Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2017, Vol. 11 Issue (2) : 266-276    https://doi.org/10.1007/s11684-017-0530-y
RESEARCH ARTICLE
Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty
Rahim Ullah1,2, Yan Su1,2, Yi Shen2, Chunlu Li2, Xiaoqin Xu1, Jianwei Zhang1, Ke Huang1, Naveed Rauf1,2, Yang He2, Jingjing Cheng2, Huaping Qin2, Yu-Dong Zhou2(), Junfen Fu1()
1. Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
2. Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
 Download: PDF(442 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Childhood obesity and obesity-related metabolic complications are induced by a high-fat postnatal diet. The lack of a suitable animal model, however, remains a considerable challenge in obesity studies. In the current study, we provided high-fat diet (HFD) to dams during lactation and to pups after weaning. We also developed a novel model of C57BL/6J mouse pups with HFD-induced postnatal obesity. Results showed that feeding with HFD induces fat deposition and obesity in pups. Furthermore, HFD more potently increased the body weight (BW) of male than female pups. HFD-fed female pups were obese, underwent precocious puberty, and showed increased kisspeptin expression in the hypothalamus. However, parental obesity and precocious puberty exerted no synergistic effects on the HFD-induced postnatal weight gain and puberty onset of the pups. Interestingly, some HFD-fed litters with normal BW also exhibited precocious puberty. This finding suggested that diet composition but not BW triggers puberty onset. Our model suggests good construction validity of obesity and precocious puberty. Furthermore, our model can also be used to explore the mutual interactions between diet–induced postnatal childhood obesity and puberty.

Keywords postnatal HFD feeding      obesity      kisspeptin      HPG axis      precocious puberty     
Corresponding Author(s): Yu-Dong Zhou,Junfen Fu   
Just Accepted Date: 14 April 2017   Online First Date: 16 May 2017    Issue Date: 01 June 2017
 Cite this article:   
Rahim Ullah,Yan Su,Yi Shen, et al. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0530-y
https://academic.hep.com.cn/fmd/EN/Y2017/V11/I2/266
Fig.1  Scheme for feeding of pups and dams.
P-19 (C-C-C-C)P-19 (C-C-H-H)P-24 (C-C-C-C)P-24 (C-C-H-H)
MFMFMFMF
8.208.209.109.4013.4012.1014.5014.00
8.708.209.209.6012.1010.5014.4013.90
8.507.908.909.3013.6011.0016.8015.00
8.507.909.509.8012.5011.2015.3014.00
7.609.309.6010.2013.409.6015.8015.00
8.208.309.909.6013.1010.0015.7015.00
7.507.9010.209.6013.609.5014.0014.50
6.908.909.609.2011.709.6013.5014.60
8.008.209.8010.2011.5010.8013.1014.30
8.608.0010.509.3012.109.6013.6015.20
8.208.209.509.2012.709.5013.1012.80
Tab.1  Weight in grams of male and female pups at P-19 and P-24
Fig.2  Effects of HFD feeding on the mean±standard error of mean (SEM) weight gain in pups. HFD feeding significantly increased BW in P-19 (P<0.0001 for male and female) and P-24 (P<0.0001 for male and female) pups. Therefore, HFD feeding induces obesity in pups. C-C-C-C= control and C-C-H-H= HFD obese, M= male and F= female.
C-C-H-H MC-C-H-H FC-C-C-C MC-C-C-C F
25.3018.7018.6016.60
23.3020.1019.1014.70
23.7019.2021.2016.50
25.2020.1019.0017.00
23.3017.4019.5014.70
22.9018.3020.0015.10
23.4018.0018.0014.40
23.3018.7518.0015.67
23.8620.2019.1816.30
Tab.2  Weight in grams of male and female pups at P-40
Fig.3  Two-way ANOVA analysis revealed a significant interaction between diet (HFD vs. chow) (F= 134.5, P<0.001) and sex (male vs. female) (F= 165.1, P<0.001). HFD feeding significantly increased BW. Moreover, male pups were significantly heavier than female pups at P-40. In addition, as evident from the percent increase in BW, HFD more potently increases BW in male than female pups. C-C-H-H= HFD obese and C-C-C-C= control.
