Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (1) : 10-19    https://doi.org/10.1007/s11684-015-0388-9
REVIEW
Th17 Cells in autoimmune diseases
Lei Han1,Jing Yang2,Xiuwen Wang1,Dan Li2,Ling Lv1,*(),Bin Li2,*()
1. Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
2. Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Th17 cells are a new subset of CD4+ T cells involved in the clearance of extracellular pathogens and fungi. Accumulating evidence suggests that Th17 cells and their signature cytokines have a pivotal role in the pathogenesis of multiple autoimmune-mediated inflammatory diseases. Here, we summarize recent research progress on Th17 function in the development and pathogenesis of autoimmune diseases. We also propose to identify new small molecule compounds to manipulate Th17 function for potential therapeutic application to treat human autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sj?gren’s syndrome, inflammatory bowel disease, and multiple sclerosis.

Keywords IL-17      Th17 cells      RORγt      autoimmune diseases      posttranslational modification      inhibitors     
Corresponding Author(s): Ling Lv,Bin Li   
Just Accepted Date: 14 January 2015   Online First Date: 04 February 2015    Issue Date: 02 March 2015
 Cite this article:   
Bin Li,Jing Yang,Xiuwen Wang, et al. Th17 Cells in autoimmune diseases[J]. Front. Med., 2015, 9(1): 10-19.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0388-9
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I1/10
Study (year) Study population Phenotype Frequencies Ref.
Shen et al. (2009) n=12 CD4+IL-17A+ MeanRA: 0.91%; HC: 0.50%P=0.005 [32]
van Hamburg et al. (2011) n=24 CCR6+IL-17A+TNF-α+ MeanRA: ~6%; HC: ~3% [33]
Zhang et al. (2012) n=20 CD4+IFN-γIL-17A+ Mean±SDRA: 2.57%±0.72%; HC: 1.07%±0.26%P<0.05 [34]
Kim et al. (2013) n=55 CD4+IFN-γIL-17A+ MedianRA: 1.59% (1.08%–2.09%)OA: 0.93% (0.53%–1.28%) [36]
Tab.1  Th17 cells in rheumatoid arthritis
Study (year) Study population Phenotype Frequencies Correlation Ref.
Increase
Shah et al. (2010) n=25 CD4+IL-17A+CD4+CCR4+CCR6+ Mean±SDSLE: 1.8%±1.26%HC: 0.6%±0.27%P<0.001SLE: 7.32%±7.27%HC: 2.18%±2.16%P=0.021 Correlated with SLEDAI [52]
Yang et al. (2013) n=65 CD4+IFN-γ+IL-22IL-17A+ SLE: 2.05%±1.01%HC: 1.13%±0.65%P=0.003 Correlated with SLEDAI [53]
Yang et al. (2009) n=50 CD3+CD8IL-17A+ Active SLE: 3.04%±0.68%HC: 0.35%±0.12%P<0.0001 Correlated with SLEDAI [54]
Xing et al. (2010) n=60 CD3+CD8IL-17A+ LN: 2.14%±0.58%SLE: 1.36%±0.27%HC: 0.89%±0.31%P<0.01, P<0.05 Th17/Treg Correlated with SLEDAI [48]
Chen et al. (2012) n=24 CD4+IL-17A+ MedianLN: 0.68%; HC: 0.12%P<0.001 Correlated with SLEDAI [55]
Kato et al. (2014) n=27 CD4+IL-17A+ SLE: 3.62%±0.66%HC: 2.29%±0.27%P=0.019 NA [49]
Similar
Dolff et al. (2011) n=24 CD3+CD8IL-17A+ No difference [56]
Tab.2  Th17 cells in systemic lupus erythematosus
1 Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421(6924): 744–748
https://doi.org/10.1038/nature01355 pmid: 12610626
2 Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198(12): 1951–1957
https://doi.org/10.1084/jem.20030896 pmid: 14662908
3 Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133–1141
https://doi.org/10.1038/ni1261 pmid: 16200068
4 Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28(4): 454–467
https://doi.org/10.1016/j.immuni.2008.03.004 pmid: 18400188
5 Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441(7090): 231–234
https://doi.org/10.1038/nature04754 pmid: 16648837
6 Bedoya SK, Lam B, Lau K, Larkin J3rd. Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013; 2013: 986789
7 Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235–238
https://doi.org/10.1038/nature04753 pmid: 16648838
8 Wei L, Laurence A, Elias KM, O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282(48): 34605–34610
https://doi.org/10.1074/jbc.M705100200 pmid: 17884812
9 Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature 2008; 453(7198): 1051–1057
https://doi.org/10.1038/nature07036 pmid: 18563156
10 Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8(9): 942–949
https://doi.org/10.1038/ni1496 pmid: 17676045
11 Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E, Soumelis V. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008; 9(6): 650–657
https://doi.org/10.1038/ni.1613 pmid: 18454150
12 Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORgt. Nat Immunol 2008; 9(6): 641–649
https://doi.org/10.1038/ni.1610 pmid: 18454151
13 Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126(6): 1121–1133
https://doi.org/10.1016/j.cell.2006.07.035 pmid: 16990136
14 Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T. Foxp3 inhibits RORgt-mediated IL-17A mRNA transcription through direct interaction with RORgt. J Biol Chem 2008; 283(25): 17003–17008
https://doi.org/10.1074/jbc.M801286200 pmid: 18434325
15 Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORg. Immunity 2008; 28(1): 29–39
https://doi.org/10.1016/j.immuni.2007.11.016 pmid: 18164222
16 Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007; 282(13): 9358–9363
https://doi.org/10.1074/jbc.C600321200 pmid: 17277312
17 Brüstle A, Heink S, Huber M, Rosenpl?nter C, Stadelmann C, Yu P, Arpaia E, Mak TW, Kamradt T, Lohoff M. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 2007; 8(9): 958–966
https://doi.org/10.1038/ni1500 pmid: 17676043
18 Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008; 453(7191): 65–71
https://doi.org/10.1038/nature06880 pmid: 18362915
19 Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, Swaidani S, Misra S, Deng L, Chen ZJ, Li X. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal 2009; 2(92): ra63
https://doi.org/10.1126/scisignal.2000382 pmid: 19825828
20 Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 2012; 13(10): 991–999
https://doi.org/10.1038/ni.2416 pmid: 22961052
21 Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol 2014; 44(2): 339–347
https://doi.org/10.1002/eji.201344184 pmid: 24310226
22 Metawi SA, Abbas D, Kamal MM, Ibrahim MK. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin Rheumatol 2011; 30(9): 1201–1207
https://doi.org/10.1007/s10067-011-1737-y pmid: 21874405
23 Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE, Schuerwegh AJ. Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and-negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther 2011; 13(5): R150
https://doi.org/10.1186/ar3466 pmid: 21933391
24 Park JS, Park MK, Lee SY, Oh HJ, Lim MA, Cho WT, Kim EK, Ju JH, Park YW, Park SH, Cho ML, Kim HY. TWEAK promotes the production of interleukin-17 in rheumatoid arthritis. Cytokine 2012; 60(1): 143–149
https://doi.org/10.1016/j.cyto.2012.06.285 pmid: 22819243
25 Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005; 7(1): 29–37
https://doi.org/10.1186/ar1478 pmid: 15642151
26 Chao CC, Chen SJ, Adamopoulos IE, Davis N, Hong K, Vu A, Kwan S, Fayadat-Dilman L, Asio A, Bowman EP. Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity 2011; 44(3): 243–252
https://doi.org/10.3109/08916934.2010.517815 pmid: 20925596
27 Kellner H. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis; 5(3): 141–152
https://doi.org/10.1177/1759720X13485328 pmid: 23858337
28 Patel DD, Lee DM, Kolbinger F, Antoni C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis 2013; 72(Suppl 2): ii116–ii123
https://doi.org/10.1136/annrheumdis-2012-202371 pmid: 23253932
29 Jain M, Attur M, Furer V, Todd J, Ramirez R, Lock M, Lu QA, Abramson SB, Greenberg JD. Increased plasma IL-17F levels in rheumatoid arthritis patients are responsive to methotrexate, anti-TNF, and T Cell costimulatory modulation. Inflammation 2014<month>Sep</month><day>21</day>. [Epub ahead of print]
pmid: 25240765
30 Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T, Iwakura Y, Sakaguchi N, Sakaguchi S. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med 2007; 204(1): 41–47
https://doi.org/10.1084/jem.20062259 pmid: 17227914
31 Leipe J, Schramm MA, Prots I, Schulze-Koops H, Skapenko A. Increased Th17 cell frequency and poor clinical outcome in rheumatoid arthritis are associated with a genetic variant in the IL4R gene, rs1805010. Arthritis Rheum (Munch)2014; 66(5): 1165–1175
https://doi.org/10.1002/art.38343 pmid: 24782180
32 Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 2009; 60(6): 1647–1656
https://doi.org/10.1002/art.24568 pmid: 19479869
33 van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, Dolhain RJ, Lubberts E. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 2011; 63(1): 73–83
https://doi.org/10.1002/art.30093 pmid: 20954258
34 Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, Hu NW, Ma DX, Li ZF, Yang Q, Li W, Li JM. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS ONE 2012; 7(4): e31000
https://doi.org/10.1371/journal.pone.0031000 pmid: 22485125
35 van Hamburg JP, Corneth OB, Paulissen SM, Davelaar N, Asmawidjaja PS, Mus AM, Lubberts E. IL-17/Th17 mediated synovial inflammation is IL-22 independent. Ann Rheum Dis 2013; 72(10): 1700–1707
https://doi.org/10.1136/annrheumdis-2012-202373 pmid: 23328939
36 Kim J, Kang S, Kim J, Kwon G, Koo S. Elevated levels of T helper 17 cells are associated with disease activity in patients with rheumatoid arthritis. Ann Lab Med 2013; 33(1): 52–59
https://doi.org/10.3343/alm.2013.33.1.52 pmid: 23301223
37 Church LD, Filer AD, Hidalgo E, Howlett KA, Thomas AM, Rapecki S, Scheel-Toellner D, Buckley CD, Raza K. Rheumatoid synovial fluid interleukin-17-producing CD4 T cells have abundant tumor necrosis factor-α co-expression, but little interleukin-22 and interleukin-23R expression. Arthritis Res Ther 2010; 12(5): R184
https://doi.org/10.1186/ar3152 pmid: 20929536
38 Nistala K, Adams S, Cambrook H, Ursu S, Olivito B, de Jager W, Evans JG, Cimaz R, Bajaj-Elliott M, Wedderburn LR. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci USA 2010; 107(33): 14751–14756
https://doi.org/10.1073/pnas.1003852107 pmid: 20679229
39 Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203(12): 2673–2682
https://doi.org/10.1084/jem.20061775 pmid: 17088434
40 Hickman-Brecks CL, Racz JL, Meyer DM, LaBranche TP, Allen PM. Th17 cells can provide B cell help in autoantibody induced arthritis. J Autoimmun 2011; 36(1): 65–75
https://doi.org/10.1016/j.jaut.2010.10.007 pmid: 21075597
41 Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20(1): 62–68
https://doi.org/10.1038/nm.3432 pmid: 24362934
42 Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 2001; 1(2): 147–153
https://doi.org/10.1038/35100573 pmid: 11905822
43 Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 2008; 127(3): 385–393
https://doi.org/10.1016/j.clim.2008.01.019 pmid: 18373953
44 Zhao XF, Pan HF, Yuan H, Zhang WH, Li XP, Wang GH, Wu GC, Su H, Pan FM, Li WX, Li LH, Chen GP, Ye DQ. Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep 2010; 37(1): 81–85
https://doi.org/10.1007/s11033-009-9533-3 pmid: 19347604
45 Cheng F, Guo Z, Xu H, Yan D, Li Q. Decreased plasma IL22 levels, but not increased IL17 and IL23 levels, correlate with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis 2009; 68(4): 604–606
https://doi.org/10.1136/ard.2008.097089 pmid: 19286907
46 Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther 2013; 15(4): R97
https://doi.org/10.1186/ar4277 pmid: 23968496
47 Amarilyo G, Louren?o EV, Shi FD, La Cava A. IL-17 promotes murine lupus. J Immunol 2014; 193(2): 540–543
https://doi.org/10.4049/jimmunol.1400931 pmid: 24920843
48 Xing Q, Wang B, Su H, Cui J, Li J. Elevated Th17 cells are accompanied by FoxP3+ Treg cells decrease in patients with lupus nephritis. Rheumatol Int 2012; 32(4): 949–958
https://doi.org/10.1007/s00296-010-1771-0 pmid: 21243492
49 Kato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4–CD8– double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J Immunol 2014; 192(9): 4134–4144
https://doi.org/10.4049/jimmunol.1301859 pmid: 24683191
50 Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 2008; 181(12): 8761–8766
https://doi.org/10.4049/jimmunol.181.12.8761 pmid: 19050297
51 Mizui M, Koga T, Lieberman LA, Beltran J, Yoshida N, Johnson MC, Tisch R, Tsokos GC. IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4–CD8– IL-17-producing T cells. J Immunol 2014; 193(5): 2168–2177
https://doi.org/10.4049/jimmunol.1400977 pmid: 25063876
52 Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, Kang I. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 2010; 12(2): R53
https://doi.org/10.1186/ar2964 pmid: 20334681
53 Yang XY, Wang HY, Zhao XY, Wang LJ, Lv QH, Wang QQ. Th22, but not Th17 might be a good index to predict the tissue involvement of systemic lupus erythematosus. J Clin Immunol 2013; 33(4): 767–774
https://doi.org/10.1007/s10875-013-9878-1 pmid: 23435610
54 Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, Wan L, Li M. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 2009; 60(5): 1472–1483
https://doi.org/10.1002/art.24499 pmid: 19404966
55 Chen DY, Chen YM, Wen MC, Hsieh TY, Hung WT, Lan JL. The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus 2012; 21(13): 1385–1396
https://doi.org/10.1177/0961203312457718 pmid: 22892208
56 Dolff S, Bijl M, Huitema MG, Limburg PC, Kallenberg CG, Abdulahad WH. Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus. Clin Immunol 2011; 141(2): 197–204
https://doi.org/10.1016/j.clim.2011.08.005 pmid: 21920821
57 Voulgarelis M, Tzioufas AG. Pathogenetic mechanisms in the initiation and perpetuation of Sj?gren’s syndrome. Nat Rev Rheumatol 2010; 6(9): 529–537
https://doi.org/10.1038/nrrheum.2010.118 pmid: 20683439
58 Jonsson R, Vogelsang P, Volchenkov R, Espinosa A, Wahren-Herlenius M, Appel S. The complexity of Sj?gren’s syndrome: novel aspects on pathogenesis. Immunol Lett 2011; 141(1): 1–9
https://doi.org/10.1016/j.imlet.2011.06.007 pmid: 21777618
59 Singh N, Cohen PL. The T cell in Sjogren’s syndrome: force majeure, not spectateur. J Autoimmun 2012; 39(3): 229–233
https://doi.org/10.1016/j.jaut.2012.05.019 pmid: 22709856
60 Fox RI, Adamson TC 3rd, Fong S, Young C, Howell FV. Characterization of the phenotype and function of lymphocytes infiltrating the salivary gland in patients with primary Sj?gren syndrome. Diagn Immunol 1983; 1(3): 233–239
pmid: 6238753
61 Lin X, Tian J, Rui K, Ma KY, Ko KH, Wang S, Lu L. The role of T helper 17 cell subsets in Sj?gren’s syndrome: similarities and differences between mouse model and humans. Ann Rheum Dis 2014; 73(7): e43
https://doi.org/10.1136/annrheumdis-2014-205521 pmid: 24728181
62 Nguyen CQ, Yin H, Lee BH, Carcamo WC, Chiorini JA, Peck AB. Pathogenic effect of interleukin-17A in induction of Sj?gren’s syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther 2010; 12(6): R220
https://doi.org/10.1186/ar3207 pmid: 21182786
63 Ciccia F, Guggino G, Rizzo A, Ferrante A, Raimondo S, Giardina A, Dieli F, Campisi G, Alessandro R, Triolo G. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sj?gren’s syndrome. Ann Rheum Dis 2012; 71(2): 295–301
https://doi.org/10.1136/ard.2011.154013 pmid: 21979002
64 Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sj?gren’s syndrome: findings in humans and mice. Arthritis Rheum 2008; 58(3): 734–743
https://doi.org/10.1002/art.23214 pmid: 18311793
65 Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sj?gren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol 2008; 181(4): 2898–2906
https://doi.org/10.4049/jimmunol.181.4.2898 pmid: 18684981
66 Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM. Systemic and local interleukin-17 and linked cytokines associated with Sj?gren’s syndrome immunopathogenesis. Am J Pathol 2009; 175(3): 1167–1177
https://doi.org/10.2353/ajpath.2009.090319 pmid: 19700754
67 Fei Y, Zhang W, Lin D, Wu C, Li M, Zhao Y, Zeng X, Zhang F. Clinical parameter and Th17 related to lymphocytes infiltrating degree of labial salivary gland in primary Sj?gren’s syndrome. Clin Rheumatol 2014; 33(4): 523–529
https://doi.org/10.1007/s10067-013-2476-z pmid: 24420723
68 Youinou P, Pers JO. Disturbance of cytokine networks in Sj?gren’s syndrome. Arthritis Res Ther 2011; 13(4): 227
https://doi.org/10.1186/ar3348 pmid: 21745420
69 Alunno A, Bistoni O, Bartoloni E, Caterbi S, Bigerna B, Tabarrini A, Mannucci R, Falini B, Gerli R. IL-17-producing CD4–CD8– T cells are expanded in the peripheral blood, infiltrate salivary glands and are resistant to corticosteroids in patients with primary Sj?gren’s syndrome. Ann Rheum Dis 2013; 72(2): 286–292
https://doi.org/10.1136/annrheumdis-2012-201511 pmid: 22904262
70 Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Bigerna B, Pacini R, Beghelli D, Cipriani P, Giacomelli R, Gerli R. CD4(-)CD8(-) T-cells in primary Sj?gren’s syndrome: association with the extent of glandular involvement. J Autoimmun 2014; 51: 38–43
https://doi.org/10.1016/j.jaut.2014.01.030 pmid: 24461537
71 Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28(1): 573–621
https://doi.org/10.1146/annurev-immunol-030409-101225 pmid: 20192811
72 Di Sabatino A, Biancheri P, Rovedatti L, MacDonald TT, Corazza GR. New pathogenic paradigms in inflammatory bowel disease. Inflamm Bowel Dis 2012; 18(2): 368–371
https://doi.org/10.1002/ibd.21735 pmid: 21538717
73 Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347(6): 417–429
https://doi.org/10.1056/NEJMra020831 pmid: 12167685
74 Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52(1): 65–70
https://doi.org/10.1136/gut.52.1.65 pmid: 12477762
75 Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jürgens M, Schmechel S, Konrad A, G?ke B, Ochsenkühn T, Müller-Myhsok B, Lohse P, Brand S. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p. His161Arg polymorphism in IBD. Inflamm Bowel Dis 2008; 14(4): 437–445
https://doi.org/10.1002/ibd.20339 pmid: 18088064
76 Zenewicz LA, Antov A, Flavell RA. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 2009; 15(5): 199–207
https://doi.org/10.1016/j.molmed.2009.03.002 pmid: 19362058
77 Feng T, Qin H, Wang L, Benveniste EN, Elson CO, Cong Y. Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production. J Immunol 2011; 186(11): 6313–6318
https://doi.org/10.4049/jimmunol.1001454 pmid: 21531892
78 Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut 2011; 60(12): 1739–1753
https://doi.org/10.1136/gut.2009.199679 pmid: 21300624
79 Caprioli F, Bosè F, Rossi RL, Petti L, Viganò C, Ciafardini C, Raeli L, Basilisco G, Ferrero S, Pagani M, Conte D, Altomare G, Monteleone G, Abrignani S, Reali E. Reduction of CD68+ macrophages and decreased IL-17 expression in intestinal mucosa of patients with inflammatory bowel disease strongly correlate with endoscopic response and mucosal healing following infliximab therapy. Inflamm Bowel Dis 2013; 19(4): 729–739
https://doi.org/10.1097/MIB.0b013e318280292b pmid: 23448791
80 Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 2014; 13(1): 3–10
https://doi.org/10.1016/j.autrev.2013.06.004 pmid: 23774107
81 Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C. Regulation of inflammatory responses by IL-17F. J Exp Med 2008; 205(5): 1063–1075
https://doi.org/10.1084/jem.20071978 pmid: 18411338
82 O’Connor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 2009; 10(6): 603–609
https://doi.org/10.1038/ni.1736 pmid: 19448631
83 Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 2006; 12(5): 382–388
https://doi.org/10.1097/01.MIB.0000218764.06959.91 pmid: 16670527
84 Troncone E, Marafini I, Pallone F, Monteleone G. Th17 cytokines in inflammatory bowel diseases: discerning the good from the bad. Int Rev Immunol 2013; 32(5–6): 526–533
https://doi.org/10.3109/08830185.2013.823421 pmid: 24041379
85 Sarra M, Pallone F, Macdonald TT, Monteleone G. IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 2010; 16(10): 1808–1813
https://doi.org/10.1002/ibd.21248 pmid: 20222127
86 Morrison PJ, Bending D, Fouser LA, Wright JF, Stockinger B, Cooke A, Kullberg MC. Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol 2013; 6(6): 1143–1156
pmid: 23462910
87 Morrison PJ, Ballantyne SJ, Kullberg MC. Interleukin-23 and T helper 17-type responses in intestinal inflammation: from cytokines to T-cell plasticity. Immunology 2011; 133(4): 397–408
https://doi.org/10.1111/j.1365-2567.2011.03454.x pmid: 21631495
88 Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, Wehkamp J, Feagan BG, Yao MD, Karczewski M, Karczewski J, Pezous N, Bek S, Bruin G, Mellgard B, Berger C, Londei M, Bertolino AP, Tougas G, Travis SP; Secukinumab in Crohn’s Disease Study Group. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012; 61(12): 1693–1700
https://doi.org/10.1136/gutjnl-2011-301668 pmid: 22595313
89 McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 2007; 8(9): 913–919
https://doi.org/10.1038/ni1507 pmid: 17712344
90 Voskuhl RR, Martin R, Bergman C, Dalal M, Ruddle NH, McFarland HF. T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 1993; 15(2): 137–143
https://doi.org/10.3109/08916939309043888 pmid: 7692995
91 Kroenke MA, Chensue SW, Segal BM. EAE mediated by a non-IFN-γ/non-IL-17 pathway. Eur J Immunol 2010; 40(8): 2340–2348
https://doi.org/10.1002/eji.201040489 pmid: 20540117
92 J?ger A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 2009; 183(11): 7169–7177
https://doi.org/10.4049/jimmunol.0901906 pmid: 19890056
93 Romme Christensen J, B?rnsen L, Ratzer R, Piehl F, Khademi M, Olsson T, S?rensen PS, Sellebjerg F. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS ONE 2013; 8(3): e57820
https://doi.org/10.1371/journal.pone.0057820 pmid: 23469245
94 Tao Y, Zhang X, Chopra M, Kim MJ, Buch KR, Kong D, Jin J, Tang Y, Zhu H, Jewells V, Markovic-Plese S. The role of endogenous IFN-β in the regulation of Th17 responses in patients with relapsing-remitting multiple sclerosis. J Immunol 2014; 192(12): 5610–5617
https://doi.org/10.4049/jimmunol.1302580 pmid: 24850724
95 Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EA, Xiao Y, Jacobs H, Borst J. The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 2013; 38(1): 53–65
https://doi.org/10.1016/j.immuni.2012.09.009 pmid: 23159439
96 Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009; 119(1): 61–69
pmid: 19075395
97 Kreymborg K, Etzensperger R, Dumoutier L, Haak S, Rebollo A, Buch T, Heppner FL, Renauld JC, Becher B. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 2007; 179(12): 8098–8104
https://doi.org/10.4049/jimmunol.179.12.8098 pmid: 18056351
98 Sonderegger I, Kisielow J, Meier R, King C, Kopf M. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 2008; 38(7): 1833–1838
https://doi.org/10.1002/eji.200838511 pmid: 18546146
99 Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011; 12(6): 560–567
https://doi.org/10.1038/ni.2027 pmid: 21516112
100 El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 2011; 12(6): 568–575
https://doi.org/10.1038/ni.2031 pmid: 21516111
101 Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496(7446): 518–522
https://doi.org/10.1038/nature11868 pmid: 23467095
102 Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009; 10(5): 514–523
https://doi.org/10.1038/ni.1716 pmid: 19305396
103 Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 2012; 181(1): 8–18
https://doi.org/10.1016/j.ajpath.2012.03.044 pmid: 22640807
104 Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, Dooley LT, Lebwohl M; CNTO 1275 Psoriasis Study Group. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007; 356(6): 580–592
https://doi.org/10.1056/NEJMoa062382 pmid: 17287478
105 Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, Johanns J, Blank M, Rutgeerts P; Ustekinumab Crohn’s Disease Study Group. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 2008; 135(4): 1130–1141
https://doi.org/10.1053/j.gastro.2008.07.014 pmid: 18706417
106 Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, Antoni C, Draelos Z, Gold MH; Psoriasis Study Group, Durez P, Tak PP, Gomez-Reino JJ; Rheumatoid Arthritis Study Group, Foster CS, Kim RY, Samson CM, Falk NS, Chu DS, Callanan D, Nguyen QD; Uveitis Study Group, Rose K, Haider A, Di Padova F. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2010; 2(52): 52ra72
https://doi.org/10.1126/scitranslmed.3001107 pmid: 20926833
107 Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum 2010; 62(4): 929–939
https://doi.org/10.1002/art.27334 pmid: 20131262
108 Huh JR, Littman DR. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications. Eur J Immunol 2012; 42(9): 2232–2237
https://doi.org/10.1002/eji.201242740 pmid: 22949321
109 Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J, Manel N, Ciofani M, Kim SV, Cuesta A, Santori FR, Lafaille JJ, Xu HE, Gin DY, Rastinejad F, Littman DR. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 2011; 472(7344): 486–490
https://doi.org/10.1038/nature09978 pmid: 21441909
110 Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamenecka TM, Roush WR, Vidovi? D, Schürer SC, Xu J, Wagoner G, Drew PD, Griffin PR, Burris TP. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 2011; 472(7344): 491–494
https://doi.org/10.1038/nature10075 pmid: 21499262
111 Xu T, Wang X, Zhong B, Nurieva RI, Ding S, Dong C. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORgt protein. J Biol Chem 2011; 286(26): 22707–22710
https://doi.org/10.1074/jbc.C111.250407 pmid: 21566134
112 Casc?o R, Vidal B, Raquel H, Neves-Costa A, Figueiredo N, Gupta V, Fonseca JE, Moita LF. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun Rev 2012; 11(12): 856–862
https://doi.org/10.1016/j.autrev.2012.02.022 pmid: 22415021
113 Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, Wu C, Baloglu E, Schmidt D, Ramesh R, Lobera M, Sundrud MS, Tsai PY, Xiang Z, Wang J, Xu Y, Lin X, Kretschmer K, Rahl PB, Young RA, Zhong Z, Hafler DA, Regev A, Ghosh S, Marson A, Kuchroo VK. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 2014; 40(4): 477–489
https://doi.org/10.1016/j.immuni.2014.04.004 pmid: 24745332
114 Xie L, Chen J, McMickle A, Awar N, Nady S, Sredni B, Drew PD, Yu S. The immunomodulator AS101 suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 273(1–2): 31–41
https://doi.org/10.1016/j.jneuroim.2014.05.015 pmid: 24975323
115 Zhong B, Liu X, Wang X, Chang SH, Liu X, Wang A, Reynolds JM, Dong C. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol 2012; 13(11): 1110–1117
https://doi.org/10.1038/ni.2427 pmid: 23042150
116 Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, Zhang J, Xing Y, Chen Z, Tsun A, Li D, Piccioni M, Zhang Y, Guo Q, Jiang L, Bao L, Lv L, Li B. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells. J Biol Chem 2014; 289(37): 25546–25555
https://doi.org/10.1074/jbc.M114.565291 pmid: 25070893
117 Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74(18): 4955–4966
https://doi.org/10.1158/0008-5472.CAN-14-1211 pmid: 25172841
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Ching-Hon Pui. Precision medicine in acute lymphoblastic leukemia[J]. Front. Med., 2020, 14(6): 689-700.
[3] Paul J. Pockros. Advances in newly developing therapy for chronic hepatitis C virus infection[J]. Front. Med., 2014, 8(2): 166-174.
[4] Ya-Song WU MD, PhD, Xin-Yue CHEN MD, Ying SHI PhD, Hao WU MD, De-Xi CHEN MD, PhD, Yu SUN MD, Fu-Jie ZHANG MD, . NRTIs&#8217; effect on the sequence of mitochondrial DNA HV 2 in HIV infected patients[J]. Front. Med., 2010, 4(2): 177-184.
[5] Zhikun ZHENG MM, Jinsong LI MD, Ke JIANG MD, . Relationship between Th17 cells and allograft rejection[J]. Front. Med., 2009, 3(4): 491-494.
[6] Rong LIU, Qing TIAN. Protein phosphatase 2A, a key player in Alzheimer’s disease[J]. Front Med Chin, 2009, 3(1): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed