk of thyroid cancer: a population-based case-control study in New Caledonia. Cancer Causes Control 2012; 23(5): 745-755
doi: 10.1007/s10552-012-9944-7 pmid:22456999
7 Shih SR, Chiu WY, Chang TC, Tseng CH. Diabetes and thyroid cancer risk: literature review. Exp Diabetes Res 2012; 2012: 578285
doi: 10.1155/2012/578285 pmid:22778714
8 Kimura S. Thyroid-specific transcription factors and their roles in thyroid cancer. J Thyroid Res 2011; 2011: 710213
doi: 10.4061/2011/710213 pmid:21687604
9 Katoh R, Kawaoi A, Miyagi E, Li X, Suzuki K, Nakamura Y, Kakudo K. Thyroid transcription factor-1 in normal, hyperplastic, and neoplastic follicular thyroid cells examined by immunohistochemistry and nonradioactive in situ hybridization. Mod Pathol 2000; 13(5): 570-576
doi: 10.1038/modpathol.3880098 pmid:10824930
10 Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, He H, Blondal T, Geller F, Jakobsdottir M, Magnusdottir DN, Matthiasdottir S, Stacey SN, Skarphedinsson OB, Helgadottir H, Li W, Nagy R, Aguillo E, Faure E, Prats E, Saez B, Martinez M, Eyjolfsson GI, Bjornsdottir US, Holm H, Kristjansson K, Frigge ML, Kristvinsson H, Gulcher JR, Jonsson T, Rafnar T, Hjartarsson H, Mayordomo JI, de la Chapelle A, Hrafnkelsson J, Thorsteinsdottir U, Kong A, Stefansson K. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet 2009; 41(4): 460-464
doi: 10.1038/ng.339 pmid:19198613
11 Matsuse M, Takahashi M, Mitsutake N, Nishihara E, Hirokawa M, Kawaguchi T, Rogounovitch T, Saenko V, Bychkov A, Suzuki K, Matsuo K, Tajima K, Miyauchi A, Yamada R, Matsuda F, Yamashita S. The FOXE1 and NKX2-1 loci are associated with susceptibility to papillary thyroid carcinoma in the Japanese population. J Med Genet 2011; 48(9): 645-648
doi: 10.1136/jmedgenet-2011-100063 pmid:21730105
12 Wang YL, Feng SH, Guo SC, Wei WJ, Li DS, Wang Y, Wang X, Wang ZY, Ma YY, Jin L, Ji QH, Wang JC. Confirmation of papillary thyroid cancer susceptibility loci identified by genome-wide association studies of chromosomes 14q13, 9q22, 2q35 and 8p12 in a Chinese population. J Med Genet 2013; 50(10): 689-695
doi: 10.1136/jmedgenet-2013-101687 pmid:23847140
13 Tan D, Li Q, Deeb G, Ramnath N, Slocum HK, Brooks J, Cheney R, Wiseman S, Anderson T, Loewen G. Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: a high-throughput tissue microarray and immunohistochemistry study. Hum Pathol 2003; 34(6): 597-604
doi: 10.1016/S0046-8177(03)00180-1 pmid:12827614
14 Moldvay J, Jackel M, Bogos K, Soltész I, Agócs L, Kovács G, Schaff Z. The role of TTF-1 in differentiating primary and metastatic lung adenocarcinomas. Pathol Oncol Res 2004; 10(2): 85-88
doi: 10.1007/BF02893461 pmid:15188024
15 Hoshi S, Hoshi N, Okamoto M, Paiz J, Kusakabe T, Ward JM, Kimura S. Role of NKX2-1 in N-bis(2-hydroxypropyl)-nitrosamine-induced thyroid adenoma in mice. Carcinogenesis 2009; 30(9): 1614-1619
doi: 10.1093/carcin/bgp167 pmid:19581346
16 Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, Davuluri RV, Nagy R, de la Chapelle A. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci USA 2012; 109(22): 8646-8651
doi: 10.1073/pnas.1205654109 pmid:22586128
17 Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res 1994; 54(17): 4744-4749
18 Ngan ES, Lang BH, Liu T, Shum CK, So MT, Lau DK, Leon TY, Cherny SS, Tsai SY, Lo CY, Khoo US, Tam PK, Garcia-Barceló MM. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J Natl Cancer Inst 2009; 101(3): 162-175
doi: 10.1093/jnci/djn471 pmid:19176457
19 Sjakste T, Kalis M, Poudziunas I, Pirags V, Lazdins M, Groop L, Sjakste N. Association of microsatellite polymorphisms of the human 14q13.2 region with type 2 diabetes mellitus in Latvian and Finnish populations. Ann Hum Genet 2007; 71(6): 772-776
doi: 10.1111/j.1469-1809.2007.00372.x pmid:17535269
[1] Wei Wang,Ming Li,Li Wang,Xueqing Yu. DQB1*060101 may contribute to susceptibility to immunoglobulin A nephropathy in southern Han Chinese[J]. Front. Med., 2016, 10(4): 507-516.
[2] Jiangbo Du,Wenjie Xue,Yong Ji,Xun Zhu,Yayun Gu,Meng Zhu,Cheng Wang,Yong Gao,Juncheng Dai,Hongxia Ma,Yue Jiang,Jiaping Chen,Zhibin Hu,Guangfu Jin,Hongbing Shen. U-shaped association between telomere length and esophageal squamous cell carcinoma risk: a case-control study in Chinese population[J]. Front. Med., 2015, 9(4): 478-486.
[3] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[4] Yan Du, Jiaxin Xie, Wenjun Chang, Yifang Han, Guangwen Cao. Genome-wide association studies: inherent limitations and future challenges[J]. Front Med, 2012, 6(4): 444-450.
[5] Xinjian Li, Jiying Xu, Haihong Yao, Yanfei Guo, Minna Chen, Wei Lu. Obesity and overweight prevalence and its association with undiagnosed hypertension in Shanghai population, China: a cross-sectional population-based survey[J]. Front Med, 2012, 6(3): 322-328.
[6] Wei-Li ZHANG MD, PhD, Ru-Tai HUI MD, PhD, . Genetics of ischemic and hemorrhagic stroke in Chinese population[J]. Front. Med., 2010, 4(1): 21-28.
Full text