Fig.4  Effects of HFD feeding on mean±SEM increase in gonadal WAT in male pups (n = 4) at different time points. HFD feeding significantly increased (P = 0.0008 for P-19 and P = 0.0001 for P-24) WAT deposition in HFD-fed male pups. C-C-C-C= control, C-C-H-H= HFD obese, and M= male. HFD feeding increases WAT deposition.
Fig.5  Effects of HFD feeding on puberty onset (A) and weight gain (B). HFD feeding advances puberty onset (P<0.0001) and increases BW (P<0.0001) in female pups. C-C-C-C= control, C-C-H-H= HFD obese, and F= female.
Fig.6  Effect of HFD feeding on kisspeptin expression in the ARC of female pups at P-24. HFD significantly increases (P = 0.0005) kisspeptin expression in HFD-fed pups. C-C-C-C= control, C-C-H-H= HFD obese, and F= female. HFD feeding advances VC by increasing kisspeptin expression.
Fig.7  Difference between the BW (A) and age at puberty onset (B) of the H-H-H-H and C-C-H-H groups. H-H-H-H= HFD obese pups of parents that were already obese and underwent precocious puberty. C-C-H-H= HFD obese pups of normal parents. Parental obesity and precocious puberty show no synergistic effects on pups BW and puberty onset.
C-C-H-H FC-C-C-C FC-C-H-H-L F
14.7016.1010.40
14.8013.3010.70
15.0014.8011.00
13.5014.8011.50
15.0014.4010.90
13.5015.2011.30
14.5014.6011.50
15.7014.2010.80
14.0014.0011.00
Tab.3  Weight in grams of female pups at the day of VC
Fig.8  BW of pups (n = 9 each group) at VC. C-C-H-H-L F has significantly lower BW (P<0.05) than C-C-H-H F and C-C-C-C F at the day of VC but still underwent precocious puberty at P-28. These results suggest that diet composition, not BW, affects puberty onset. C-C-H-H= obese fed on HFD; C-C-C-C= control; C-C-H-H-L= fed on HFD but with lower BW than obese and control groups.
1 James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res 2001; 9(S11): 228S–233S
https://doi.org/10.1038/oby.2001.123
2 Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 2013; 9(1): 13–27
https://doi.org/10.1038/nrendo.2012.199
3 Mayes J, Watson G. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004; 5(4): 197–216
https://doi.org/10.1111/j.1467-789X.2004.00152.x
4 Pasquali R, Pelusi C, Genghini S, Cacciari M, Gambineri A. Obesity and reproductive disorders in women. Hum Reprod Update 2003; 9(4): 359–372
https://doi.org/10.1093/humupd/dmg024
5 Robker RL. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology 2008; 15(2): 115–121
https://doi.org/10.1016/j.pathophys.2008.04.004
6 Hussain MA, Abogresha NM, Hassan R, Tamany DA, Lotfy M. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats. Arch Med Sci 2016; 12(4): 906–914
https://doi.org/10.5114/aoms.2016.59790
7 Colmenares A, Gunczler P, Lanes R. Higher prevalence of obesity and overweight without an adverse metabolic profile in girls with central precocious puberty compared to girls with early puberty, regardless of GnRH analogue treatment. Int J Pediatr Endocrinol 2014; 2014(1): 1–7
https://doi.org/10.1186/1687-9856-2014-5
8 Dai YL, Fu JF, Liang L, Gong CX, Xiong F, Luo FH, Liu GL, Chen SK. Association between obesity and sexual maturation in Chinese children: a muticenter study. Int J Obes 2014; 38(10): 1312–1316
https://doi.org/10.1038/ijo.2014.116
9 Guyenet SJ, Schwartz MW. Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 2012; 97(3): 745–755
https://doi.org/10.1210/jc.2011-2525
10 Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93(1): 359–404
https://doi.org/10.1152/physrev.00033.2011
11 Sánchez-Garrido MA, Castellano JM, Ruiz-Pino F, Garcia-Galiano D, Manfredi-Lozano M, Leon S, Romero-Ruiz A, Diéguez C, Pinilla L, Tena-Sempere M. Metabolic programming of puberty: sexually dimorphic responses to early nutritional challenges. Endocrinology 2013; 154(9): 3387–3400
https://doi.org/10.1210/en.2012-2157
12 Brill DS, Moenter SM. Androgen receptor antagonism and an insulin sensitizer block the advancement of vaginal opening by high-fat diet in mice. Biol Reprod 2009; 81(6): 1093–1098
https://doi.org/10.1095/biolreprod.109.079301
13 West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am J Physiol Regul Integr Comp Physiol 1992; 262(6): R1025–R1032
14 Sullivan EL, Nousen EK, Chamlou KA. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav 2014; 123: 236–242
https://doi.org/10.1016/j.physbeh.2012.07.014
15 Borengasser SJ, Kang P, Faske J, Gomez-Acevedo H, Blackburn ML, Badger TM, Shankar K. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 2014; 9(1): e84209
https://doi.org/10.1371/journal.pone.0084209
16 Benatti RO, Melo AM, Borges FO, Ignacio-Souza LM, Simino LAP, Milanski M, Velloso LA, Torsoni MA, Torsoni AS. Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr 2014; 111(12): 2112–2122
https://doi.org/10.1017/S0007114514000579
17 Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol 2006; 291(3): R768–R778
https://doi.org/10.1152/ajpregu.00138.2006
18 Demmelmair H, Kuhn A, Dokoupil K, Hegele V, Sauerwald T, Koletzko B. Human lactation: oxidation and maternal transfer of dietary 13C-labelled  a-linolenic acid into human milk. Isotopes Environ Health Stud 2016; 52(3): 270–280
https://doi.org/10.1080/10256016.2015.1071362
19 Neville MC, Picciano MF. Regulation of milk lipid secretion and composition. Annu Rev Nutr 1997; 17(1): 159–184
https://doi.org/10.1146/annurev.nutr.17.1.159
20 Ohta T, Toriniwa Y, Ryumon N, Inaba N, Hirao T, Yamanaka S, Maeno T, Sakakibara W, Sumikawa M, Chiba K, Nakamura A, Miyajima K, Fatchiyah F, Yamada T.Maternal high-fat diet promotes onset of diabetes in rat offspring. Anim Sci J 2017; 88(1): 149–155
https://doi.org/ 10.1111/asj.12606
21 Rolls BA, Gurr MI, Van Duijvenvoorde PM, Rolls BJ, Rowe EA. Lactation in lean and obese rats: effect of cafeteria feeding and of dietary obesity on milk composition. Physiol Behav 1986; 38(2): 185–190
https://doi.org/10.1016/0031-9384(86)90153-8
22 Saben JL, Bales ES, Jackman MR, Orlicky D, MacLean PS, McManaman JL. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS One 2014; 9(5): e98066
https://doi.org/10.1371/journal.pone.0098066
23 Wahlig JL, Bales ES, Jackman MR, Johnson GC, McManaman JL, MacLean PS. Impact of high-fat diet and obesity on energy balance and fuel utilization during the metabolic challenge of lactation. Obesity (Silver Spring) 2012; 20(1): 65–75
https://doi.org/10.1038/oby.2011.196
24 Ge F, Walewski JL, Torghabeh MH, Lobdell H IV, Hu C, Zhou S, Dakin G, Pomp A, Bessler M, Schrope B, Ude-Welcome A, Inabnet WB, Feng T, Carras-Terzian E, Anglade D, Ebel FE, Berk PD. Facilitated long chain fatty acid uptake by adipocytes remains upregulated relative to BMI for more than a year after major bariatric surgical weight loss. Obesity (Silver Spring) 2016; 24(1): 113–122
https://doi.org/10.1002/oby.21249
25 Scaglioni S, Verduci E, Salvioni M, Bruzzese MG, Radaelli G, Zetterström R, Riva E, Agostoni C. Plasma long-chain fatty acids and the degree of obesity in Italian children. Acta Paediatr 2006; 95(8): 964–969
https://doi.org/10.1080/08035250600764834
26 Walewski JL, Ge F, Gagner M, Inabnet WB, Pomp A, Branch AD, Berk PD. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg 2010; 20(1): 93–107
https://doi.org/10.1007/s11695-009-0002-9
27 Zhou SL, Kiang CL, Stump D, Bradbury M, Isola LM. Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem  1997; 272(13): 8830–8835
28 Berk PD, Zhou SL, Bradbury M, Stump D, Kiang CL, Isola LM. Regulated membrane transport of free fatty acids in adipocytes: role in obesity and non-insulin dependent diabetes mellitus. Trans Am Clin Climatol Assoc 1997;108: 26–40
29 Kojima S, Catavero C, Rinaman L. Maternal high-fat diet increases independent feeding in pre-weanling rat pups. Physiol Behav 2016; 157: 237–245
https://doi.org/10.1016/j.physbeh.2016.02.010
30 Gao M, Ma Y, Liu D. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS One 2015; 10(3): e0119784
https://doi.org/10.1371/journal.pone.0119784
31 Breslin WL, Strohacker K, Carpenter KC, Esposito L, McFarlin BK. Weight gain in response to high-fat feeding in CD-1 male mice. Lab Anim 2010; 44(3): 231–237
https://doi.org/10.1258/la.2010.009114
32 Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR, Wang F, Hull RL, Boyko EJ, Retzlaff BM, Walden CE, Knopp RH, Kahn SE. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations. Distinct metabolic effects of two fat compartments. Diabetes 2002; 51(4):1005–1015
33 Goodpaster BH, Leland Thaete F, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46(10): 1579–1585
https://doi.org/10.2337/diacare.46.10.1579
34 Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444(7121): 881–887
https://doi.org/10.1038/nature05488
35 Tena-Sempere M. Keeping puberty on time: novel signals and mechanisms involved. Curr Top Dev Biol 2013; 105: 299–329 
https://doi.org/10.1016/B978-0-12-396968-2.00011-7
36 Vernarelli JA, Mitchell DC, Rolls BJ, Hartman TJ. Dietary energy density is associated with obesity and other biomarkers of chronic disease in US adults. Eur J Nutr 2015; 54(1): 59–65
https://doi.org/10.1007/s00394-014-0685-0
37 Crino M, Sacks G, Vandevijvere S, Swinburn B, Neal B. The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Curr Obes Rep 2015; 4(1): 1–10
https://doi.org/10.1007/s13679-014-0134-7
38 Iossa S, Lionetti L, Mollica MP, Crescenzo R, Botta M, Barletta A, Liverini G. Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. Br J Nutr 2003; 90(5): 953–960
https://doi.org/10.1079/BJN2003000968
39 Cai D, Liu T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann N Y Acad Sci 2011; 1243(1): E1–E39
https://doi.org/10.1111/j.1749-6632.2011.06388.x
40 Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab 2013; 24(1): 40–47
https://doi.org/10.1016/j.tem.2012.11.003
41 Ailhaud G, Guesnet P. Fatty acid composition of fats is an early determinant of childhood obesity: a short review and an opinion. Obes Rev 2004; 5(1): 21–26
https://doi.org/10.1111/j.1467-789X.2004.00121.x
42 Berk PD, Zhou S, Bradbury MW. Increased hepatocellular uptake of long chain fatty acids occurs by different mechanisms in fatty livers due to obesity or excess ethanol use, contributing to development of steatohepatitis in both settings. Trans Am Clin Climatol Assoc 2005; 116: 335–345
43 Slavin JL. Dietary fiber and body weight. Nutrition 2005; 21(3): 411–418
https://doi.org/10.1016/j.nut.2004.08.018
44 Noakes M, Keogh JB, Foster PR, Clifton PM. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr 2005; 81(6): 1298–1306
45 Mahgoub O, Lu CD, Early RJ. Effects of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Rumin Res 2000; 37(1–2): 35–42
https://doi.org/10.1016/S0921-4488(99)00132-7
46 Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr 2012; 3(4): 491–498
https://doi.org/10.3945/an.112.002063
47 Garg N, Thakur S, Alex McMahan C, Adamo ML. High fat diet induced insulin resistance and glucose intolerance are gender-specific in IGF-1R heterozygous mice. Biochem Biophys Res Commun 2011; 413(3): 476–480
https://doi.org/10.1016/j.bbrc.2011.08.123
48 Barron AM, Rosario ER, Elteriefi R, Pike CJ. Sex-specific effects of high fat diet on indices of metabolic syndrome in 3xTg-AD mice: implications for Alzheimer’s disease. PLoS One 2013; 8(10): e78554
https://doi.org/10.1371/journal.pone.0078554
49 Wells JCK, Marphatia AA, Cole TJ, McCoy D. Associations of economic and gender inequality with global obesity prevalence: understanding the female excess. Soc Sci Med 2012; 75(3): 482–490
https://doi.org/10.1016/j.socscimed.2012.03.029
50 Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305(11): R1215–R1267
https://doi.org/10.1152/ajpregu.00446.2012
51 Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. J Nutr 2003; 133(4): 1081–1087
52 Aldhahi W, Hamdy O. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 2003; 3(4): 293–298
https://doi.org/10.1007/s11892-003-0020-2
53 Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4(4): 263–273
https://doi.org/10.1016/j.cmet.2006.07.001
54 Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Horumon To Rinsho 2006; 64(4): 355–365
55 Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444(7121): 847–853
https://doi.org/10.1038/nature05483
56 Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60(03): 329–339
https://doi.org/10.1079/PNS200194
57 Watanabe G, TerasawaE. In vivo release of luteinizing hormone releasing hormone increases with puberty in the female rhesus monkey. Endocrinology 1989; 125(1): 92–99
https://doi.org/10.1210/endo-125-1-92
58 Terasawa E, Guerriero KA, Plant TM. Kisspeptin and puberty in mammals. Adv Exp Med Biol 2013; 784: 253–273
https://doi.org/10.1007/978-1-4614-6199-9_12
59 Apter D, Butzow TL, Laughlin GA, Yen SSC. Gonadotropin-releasing-hormone pulse-generator activity during pubertal transition in girls—pulsatile and diurnal patterns of circulating gonadotropins. J Clin Endocrinol Metab 1993; 76(4): 940–949
60 Castellano JM, Tena-Sempere M. Metabolic control of female puberty: potential therapeutic targets. Expert Opin Ther Targets 2016; 20(10):1181–1193 
https://doi.org/10.1080/14728222.2016.1212015
82 Ullah R, Shen Y, Zhou YD, Huang K, Fu JF, Wahab F, Shahab M. Expression and actions of GnIH and its orthologs in vertebrates: current status and advanced knowledge. Neuropeptides 2016; 59: 9–20 
https://doi.org/10.1016/j.npep.2016.05.004
61 d’Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MBL, Aparicio S, Colledge WH. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA 2007; 104(25): 10714–10719
https://doi.org/10.1073/pnas.0704114104
62 Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MBL, Crowley WF Jr, Aparicio S, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349(17): 1614–1627
https://doi.org/10.1056/NEJMoa035322
63 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003; 100(19): 10972–10976
https://doi.org/10.1073/pnas.1834399100
64 Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007; 148(11): 5258–5267
https://doi.org/10.1210/en.2007-0554
65 Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005; 102(6): 2129–2134
https://doi.org/10.1073/pnas.0409822102
66 Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab 2005; 90(12): 6609–6615
https://doi.org/10.1210/jc.2005-1468
67 Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320(2): 383–388
https://doi.org/10.1016/j.bbrc.2004.05.185
68 Schally AV, Arimura A, Kastin AJ, Matsuo H, Baba Y, Redding TW, Nair RMG, Debeljuk L, White WF. Gonadotropin-releasing hormone—one polypeptide regulates secretion of luteinizing and follicle-stimulating hormones. Science 1971; 173(4001): 1036–1038
https://doi.org/10.1126/science.173.4001.1036
69 Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 2000; 21(5): 551–583
https://doi.org/10.1210/edrv.21.5.0409
70 Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001; 22(1): 111–151
71 Korhonen S, Hippeläinen M, Vanhala M, Heinonen S, Niskanen L. The androgenic sex hormone profile is an essential feature of metabolic syndrome in premenopausal women: a controlled community-based study. Fertil Steril 2003; 79(6): 1327–1334
https://doi.org/10.1016/S0015-0282(03)00347-9
72 Barber TM, McCarthy MI, Wass JAH, Franks S. Obesity and polycystic ovary syndrome. Horumon To Rinsho 2006; 65(2): 137–145
73 Coviello AD, Legro RS, Dunaif A. Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 2006; 91(2): 492–497
https://doi.org/10.1210/jc.2005-1666
74 Pielecka J, Moenter SM. Effect of steroid milieu on gonadotropin-releasing hormone-1 neuron firing pattern and luteinizing hormone levels in male mice. Biol Reprod 2006; 74(5): 931–937
https://doi.org/10.1095/biolreprod.105.049619
75 Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology 2006; 147(3): 1474–1479
https://doi.org/10.1210/en.2005-1029
76 Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 1998; 83(2): 582–590
77 Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000; 85(11): 4047–4052
78 Ramirez D, Sawyer CH. Advancement of puberty in the female rat by estrogen. Endocrinology 1965; 76(6): 1158–1168
https://doi.org/10.1210/endo-76-6-1158
79 Bronson FH. Puberty in female mice is not associated with increases in either body fat or leptin. Endocrinology 2001; 142(11): 4758–4761
https://doi.org/10.1210/endo.142.11.8495
80 Nah WH, Park MJ, Gye MC. Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med 2011; 38(2): 75–81
https://doi.org/10.5653/cerm.2011.38.2.75
81 Fu JF, Liang JF, Zhou XL, Prasad HC, Jin JH, Dong GP, Rose SR. Impact of BMI on gonadorelin-stimulated LH peak in premenarcheal girls with idiopathic central precocious puberty. Obesity (Silver Spring) 2015; 23(3): 637–643
https://doi.org/10.1002/oby.21010
[1] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[2] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[3] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[4] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[5] Yue Zhao, Wenjun Long, Caiqi Du, Huanhuan Yang, Shimin Wu, Qin Ning, Xiaoping Luo. Prevalence of vitamin D deficiency in girls with idiopathic central precocious puberty[J]. Front. Med., 2018, 12(2): 174-181.
[6] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[7] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[8] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[9] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[10] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[11] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[12] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[13] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
[14] Xinjian Li, Jiying Xu, Haihong Yao, Yanfei Guo, Minna Chen, Wei Lu. Obesity and overweight prevalence and its association with undiagnosed hypertension in Shanghai population, China: a cross-sectional population-based survey[J]. Front Med, 2012, 6(3): 322-328.
[15] Ling-Yan XU PhD, Xin-Ran MA PhD, Xiao-Ying LI PhD, MD, Shu WANG PhD, Guang NING PhD, MD, Jie-Li LI PhD, Jian-Ming XU PhD, . Ablation of steroid receptor coactivator-3 in mice impairs adipogenesis and enhances energy expenditure[J]. Front. Med., 2010, 4(2): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed