Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (4) : 382-403    https://doi.org/10.1007/s11684-020-0781-x
REVIEW
Review of surgical robotic systems for keyhole and endoscopic procedures: state of the art and perspectives
Yuyang Chen2, Shu’an Zhang2, Zhonghao Wu2, Bo Yang3, Qingquan Luo4, Kai Xu1()
1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. RII Lab (Lab of Robotics Innovation and Intervention), UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
3. Department of Urology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
4. Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
 Download: PDF(8457 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Minimally invasive surgery, including laparoscopic and thoracoscopic procedures, benefits patients in terms of improved postoperative outcomes and short recovery time. The challenges in hand–eye coordination and manipulation dexterity during the aforementioned procedures have inspired an enormous wave of developments on surgical robotic systems to assist keyhole and endoscopic procedures in the past decades. This paper presents a systematic review of the state-of-the-art systems, picturing a detailed landscape of the system configurations, actuation schemes, and control approaches of the existing surgical robotic systems for keyhole and endoscopic procedures. The development challenges and future perspectives are discussed in depth to point out the need for new enabling technologies and inspire future researches.

Keywords surgical robots      keyhole surgery      endoscopic surgery     
Corresponding Author(s): Kai Xu   
Just Accepted Date: 28 June 2020   Online First Date: 27 July 2020    Issue Date: 26 August 2020
 Cite this article:   
Yuyang Chen,Shu’an Zhang,Zhonghao Wu, et al. Review of surgical robotic systems for keyhole and endoscopic procedures: state of the art and perspectives[J]. Front. Med., 2020, 14(4): 382-403.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0781-x
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I4/382
Fig.1  Typical master–slave setup of a surgical robotic system for keyhole and endoscopic procedures.
Fig.2  PRISMA flow chart for the searches regarding each subsection.
Section Search terms N1 N2 N3 R1 R2 S1 S2 S3 S4
Systems for multi-port procedures • Surgical robot AND minimally invasive surgery
• Remote-center-of-motion AND minimally invasive surgery
• Robotic laparoscopy surgical instrument OR robotic laparoscopy surgical manipulator
151 67 36 4 184 197 233 229 45
Systems for single-port procedures • Robotic single-port surgery OR robotic single-site surgery 70 9 14 1 75 78 90 89 16
Systems for endoscopic and NOTES procedures • Robotic surgery AND natural orifice 64 55 13 1 98 102 112 111 16
Force sensing • Surgical force sensing OR surgical force feedback
• Sensor integration AND surgical instrument
92 55 14 3 121 130 143 140 20
Supplementary visual modality • Endoscopic surface reconstruction
• Robotic surgery fluorescence
• Multispectral imaging surgery OR hyperspectral imaging surgery
• Robotic endomicroscopy
143 14 24 0 134 148 172 172 38
Teleoperation • Haptic device
• Teleoperation control architecture
• Robotic surgery shared control OR robotic surgery virtual fixture
120 26 14 1 104 125 139 138 34
System autonomy and surgical automation • Robotic surgery autonomy OR medical robot autonomy
• Robotic surgery instrument tracking OR robotic surgery instrument segmentation
• Endoscopic image segmentation OR endoscopic organ tracking
• Surgical task segmentation
• Autonomous robotic surgery
200 42 26 0 202 232 258 258 56
Total inclusion in the “Configuration and actuation of the patient-side cart,” “Additional sensors in robotic surgery,” and “Control approaches” sections 219
Tab.1  Statistics of the PRISMA flowchart for the applied search terms
Fig.3  Patient-side manipulators: (A) typical configuration for multi-port procedures, (B) X configuration for single-port procedures, and (C) Y configuration for single-port or endoscopic procedures.
Fig.4  RCM mechanisms using (A) parallelograms [17,18], (B) equivalent parallelograms with cable transmission [20,21], (C) parallelograms with a parallel actuation [22], (D) serial spherical linkage [23,24], (E) parallel spherical linkage [25], and (F) goniometer arc tracks [26,27].
Fig.5  Various wrist designs. (A) Cable-driven EndoWrist, reprinted with permission from John Wiley and Sons [21], (B) serial-linkage-actuated design, reprinted with permission from IEEE [51], (C) parallel-linkage-actuated design, reprinted with permission from IEEE [52], (D) bending wrist, reprinted with permission from SAGE [27], (E) concentric-tube wrist (rightmost) compared with EndoWrist (leftmost), reprinted with permission from IEEE [54], and (F) deformable wrist, reprinted with permission from IEEE [58].
Fig.6  (A) 5-DoF articulated surgical manipulator, reprinted with permission from Springer Nature [28], (B) continuum surgical manipulator with two 2-DoF segments, reprinted with permission from IEEE [61], and (C) continuum-articulated surgical manipulator, reprinted with permission from IEEE [63].
Fig.7  (A1) da Vinci Single-Site VeSPA surgical platform, reprinted with permission from John Wiley and Sons [64], (A2) da Vinci SP surgical system, reprinted with permission from Elsevier [56], (A3) Samsung surgical system, reprinted with permission from IEEE [65], (B) SPRINT surgical system, reprinted with permission from Springer Nature [69], (C) SPS surgical system, reprinted with permission from John Wiley and Sons [72], and (D) SURS system, reprinted with permission from IEEE [57].
Fig.8  Representative systems for endoscopic and NOTES procedures. (A1) Articulated cable-driven design, reprinted with permission from John Wiley and Sons [79], (B1) reconfigurable design with embedded motors, reprinted with permission from IEEE [81], (B2) embedded-motor-actuated design, reprinted with permission from Springer Nature [80], and (C1 and C2) STRAS and ViaCath systems using continuum surgical manipulators, reprinted with permissions from John Wiley and Sons and IEEE [55,89].
Fig.9  (A) Gripper design with sensor integrated in the jaws, reprinted with permission from IEEE [97], (B) Stewart type sensor embedded in the wrist, reprinted with permission from John Wiley and Sons [109], and (C) working principle of the intrinsic force sensing.
Fig.10  Various visual modalities. (A) Abdomen tissue 3D reconstruction using MIS-SLAM, reprinted with permission from IEEE [124], (B1) comparison between the endoscopic images under white light and NIRF showing the perfusion of the intestinal loop, reprinted with permission from John Wiley and Sons [125], (B2) RGB image of the larynx and cancerous tissue classification using the hyperspectral imaging data [126], and (C) pCLE mosaic image using spiral scan on ex vivo beef liver, reprinted with permission from IEEE [127].
Fig.11  (A) The DELTA-R device with 3-DoF position inputs and 3-DoF force outputs, reprinted with permission from IEEE [156], (B) the laparoscopic interface with 6-DoF position–orientation inputs and 3-DoF force outputs, reprinted with permission from IEEE [157], and (C) the VirtualPoer device with 6-DoF position–orientation inputs and 6-DoF force/torque outputs, reprinted with permission from IEEE [163].
1 A Cuschieri. Laparoscopic surgery: current status, issues and future developments. Surgeon 2005; 3(3): 125–130, 132–133, 135–138
https://doi.org/10.1016/S1479-666X(05)80032-0 pmid: 16075996
2 O Alimoglu, J Sagiroglu, I Atak, A Kilic, T Eren, M Caliskan, G Bas. Robot-assisted laparoscopic (RAL) procedures in general surgery. Int J Med Robot 2016; 12(3): 427–430
https://doi.org/10.1002/rcs.1706 pmid: 26443708
3 RH Taylor. A perspective on medical robotics. Proc IEEE 2006; 94(9): 1652–1664
https://doi.org/10.1109/JPROC.2006.880669
4 CH Kuo, JS Dai, P Dasgupta. Kinematic design considerations for minimally invasive surgical robots: an overview. Int J Med Robot 2012; 8(2): 127–145
https://doi.org/10.1002/rcs.453 pmid: 22228671
5 C Bergeles, GZ Yang. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng 2014; 61(5): 1565–1576
https://doi.org/10.1109/TBME.2013.2293815 pmid: 24723622
6 JA Smith, J Jivraj, R Wong, V Yang. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann Biomed Eng 2016; 44(4): 836–846
https://doi.org/10.1007/s10439-015-1475-4 pmid: 26467553
7 DJ Jacofsky, M Allen. Robotics in arthroplasty: a comprehensive review. J Arthroplasty 2016; 31(10): 2353–2363
https://doi.org/10.1016/j.arth.2016.05.026 pmid: 27325369
8 C Kim, SC Ryu, PE Dupont. Real-time adaptive kinematic model estimation of concentric tube robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2015: 3214–3219
9 C Bergeles, AH Gosline, NV Vasilyev, PJ Codd, PJ Del Nido, PE Dupont. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans Robot 2015; 31(1): 67–84
https://doi.org/10.1109/TRO.2014.2378431 pmid: 26380575
10 H Elhawary, ZTH Tse, A Hamed, M Rea, BL Davies, MU Lamperth. The case for MR-compatible robotics: a review of the state of the art. Int J Med Robot 2008; 4(2): 105–113
https://doi.org/10.1002/rcs.192 pmid: 18481822
11 J Burgner-Kahrs, DC Rucker, H Choset. Continuum robots for medical applications: a survey. IEEE Trans Robot 2015; 31(6): 1261–1280
https://doi.org/10.1109/TRO.2015.2489500
12 RA Beasley. Medical robots: current systems and research directions. J Robot 2012; 2012: 1–14
https://doi.org/10.1155/2012/401613
13 M Diana, J Marescaux. Robotic surgery. Br J Surg 2015; 102(2): e15–e28
https://doi.org/10.1002/bjs.9711 pmid: 25627128
14 JJ Rassweiler, R Autorino, J Klein, A Mottrie, AS Goezen, JU Stolzenburg, KH Rha, M Schurr, J Kaouk, V Patel, P Dasgupta, E Liatsikos. Future of robotic surgery in urology. BJU Int 2017; 120(6): 822–841
https://doi.org/10.1111/bju.13851 pmid: 28319324
15 G Navarra, E Pozza, S Occhionorelli, P Carcoforo, I Donini. One-wound laparoscopic cholecystectomy. Br J Surg 1997; 84(5): 695
https://doi.org/10.1002/bjs.1800840536 pmid: 9171771
16 AN Kalloo, VK Singh, SB Jagannath, H Niiyama, SL Hill, CA Vaughn, CA Magee, SV Kantsevoy. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 2004; 60(1): 114–117
https://doi.org/10.1016/S0016-5107(04)01309-4 pmid: 15229442
17 GS Guthart, JK Salisbury. The IntuitiveTM Telesurgery System: overview and application. IEEE International Conference on Robotics and Automation (ICRA) 2000: 618–621
18 A Abdel Raheem, IS Troya, DK Kim, SH Kim, PD Won, PS Joon, GS Hyun, KH Rha. Robot-assisted Fallopian tube transection and anastomosis using the new REVO-I robotic surgical system: feasibility in a chronic porcine model. BJU Int 2016; 118(4): 604–609
https://doi.org/10.1111/bju.13517 pmid: 27123543
19 R Taylor, P Jensen, L Whitcomb, A Barnes, R Kumar, D Stoianovici, P Gupta, Z Wang, E Dejuan, L Kavoussi. A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 1999; 18(12): 1201–1210
https://doi.org/10.1177/02783649922067807
20 J Li, N Zhou, S Wang, Y Gao, D Liu. Design of an integrated master-slave robotic system for minimally invasive surgery. Int J Med Robot 2012; 8(1): 77–84
https://doi.org/10.1002/rcs.439 pmid: 21984343
21 C Freschi, V Ferrari, F Melfi, M Ferrari, F Mosca, A Cuschieri. Technical review of the da Vinci surgical telemanipulator. Int J Med Robot 2013; 9(4): 396–406
https://doi.org/10.1002/rcs.1468 pmid: 23166047
22 U Kim, DH Lee, YB Kim, DY Seok, J So, HR Choi. S-Surge: novel portable surgical robot with multiaxis force-sensing capability for minimally invasive surgery. IEEE/ASME Trans Mechatron 2017; 22(4): 1717–1727
https://doi.org/10.1109/TMECH.2017.2696965
23 MJH Lum, DCW Friedman, G Sankaranarayanan, H King, K Fodero, R Leuschke, B Hannaford, J Rosen, MN Sinanan. The RAVEN: design and validation of a telesurgery system. Int J Robot Res 2009; 28(9): 1183–1197
https://doi.org/10.1177/0278364909101795
24 B Hannaford, J Rosen, DW Friedman, H King, P Roan, L Cheng, D Glozman, J Ma, SN Kosari, L White. Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng 2013; 60(4): 954–959
https://doi.org/10.1109/TBME.2012.2228858 pmid: 23204264
25 CH Kuo, JS Dai. Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery. J Med Device 2012; 6(2): 021008
https://doi.org/10.1115/1.4006541
26 M Mitsuishi, N Sugita, P Pitakwatchara. Force feedback augmentation modes in the laparoscopic minimal invasive telesurgical system. IEEE/ASME Trans Mechatron 2007; 12(4): 447–454
https://doi.org/10.1109/TMECH.2007.901968
27 P Berkelman, J Ma. A compact modular teleoperated robotic system for laparoscopic surgery. Int J Robot Res 2009; 28(9): 1198–1215
https://doi.org/10.1177/0278364909104276 pmid: 21743765
28 E Dombre, M Michelin, F Pierrot, P Poignet, P Bidaud, G Morel, T Ortmaier, D Salle, N Zemiti, P Gravez, M Karouia, N Bonnet. MARGE project: design, modelling, and control of assistive devices for minimally invasive surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2004; LNCS 3217: 1–8
29 U Hagn, M Nickl, S Jörg, G Passig, T Bahls, A Nothhelfer, F Hacker, L Le-Tien, A Albu-Schäffer, R Konietschke, M Grebenstein, R Warpup, R Haslinger, M Frommberger, G Hirzinger. The DLR MIRO: a versatile lightweight robot for surgical applications. Industrial Robot 2008; 35(4): 324–336
https://doi.org/10.1108/01439910810876427
30 E Lopez, KW Kwok, CJ Payne, P Giataganas, GZ Yang. Implicit active constraints for robot-assisted arthroscopy. IEEE International Conference on Robotics and Automation (ICRA) 2013: 5390–5395
31 Z Dai, Z Wu, J Zhao, K Xu. A robotic laparoscopic tool with enhanced capabilities and modular actuation. Sci China Technol Sci 2019; 62(1): 47–59
https://doi.org/10.1007/s11431-018-9348-9
32 MC Çavuşoğlu, M Cohn, F Tendick, S Sastry. A laparoscopic telesurgical workstation. IEEE Trans Robot Autom 1999; 15(4): 728–739
https://doi.org/10.1109/70.782027
33 M Sekimoto, A Nishikawa, K Taniguchi, S Takiguchi, F Miyazaki, Y Doki, M Mori. Development of a compact laparoscope manipulator (P-arm). Surg Endosc 2009; 23(11): 2596–2604
https://doi.org/10.1007/s00464-009-0460-0 pmid: 19357921
34 MM Dalvand, B Shirinzadeh. Remote centre-of-motion control algorithms of 6-RRCRR parallel robot assisted surgery system (PRAMiSS). IEEE International Conference on Robotics and Automation (ICRA) 2012: 3401–3406
35 MC Çavuşoğlu, W Williams, F Tendick, SS Sastry. Robotics for telesurgery: second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications. Industrial Robot 2003; 30(1): 22–29
36 MA Nasseri, P Gschirr, M Eder, S Nair, K Kobuch, M Maier, D Zapp, C Lohmann, A Knoll. Virtual fixture control of a hybrid parallel-serial robot for assisting ophthalmic surgery: an experimental study. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB) 2014: 732–738
37 H Azimian, RV Patel, MD Naish. On constrained manipulation in robotics-assisted minimally invasive surgery. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB) 2010: 650–655
38 J Sandoval, G Poisson, P Vieyres. A new kinematic formulation of the RCM constraint for redundant torque-controlled robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017: 4576–4581
39 J Funda, RH Taylor, B Eldridge, S Gomory, KG Gruben. Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans Robot Autom 1996; 12(3): 453–465
https://doi.org/10.1109/70.499826
40 RCO Locke, RV Patel. Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery. IEEE International Conference on Robotics and Automation (ICRA) 2007: 1900–1905
41 N Aghakhani, M Geravand, N Shahriari, M Vendittelli, G Oriolo. Task control with remote center of motion constraint for minimally invasive robotic surgery. IEEE International Conference on Robotics and Automation (ICRA) 2013: 5807–5812
42 M Michelin, P Poignet, E Dombre. Dynamic task/posture decoupling for minimally invasive surgery motions: simulation results. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2004: 3625–3630
43 HJ Cha, BJ Yi. Modeling of a constraint force at RCM point in a needle insertion task. IEEE International Conference on Mechatronics and Automation (ICMA) 2011: 2177–2182
44 RH Taylor, J Funda, B Eldridge, S Gomory, K Gruben, D LaRose, M Talamini, L Kavoussi, J Anderson. A telerobotics assistant for laparoscopic surgery. IEEE Eng Med Biol Mag 1995; 14(3): 279–288
https://doi.org/10.1109/51.391776
45 SE Bunter, M Ghodoussi. Transforming a surgical robot for human telesurgery. IEEE Trans Robot Autom 2003; 19(5): 818–824
https://doi.org/10.1109/TRA.2003.817214
46 W Wang, J Li, S Wang, H Su, X Jiang. System design and animal experiment study of a novel minimally invasive surgical robot. Int J Med Robot 2016; 12(1): 73–84
https://doi.org/10.1002/rcs.1658 pmid: 25914384
47 K Ikuta, S Daifu, T Hasegawa, H Higashikawa. Hyper-finger for remote minimally invasive surgery in deep area. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2002; 2488: 173–181
48 GW Dachs, WJ Peine. A novel surgical robot design: minimizing the operating envelope within the sterile field. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 2006: 1505–1508
49 Y Nakamura, A Matsui, T Saito, K Yoshimoto. Shape-memory-alloy active forceps for laparoscopic surgery. IEEE International Conference on Robotics and Automation (ICRA) 1995: 2320–2327
50 ZY Shi, D Liu, TM Wang. A shape memory alloy-actuated surgical instrument with compact volume. Int J Med Robot 2014; 10(4): 474–481
https://doi.org/10.1002/rcs.1558 pmid: 24375955
51 H Takahashi, S Warisawa, M Mitsuishi, J Arata, M Hashizume. Development of high dexterity minimally invasive surgical system with augmented force feedback capability. IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB) 2006: 284–289
52 MB Hong, YH Jo. Design of a novel 4-DOF wrist-type surgical instrument with enhanced rigidity and dexterity. IEEE/ASME Trans Mechatron 2014; 19(2): 500–511
https://doi.org/10.1109/TMECH.2013.2245143
53 G Robinson, JB Davies. Continuum robots—a state of the art. IEEE International Conference on Robotics and Automation (ICRA) 1999: 2849–2853
54 P Francis, KW Eastwood, V Bodani, K Price, K Upadhyaya, D Podolsky, H Azimian, T Looi, J Drake. Miniaturized instruments for the da Vinci research kit: design and implementation of custom continuum tools. IEEE Robot Autom Mag 2017; 24(2): 24–33
https://doi.org/10.1109/MRA.2017.2680547
55 DJ Abbott, C Becke, RI Rothstein, WJ Peine. Design of an endoluminal NOTES robotic system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2007: 410–416
56 JH Kaouk, GP Haber, R Autorino, S Crouzet, A Ouzzane, V Flamand, A Villers. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol 2014; 66(6): 1033–1043
https://doi.org/10.1016/j.eururo.2014.06.039 pmid: 25041850
57 K Xu, J Zhao, M Fu. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans Mechatron 2015; 20(5): 2133–2145
https://doi.org/10.1109/TMECH.2014.2364625
58 J Arata, Y Fujisawa, R Nakadate, K Kiguchi, K Harada, M Mitsuishi, M Hashizume. Compliant four degree-of-freedom manipulator with locally deformable elastic elements for minimally invasive surgery. IEEE International Conference on Robotics and Automation (ICRA) 2019: 2663–2669
59 H Tobushi, Y Furuichi, T Sakuragi, Y Sugimoto. Bending fatigue properties of a superelastic thin tube and a high-elastic thin wire of TiNi alloy. Mater Trans 2009; 50(8): 2043–2049
https://doi.org/10.2320/matertrans.M2009073
60 C Vaida, N Plitea, D Pisla, B Gherman. Orientation module for surgical instruments—a systematical approach. Meccanica 2013; 48(1): 145–158
https://doi.org/10.1007/s11012-012-9590-x
61 T Kanno, D Haraguchi, M Yamamoto, K Tadano, K Kawashima. A forceps manipulator with flexible 4-DOF mechanism for laparoscopic surgery. IEEE/ASME Trans Mechatron 2015; 20(3): 1170–1178
https://doi.org/10.1109/TMECH.2014.2327223
62 Z Sa, Y Chen, Q Li, B Zhao, K Xu. Kinematic optimization of a continuum surgical manipulator. IEEE International Conference on Robotics and Biomimetics (ROBIO) 2018: 2069–2074
63 Z Wu, Q Li, J Zhao, J Gao, K Xu. Design of a modular continuum-articulated laparoscopic robotic tool with decoupled kinematics. IEEE Robot Autom Lett 2019; 4(4): 3545–3552
https://doi.org/10.1109/LRA.2019.2927929
64 L Morelli, S Guadagni, G Di Franco, M Palmeri, G Di Candio, F Mosca. Da Vinci single site© surgical platform in clinical practice: a systematic review. Int J Med Robot 2016; 12(4): 724–734
https://doi.org/10.1002/rcs.1713 pmid: 26525827
65 H Choi, HS Kwak, YA Lim, HJ Kim. Surgical robot for single-incision laparoscopic surgery. IEEE Trans Biomed Eng 2014; 61(9): 2458–2466
https://doi.org/10.1109/TBME.2014.2320941 pmid: 24835120
66 B Seeliger, M Diana, JP Ruurda, KM Konstantinidis, J Marescaux, LL Swanström. Enabling single-site laparoscopy: the SPORT platform. Surg Endosc 2019; 33(11): 3696–3703
https://doi.org/10.1007/s00464-018-06658-x pmid: 30623255
67 AS Walker, SR Steele. The future of robotic instruments in colon and rectal surgery. Semin Colon Rectal Surg 2016; 27(3): 144–149
https://doi.org/10.1053/j.scrs.2016.04.006
68 KS Roh, S Yoon, Y Do Kwon, Y Shim, YJ Kim. Single-port surgical robot system with flexible surgical instruments. International Conference on Intelligent Robotics and Applications (ICIRA) 2015: 447–459
69 G Petroni, M Niccolini, A Menciassi, P Dario, A Cuschieri. A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc 2013; 27(2): 665–670
https://doi.org/10.1007/s00464-012-2453-7 pmid: 22806518
70 TD Wortman, JM Mondry, SM Farritor, D Oleynikov. Single-site colectomy with miniature in vivo robotic platform. IEEE Trans Biomed Eng 2013; 60(4): 926–929
https://doi.org/10.1109/TBME.2012.2226884 pmid: 23362242
71 KL Yung, JLK Cheung, SW Chung, S Singh, CK Yeung. A single-port robotic platform for laparoscopic surgery with a large central channel for additional instrument. Ann Biomed Eng 2017; 45(9): 2211–2221
https://doi.org/10.1007/s10439-017-1865-x pmid: 28584937
72 Y Kobayashi, Y Sekiguchi, T Noguchi, Y Takahashi, Q Liu, S Oguri, K Toyoda, M Uemura, S Ieiri, M Tomikawa, T Ohdaira, M Hashizume, MG Fujie. Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery. Int J Med Robot 2015; 11(2): 235–246
https://doi.org/10.1002/rcs.1600 pmid: 24965141
73 B Cheon, E Gezgin, DK Ji, M Tomikawa, M Hashizume, HJ Kim, J Hong. A single port laparoscopic surgery robot with high force transmission and a large workspace. Surg Endosc 2014; 28(9): 2719–2729
https://doi.org/10.1007/s00464-014-3534-6 pmid: 24789128
74 K Xu, RE Goldman, J Ding, PK Allen, DL Fowler, N Simaan. System design of an insertable robotic effector platform for single port access (SPA) surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2009: 5546–5552
75 H Wang, R Zhang, W Chen, X Wang, R Pfeifer. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals. Surg Endosc 2017; 31(8): 3152–3158
https://doi.org/10.1007/s00464-016-5340-9 pmid: 27858208
76 J Zhao, B Feng, MH Zheng, K Xu. Surgical robots for SPL and NOTES: a review. Minim Invasive Ther Allied Technol 2015; 24(1): 8–17
https://doi.org/10.3109/13645706.2014.999687 pmid: 25597629
77 Y Mintz, S Horgan, J Cullen, D Stuart, E Falor, MA Talamini. NOTES: a review of the technical problems encountered and their solutions. J Laparoendosc Adv Surg Tech A 2008; 18(4): 583–587
https://doi.org/10.1089/lap.2007.0153 pmid: 18721009
78 K Ikuta, K Yamamoto, K Sasaki. Development of remote microsurgery robot and new surgical procedure for deep and narrow space. IEEE International Conference on Robotics and Automation (ICRA) 2003: 1103–1108
79 SJ Phee, SC Low, ZL Sun, KY Ho, WM Huang, ZM Thant. Robotic system for no-scar gastrointestinal surgery. Int J Med Robot 2008; 4(1): 15–22
https://doi.org/10.1002/rcs.179 pmid: 18314917
80 AC Lehman, J Dumpert, NA Wood, L Redden, AQ Visty, S Farritor, B Varnell, D Oleynikov. Natural orifice cholecystectomy using a miniature robot. Surg Endosc 2009; 23(2): 260–266
https://doi.org/10.1007/s00464-008-0195-3 pmid: 19057960
81 G Tortora, P Dario, A Menciassi. Array of robots augmenting the kinematics of endocavitary surgery. IEEE/ASME Trans Mechatron 2014; 19(6): 1821–1829
https://doi.org/10.1109/TMECH.2013.2296531
82 J Son, CN Cho, KG Kim, TY Chang, H Jung, SC Kim, MT Kim, N Yang, TY Kim, DK Sohn. A novel semi-automatic snake robot for natural orifice transluminal endoscopic surgery: preclinical tests in animal and human cadaver models (with video). Surg Endosc 2015; 29(6): 1643–1647
https://doi.org/10.1007/s00464-014-3854-6 pmid: 25294539
83 J Clark, DP Noonan, V Vitiello, MH Sodergren, J Shang, CJ Payne, TP Cundy, GZ Yang, A Darzi. A novel flexible hyper-redundant surgical robot: prototype evaluation using a single incision flexible access pelvic application as a clinical exemplar. Surg Endosc 2015; 29(3): 658–667
https://doi.org/10.1007/s00464-014-3716-2 pmid: 25106715
84 J Zhao, X Zheng, M Zheng, AJ Shih, K Xu. An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for NOTES procedures. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2013: 63–70
85 RE Goldman, A Bajo, LS MacLachlan, R Pickens, SD Herrell, N Simaan. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention. IEEE Trans Biomed Eng 2013; 60(4): 918–925
https://doi.org/10.1109/TBME.2012.2226031 pmid: 23144027
86 J Burgner, DC Rucker, HB Gilbert, PJ Swaney, PT Russell 3rd, KD Weaver, RJ Webster 3rd. A telerobotic system for transnasal surgery. IEEE/ASME Trans Mechatron 2014; 19(3): 996–1006
https://doi.org/10.1109/TMECH.2013.2265804 pmid: 25089086
87 S Thakkar, M Awad, KC Gurram, S Tully, C Wright, S Sanan, H Choset. A novel, new robotic platform for natural orifice distal pancreatectomy. Surg Innov 2015; 22(3): 274–282
https://doi.org/10.1177/1553350614554232 pmid: 25320108
88 CR Mitchell, RJ Hendrick, RJ Webster 3rd, SD Herrell. Toward improving transurethral prostate surgery: development and initial experiments with a prototype concentric tube robotic platform. J Endourol 2016; 30(6): 692–696
https://doi.org/10.1089/end.2016.0155 pmid: 26983892
89 A Légner, M Diana, P Halvax, YY Liu, L Zorn, P Zanne, F Nageotte, M De Mathelin, B Dallemagne, J Marescaux. Endoluminal surgical triangulation 2.0: a new flexible surgical robot. Preliminary pre-clinical results with colonic submucosal dissection. Int J Med Robot 2017; 13(3): e1819
https://doi.org/10.1002/rcs.1819 pmid: 28467024
90 K Xu, B Liang, Z Dai, J Zhao, B Zhao, H Liu, L Xiao, Y Sun. Preliminary development of a continuum dual-arm surgical robotic system for transurethral procedures. International Conference on Intelligent Robotics and Applications (ICIRA) 2017: 311–322
91 CR Wagner, RD Howe. Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. IEEE Trans Robot Autom 2007; 23(6): 1235–1240
https://doi.org/10.1109/TRO.2007.904891
92 CR Wagner, N Stylopoulos, RD Howe. The role of force feedback in surgery: analysis of blunt dissection. Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS) 2002: 68–74
93 K Xu, N Simaan. An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot 2008; 24(3): 576–587
https://doi.org/10.1109/TRO.2008.924266
94 MB Hong, YH Jo. Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans Robot 2012; 28(4): 932–941
https://doi.org/10.1109/TRO.2012.2194889
95 S Sokhanvar, M Packirisamy, J Dargahi. A multifunctional PVDF-based tactile sensor for minimally invasive surgery. Smart Mater Struct 2007; 16(4): 989–998
https://doi.org/10.1088/0964-1726/16/4/006
96 PS Zarrin, A Escoto, R Xu, RV Patel, MD Naish, AL Trejos. Development of an optical fiber-based sensor for grasping and axial force sensing. IEEE International Conference on Robotics and Automation (ICRA) 2017: 939–944
97 U Kim, YB Kim, J So, D Seok, HR Choi. Sensorized surgical forceps for robotic-assisted minimally invasive surgery. IEEE Trans Ind Electron 2018; 65(12): 9604–9613
https://doi.org/10.1109/TIE.2018.2821626
98 C He, S Wang, H Sang, J Li, L Zhang. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. Int J Med Robot 2014; 10(3): 314–324
https://doi.org/10.1002/rcs.1532 pmid: 24030887
99 D Lee, U Kim, T Gulrez, WJ Yoon, B Hannaford, HR Choi. A laparoscopic grasping tool with force sensing capability. IEEE/ASME Trans Mechatron 2016; 21(1): 130–141
100 G Tholey, JP Desai, AE Castellanos. Force feedback plays a significant role in minimally invasive surgery results and analysis. Ann Surg 2005; 241(1): 102–109
https://doi.org/10.1097/01.sla.0000149301.60553.1e
101 U Seibold, B Kubler, G Hirzinger. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. IEEE International Conference on Robotics and Automation (ICRA) 2005: 496–501
102 M Moradi Dalvand, B Shirinzadeh, AH Shamdani, J Smith, Y Zhong. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. Int J Med Robot 2014; 10(1): 11–21
https://doi.org/10.1002/rcs.1503 pmid: 23640908
103 J Peirs, J Clijnen, D Reynaerts, HV Brussel, P Herijgers, B Corteville, S Boone. A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A Phys 2004; 115(2): 447–455
https://doi.org/10.1016/j.sna.2004.04.057
104 Y Noh, S Sareh, H Würdemann, H Liu, J Back, J Housden, K Rhode, K Althoefer. Three-axis fiber-optic body force sensor for flexible manipulators. IEEE Sens J 2016; 16(6): 1641–1651
https://doi.org/10.1109/JSEN.2015.2488099
105 R Haslinger, P Leyendecker, U Seibold. A fiberoptic force-torque-sensor for minimally invasive robotic surgery. 2013 IEEE International Conference on Robotics and Automation 2013: 4390–4395
106 MA Qasaimeh, S Sokhanvar, J Dargahi, M Kahrizi. PVDF-based microfabricated tactile sensor for minimally invasive surgery. J Microelectromech Syst 2009; 18(1): 195–207
https://doi.org/10.1109/JMEMS.2008.2008559
107 K Xu, N Simaan. Intrinsic wrench estimation and its performance index of multi-segment continuum robots. IEEE Trans Robot 2010; 26(3): 555–561
https://doi.org/10.1109/TRO.2010.2046924
108 SJ Lee, SC Lee, HS Ahn. Design and control of tele-matched surgery robot. Mechatronics 2014; 24(5): 395–406
https://doi.org/10.1016/j.mechatronics.2014.02.008
109 B Kuebler, U Seibold, G Hirzinger. Development of actuated and sensor integrated forceps for minimally invasive robotic surger. Int J Med Robot 2005; 1(3): 96–107
https://doi.org/10.1002/rcs.33 pmid: 17518396
110 M Baumhauer, M Feuerstein, HP Meinzer, J Rassweiler. Navigation in endoscopic soft tissue surgery: perspectives and limitations. J Endourol 2008; 22(4): 751–766
https://doi.org/10.1089/end.2007.9827 pmid: 18366319
111 RM Schols, ND Bouvy, RM van Dam, LP Stassen. Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg Endosc 2013; 27(6): 1851–1859
https://doi.org/10.1007/s00464-012-2701-x pmid: 23242493
112 D Stoyanov, GP Mylonas, F Deligianni, A Darzi, GZ Yang. Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2005: 139–146
113 LM Su, BP Vagvolgyi, R Agarwal, CE Reiley, RH Taylor, GD Hager. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 2009; 73(4): 896–900
https://doi.org/10.1016/j.urology.2008.11.040 pmid: 19193404
114 S Röhl, S Bodenstedt, S Suwelack, R Dillmann, S Speidel, H Kenngott, BP Muller-Stich. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Med Phys 2012; 39(3): 1632–1645
https://doi.org/10.1118/1.3681017 pmid: 22380395
115 NT Clancy, D Stoyanov, L Maier-Hein, A Groch, GZ Yang, DS Elson. Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging. Biomed Opt Express 2011; 2(11): 3119–3128
https://doi.org/10.1364/BOE.2.003119 pmid: 22076272
116 C Schmalz, F Forster, A Schick, E Angelopoulou. An endoscopic 3D scanner based on structured light. Med Image Anal 2012; 16(5): 1063–1072
https://doi.org/10.1016/j.media.2012.04.001 pmid: 22542326
117 HND Le, H Nguyen, Z Wang, J Opfermann, S Leonard, A Krieger, JU Kang. Demonstration of a laparoscopic structured-illumination three-dimensional imaging system for guiding reconstructive bowel anastomosis. J Biomed Opt 2018; 23(5): 1–10
https://doi.org/10.1117/1.JBO.23.5.056009 pmid: 29797865
118 L Maier-Hein, P Mountney, A Bartoli, H Elhawary, D Elson, A Groch, A Kolb, M Rodrigues, J Sorger, S Speidel, D Stoyanov. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 2013; 17(8): 974–996
https://doi.org/10.1016/j.media.2013.04.003 pmid: 23837969
119 A Bartoli, Y Gerard, F Chadebecq, T Collins. On template-based reconstruction from a single view: analytical solutions and proofs of wellposedness for developable, isometric and conformal surfaces. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012: 2026–2033
120 C Wu, SG Narasimhan, B Jaramaz. A multi-image shape-from-shading framework for near-lighting perspective endoscopes. Int J Comput Vis 2010; 86(2–3): 211–228
https://doi.org/10.1007/s11263-009-0207-3
121 P Mountney, D Stoyanov, A Davison, GZ Yang. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2006: 347–354
122 P Mountney, GZ Yang. Motion compensated SLAM for image guided surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2010: 496–504
123 N Mahmoud, I Cirauqui, A Hostettler, C Doignon, L Soler, J Marescaux, JMM Montiel. ORBSLAM-based endoscope tracking and 3D reconstruction. International Workshop on Computer-Assisted and Robotic Endoscopy (CARE) 2016: 72–83
124 J Song, J Wang, L Zhao, S Huang, G Dissanayake. MIS-SLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot Autom Lett 2018; 3(4): 4068–4075
https://doi.org/10.1109/LRA.2018.2856519
125 D Daskalaki, F Aguilera, K Patton, PC Giulianotti. Fluorescence in robotic surgery. J Surg Oncol 2015; 112(3): 250–256
https://doi.org/10.1002/jso.23910 pmid: 25974861
126 B Regeling, B Thies, AOH Gerstner, S Westermann, NA Müller, J Bendix, W Laffers. Hyperspectral imaging using flexible endoscopy for laryngeal cancer detection. Sensors (Basel) 2016; 16(8): E1288
https://doi.org/10.3390/s16081288 pmid: 27529255
127 MS Erden, B Rosa, N Boularot, B Gayet, G Morel, J Szewczyk. Conic-spiraleur: a miniature distal scanner for confocal microlaparoscope. IEEE/ASME Trans Mechatron 2014; 19(6): 1786–1798
https://doi.org/10.1109/TMECH.2013.2293519
128 JV Frangioni. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003; 7(5): 626–634
https://doi.org/10.1016/j.cbpa.2003.08.007 pmid: 14580568
129 S Tobis, J Knopf, C Silvers, J Yao, H Rashid, G Wu, D Golijanin. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 2011; 186(1): 47–52
https://doi.org/10.1016/j.juro.2011.02.2701 pmid: 21571337
130 MA Bjurlin, M Gan, TR McClintock, A Volpe, MS Borofsky, A Mottrie, MD Stifelman. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol 2014; 65(4): 793–801
https://doi.org/10.1016/j.eururo.2013.09.023 pmid: 24099660
131 G Spinoglio, F Priora, PP Bianchi, FS Lucido, A Licciardello, V Maglione, F Grosso, R Quarati, F Ravazzoni, LM Lenti. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 2013; 27(6): 2156–2162
https://doi.org/10.1007/s00464-012-2733-2 pmid: 23271272
132 OJ Wagner, BE Louie, E Vallières, RW Aye, AS Farivar. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg 2012; 94(2): 622–625
https://doi.org/10.1016/j.athoracsur.2012.04.119 pmid: 22818309
133 RW Holloway, RAM Bravo, JA Rakowski, JA James, CN Jeppson, SB Ingersoll, S Ahmad. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol 2012; 126(1): 25–29
https://doi.org/10.1016/j.ygyno.2012.04.009 pmid: 22507531
134 MD Jafari, KH Lee, WJ Halabi, SD Mills, JC Carmichael, MJ Stamos, A Pigazzi. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 2013; 27(8): 3003–3008
https://doi.org/10.1007/s00464-013-2832-8 pmid: 23404152
135 RS Decker, A Shademan, JD Opfermann, S Leonard, PCW Kim, A Krieger. Biocompatible near-infrared three-dimensional tracking system. IEEE Trans Biomed Eng 2017; 64(3): 549–556
pmid: 28129145
136 Q Li, X He, Y Wang, H Liu, D Xu, F Guo. Review of spectral imaging technology in biomedical engineering: achievements and challenges. J Biomed Opt 2013; 18(10): 100901
https://doi.org/10.1117/1.JBO.18.10.100901 pmid: 24114019
137 D Stoyanov. Surgical vision. Ann Biomed Eng 2012; 40(2): 332–345
https://doi.org/10.1007/s10439-011-0441-z pmid: 22012086
138 J Lian, Y Zheng, W Jiao, F Yan, B Zhao. Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information. Med Biol Eng Comput 2018; 56(6): 1107–1113
https://doi.org/10.1007/s11517-017-1743-6 pmid: 29178064
139 EO Olweny, S Faddegon, SL Best, N Jackson, EF Wehner, YK Tan, KJ Zuzak, JA Cadeddu. Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J Endourol 2013; 27(3): 265–269
https://doi.org/10.1089/end.2012.0207 pmid: 22973969
140 S Moccia, SJ Wirkert, H Kenngott, AS Vemuri, M Apitz, B Mayer, E De Momi, LS Mattos, L Maier-Hein. Uncertainty-aware organ classification for surgical data science applications in laparoscopy. IEEE Trans Biomed Eng 2018; 65(11): 2649–2659
https://doi.org/10.1109/TBME.2018.2813015 pmid: 29993443
141 AF Gmitro, D Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt Lett 1993; 18(8): 565–567
https://doi.org/10.1364/OL.18.000565 pmid: 19802201
142 S Zuo, GZ Yang. Endomicroscopy for computer and robot assisted intervention. IEEE Rev Biomed Eng 2017; 10: 12–25
https://doi.org/10.1109/RBME.2017.2686483 pmid: 28333642
143 S Zuo, M Hughes, C Seneci, TP Chang, GZ Yang. Toward intraoperative breast endomicroscopy with a novel surface-scanning device. IEEE Trans Biomed Eng 2015; 62(12): 2941–2952
https://doi.org/10.1109/TBME.2015.2455597 pmid: 26186762
144 P Giataganas, M Hughes, GZ Yang. Force adaptive robotically assisted endomicroscopy for intraoperative tumour identification. Int J CARS 2015; 10(6): 825–832
https://doi.org/10.1007/s11548-015-1179-0 pmid: 25900339
145 B Rosa, MS Erden, T Vercauteren, B Herman, J Szewczyk, G Morel. Building large mosaics of confocal edomicroscopic images using visual servoing. IEEE Trans Biomed Eng 2013; 60(4): 1041–1049
https://doi.org/10.1109/TBME.2012.2228859 pmid: 23192481
146 P Giataganas, V Vitiello, V Simaiaki, E Lopez, GZ Yang. Cooperative in situ microscopic scanning and simultaneous tissue surface reconstruction using a compliant robotic manipulator. IEEE International Conference on Robotics and Automation (ICRA) 2013: 5378–5383
147 P Mountney, S Giannarou, D Elson, GZ Yang. Optical biopsy mapping for minimally invasive cancer screening. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2009: 483–490
148 S Avgousti, EG Christoforou, AS Panayides, S Voskarides, C Novales, L Nouaille, CS Pattichis, P Vieyres. Medical telerobotic systems: current status and future trends. Biomed Eng Online 2016; 15(1): 96
https://doi.org/10.1186/s12938-016-0217-7 pmid: 27520552
149 GZ Yang, J Cambias, K Cleary, E Daimler, J Drake, PE Dupont, N Hata, P Kazanzides, S Martel, RV Patel, VJ Santos, RH Taylor. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2017; 2(4): eaam8638
https://doi.org/10.1126/scirobotics.aam8638
150 M Yip, N Das. Robot autonomy for surgery. The Encyclopedia of Medical Robotics. World Scientific Publishing, 2018: 281–313
151 A Rovetta, R Sala, F Cosmi, X Wen, D Sabbadini, S Milanesi, A Togno, L Angelini, A Bejczy. The first experiment in the world of robotic telesurgery for laparoscopy carried out by means of satellites networks and optical fibres networks on 7th July 1993. International Conference on Industrial Electronics, Control, and Instrumentation (IECON) 1993; 1: 51–56
152 AM Okamura. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Rob 2004; 31(6): 499–508
https://doi.org/10.1108/01439910410566362 pmid: 16429611
153 A Talasaz, AL Trejos, RV Patel. Effect of force feedback on performance of robotics-assisted suturing. IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 2012: 823–828
154 L Birglen, C Gosselin, N Pouliot, B Monsarrat, T Laliberté. SHaDe, a new 3-DOF haptic device. IEEE Trans Robot Autom 2002; 18(2): 166–175
https://doi.org/10.1109/TRA.2002.999645
155 R Steger, K Lin, BD Adelstein, H Kazerooni. Design of a passively balanced spatial linkage haptic interface. J Mech Des 2004; 126(6): 984–991
https://doi.org/10.1115/1.1798111
156 J Arata, H Kondo, N Ikedo, H Fujimoto. Haptic device using a newly developed redundant parallel mechanism. IEEE Trans Robot 2011; 27(2): 201–214
https://doi.org/10.1109/TRO.2010.2098272
157 G Tholey, JPA Desai. General-purpose 7 DOF haptic device: applications toward robot-assisted surgery. IEEE/ASME Trans Mechatron 2007; 12(6): 662–669
https://doi.org/10.1109/TMECH.2007.910105
158 LJ Stocco, SE Salcudean, F Sassani. Optimal kinematic design of a haptic pen. IEEE/ASME Trans Mechatron 2001; 6(3): 210–220
https://doi.org/10.1109/3516.951359
159 M Ueberle, M Buss. Design, control, and evaluation of a new 6 DOF haptic device. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2002: 2949–2954
160 K Kim, W Kyun. Design and analysis of a new 7-DOF parallel type haptic device: PATHOS-II. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2003: 2241–2246
161 EL Faulring, JE Colgate, MA Peshkin. The cobotic hand controller: design, control and performance of a novel haptic display. Int J Robot Res 2006; 25(11): 1099–1119
https://doi.org/10.1177/0278364906072094
162 Z Najdovski, S Nahavandi, T Fukuda. Design, development, and evaluation of a pinch–grasp haptic interface. IEEE/ASME Trans Mechatron 2014; 19(1): 45–54
https://doi.org/10.1109/TMECH.2012.2218662
163 G Lee, SM Hur, Y Oh. A novel haptic device with high-force display capability and wide workspace. IEEE International Conference on Robotics and Automation (ICRA) 2016: 2704–2709
164 B Zhao, Z Sa, Z Wu, Q Li, K Xu. CombX: design of a haptic device for teleoperation. IEEE International Conference on Robotics and Biomimetics (ROBIO) 2018: 1969–1974
165 PF Hokayem, MW Spong. Bilateral teleoperation: an historical survey. Automatica 2006; 42(12): 2035–2057
https://doi.org/10.1016/j.automatica.2006.06.027
166 K Hashtrudi-Zaad, SE Salcudean. Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int J Robot Res 2001; 20(6): 419–445
https://doi.org/10.1177/02783640122067471
167 DA Lawrence. Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 1993; 9(5): 624–637
https://doi.org/10.1109/70.258054
168 M Tavakoli, A Aziminejad, RV Patel, M Moallem. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics. IEEE Trans Syst Man Cybern B Cybern 2007; 37(6): 1512–1528
https://doi.org/10.1109/TSMCB.2007.903700 pmid: 18179070
169 M Mahvash, A Okamura. Friction compensation for enhancing transparency of a teleoperator with compliant transmission. IEEE Trans Robot 2007; 23(6): 1240–1246
https://doi.org/10.1109/TRO.2007.909825 pmid: 20514151
170 A Torabi, M Khadem, K Zareinia, GR Sutherland, M Tavakoli. Application of a redundant haptic interface in enhancing soft-tissue stiffness discrimination. IEEE Robot Autom Lett 2019; 4(2): 1037–1044
https://doi.org/10.1109/LRA.2019.2893606
171 C Preusche, T Ortmaier, G Hirzinger. Teleoperation concepts in minimal invasive surgery. Control Eng Pract 2002; 10(11): 1245–1250
https://doi.org/10.1016/S0967-0661(02)00084-9
172 M Tavakoli, RV Patel, M Moallem. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Int J Med Robot 2005; 1(2): 53–63
https://doi.org/10.1002/rcs.16 pmid: 17518379
173 U Kim, DY Seok, YB Kim, DH Lee, HR Choi. Development of a grasping force-feedback user interface for surgical robot system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016: 845–850
174 MC Cavusoglu, A Sherman, F Tendick. Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments. IEEE Trans Robot Autom 2002; 18(4): 641–647
https://doi.org/10.1109/TRA.2002.802199
175 M Tavakoli, RD Howe. Haptic effects of surgical teleoperator flexibility. Int J Robot Res 2009; 28(10): 1289–1302
https://doi.org/10.1177/0278364909101231
176 LB Rosenberg. Virtual fixtures: perceptual tools for telerobotic manipulation. Proceedings of IEEE Virtual Reality Annual International Symposium 1993: 76–82
177 JJ Abbott, P Marayong, AM Okamura. Haptic virtual fixtures for robot-assisted manipulation. Robotics Research 2007; 28: 49–64
https://doi.org/10.1007/978-3-540-48113-3_5
178 E Lopez, L Zollo, E Guglielmelli. Teleoperated control based on virtual fixtures for a redundant surgical system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013: 450–455
179 A Kapoor, M Li, RH Taylor. Spatial motion constraints for robot assisted suturing using virtual fixtures. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2005: 89–96
180 M Shahbazi, SF Atashzar, RV Patel. A dual-user teleoperated system with virtual fixtures for robotic surgical training. IEEE International Conference on Robotics and Automation (ICRA) 2013: 3639–3644
181 MA Vitrani, C Poquet, G Morel. Applying virtual fixtures to the distal end of a minimally invasive surgery instrument. IEEE Trans Robot 2017; 33(1): 114–123
https://doi.org/10.1109/TRO.2016.2623332
182 Z Chen, A Malpani, P Chalasani, A Deguet, SS Vedula, P Kazanzides, RH Taylor. Virtual fixture assistance for needle passing and knot tying. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016: 2343–2350
183 GA Fontanelli, GZ Yang, B Siciliano. A comparison of assistive methods for suturing in MIRS. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2018: 4389–4395
184 T Haidegger. Autonomy for surgical robots: concepts and paradigms. IEEE Transactions on Medical Robotics and Bionics 2019; 1(2): 65–76
https://doi.org/10.1109/TMRB.2019.2913282
185 GP Moustris, SC Hiridis, KM Deliparaschos, KM Konstantinidis. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot 2011; 7(4): 375–392
https://doi.org/10.1002/rcs.408 pmid: 21815238
186 M Hoeckelmann, IJ Rudas, P Fiorini, F Kirchne, T Haidegger. Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 2015; 12(5): 61
https://doi.org/10.5772/60133
187 B Münzer, K Schoeffmann, L Böszörmenyi. Content-based processing and analysis of endoscopic images and videos: a survey. Multimedia Tools Appl 2018; 77(1): 1323–1362
https://doi.org/10.1007/s11042-016-4219-z
188 GQ Wei, K Arbter, G Hirzinger. Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation. IEEE Eng Med Biol Mag 1997; 16(1): 40–45
https://doi.org/10.1109/51.566151 pmid: 9058581
189 S Voros, JA Long, P Cinquin. Automatic detection of instruments in laparoscopic images: a first step towards high-level command of robotic endoscopic holders. Int J Robot Res 2007; 26(11–12): 1173–1190
https://doi.org/10.1177/0278364907083395
190 Z Pezzementi, S Voros, GD Hager. Articulated object tracking by rendering consistent appearance parts. IEEE International Conference on Robotics and Automation (ICRA) 2009: 3940–3947
191 M Kranzfelder, A Schneider, A Fiolka, E Schwan, S Gillen, D Wilhelm, R Schirren, S Reiser, B Jensen, H Feussner. Real-time instrument detection in minimally invasive surgery using radiofrequency identification technology. J Surg Res 2013; 185(2): 704–710
https://doi.org/10.1016/j.jss.2013.06.022 pmid: 23859134
192 A Krupa, J Gangloff, C Doignon, MF de Mathelin, G Morel, J Leroy, L Soler, J Marescaux. Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. IEEE Trans Robot Autom 2003; 19(5): 842–853
https://doi.org/10.1109/TRA.2003.817086
193 F Nageotte, P Zanne, C Doignon, M de Mathelin. Visual servoing-based endoscopic path following for robot-assisted laparoscopic surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2006: 2364–2369
194 A Reiter, PK Allen, T Zhao. Feature classification for tracking articulated surgical tools. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2012: 592–600
195 M Ye, L Zhang, S Giannarou, GZ Yang. Real-time 3D tracking of articulated tools for robotic surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2016: 386–394
196 R Wolf, J Duchateau, P Cinquin, S Voros. 3D tracking of laparoscopic instruments using statistical and geometric modeling. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2011: 203–210
197 M Allan, S Ourselin, S Thompson, DJ Hawkes, J Kelly, D Stoyanov. Toward detection and localization of instruments in minimally invasive surgery. IEEE Trans Biomed Eng 2013; 60(4): 1050–1058
https://doi.org/10.1109/TBME.2012.2229278 pmid: 23192482
198 A Reiter, PK Allen, T Zhao. Appearance learning for 3D tracking of robotic surgical tools. Int J Robot Res 2014; 33(2): 342–356
https://doi.org/10.1177/0278364913507796
199 A Reiter, RE Goldman, A Bajo, K Iliopoulos, N Simaan, PK Allen. A learning algorithm for visual pose estimation of continuum robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2011: 2390–2396
200 LC García-Peraza-Herrera, W Li, L Fidon, C Gruijthuijsen, A Devreker, G Attilakos, J Deprest, EV Poorten, D Stoyanov, T Vercauteren, SE Ourselin. Toolnet: holistically-nested real-time segmentation of robotic surgical tools. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017: 5717–5722
201 AA Shvets, A Rakhlin, AA Kalinin, VI Iglovikov. Automatic instrument segmentation in robot-assisted surgery using deep learning. IEEE International Conference on Machine Learning and Applications (ICMLA) 2018: 624–628
202 A Shademan, RS Decker, JD Opfermann, S Leonard, A Krieger, PCW Kim. Supervised autonomous robotic soft tissue surgery. Sci Transl Med 2016; 8(337): 337ra64
https://doi.org/10.1126/scitranslmed.aad9398 pmid: 27147588
203 M Nakamoto, O Ukimura, IS Gill, A Mahadevan, T Miki, M Hashizume, Y Sato. Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. International Workshop on Medical Imaging and Virtual Reality 2008: 359–366
204 MS Nosrati, JM Peyrat, J Abinahed, O Al-Alao, A Al-Ansari, R Abugharbieh, G Hamarneh. Efficient multi-organ segmentation in multi-view endoscopic videos using pre-operative priors. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2014: 324–331
205 GA Bilodeau, Y Shu, F Cheriet. Multistage graph-based segmentation of thoracoscopic images. Comput Med Imaging Graph 2006; 30(8): 437–446
https://doi.org/10.1016/j.compmedimag.2006.07.003 pmid: 17029724
206 MP Tjoa, SM Krishnan, C Kugean, P Wang, R Doraiswaini. Segmentation of clinical endoscopic image based on homogeneity and hue. International Conference of the IEEE Engineering in Medicine and Biology Society 2001: 2665–2668
207 IN Figueiredo, JC Moreno, VBS Prasath, PN Figueiredo. A segmentation model and application to endoscopic images. International Conference Image Analysis and Recognition 2012: 164–171
208 S Wu, M Nakao, T Matsuda. Continuous lung region segmentation from endoscopic images for intra-operative navigation. Comput Biol Med 2017; 87(1): 200–210
https://doi.org/10.1016/j.compbiomed.2017.05.029 pmid: 28601029
209 S Bodenstedt, M Wagner, B Mayer, K Stemmer, H Kenngott, B Müller-Stich, R Dillmann, S Speidel. Image-based laparoscopic bowel measurement. Int J CARS 2016; 11(3): 407–419
https://doi.org/10.1007/s11548-015-1291-1 pmid: 26410840
210 A Chhatkuli, A Bartoli, A Malti, T Collins. Live image parsing in uterine laparoscopy. International Symposium on Biomedical Imaging 2014: 1263–1266
211 S Moccia, S Foti, SM Rossi, I Rota, M Scotti, S Toffoli, LS Mattos, ED Momi, E Frontoni. FCNN-based segmentation of kidney vessels—towards constraints definition for safe robot-assisted nephrectomy. Joint Workshop on New Technologies for Computer/Robot Assisted Surgery 2018
212 J Rosen, B Hannaford, CG Richards, MN Sinanan. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. IEEE Trans Biomed Eng 2001; 48(5): 579–591
https://doi.org/10.1109/10.918597 pmid: 11341532
213 HC Lin, I Shafran, D Yuh, GD Hager. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 2006; 11(5): 220–230
https://doi.org/10.3109/10929080600989189 pmid: 17127647
214 A Murali, S Sen, B Kehoe, A Garg, S McFarland, S Patil, WD Boyd, S Lim, P Abbeel, K Goldberg. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. IEEE International Conference on Robotics and Automation (ICRA) 2015: 1202–1209
215 N Padoy, T Blum, SA Ahmadi, H Feussner, MO Berger, N Navab. Statistical modeling and recognition of surgical workflow. Med Image Anal 2012; 16(3): 632–641
https://doi.org/10.1016/j.media.2010.10.001 pmid: 21195015
216 N Ahmidi, L Tao, S Sefati, Y Gao, C Lea, BB Haro, L Zappella, S Khudanpur, R Vidal, GD Hager. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 2017; 64(9): 2025–2041
https://doi.org/10.1109/TBME.2016.2647680 pmid: 28060703
217 L Tao, E Elhamifar, S Khudanpur, GD Hager, R Vidal. Sparse hidden Markov models for surgical gesture classification and skill evaluation. International Conference on Information Processing in Computer-Assisted Interventions 2012: 167–177
218 L Zappella, B Béjar, G Hager, R Vidal. Surgical gesture classification from video and kinematic data. Med Image Anal 2013; 17(7): 732–745
https://doi.org/10.1016/j.media.2013.04.007 pmid: 23706754
219 F Despinoy, D Bouget, G Forestier, C Penet, N Zemiti, P Poignet, P Jannin. Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 2016; 63(6): 1280–1291
https://doi.org/10.1109/TBME.2015.2493100 pmid: 26513773
220 A Murali, A Garg, S Krishnan, FT Pokorny, P Abbeel, T Darrell, K Goldberg. TSC-DL: unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning. IEEE International Conference on Robotics and Automation (ICRA) 2016: 4150–4157
221 S Krishnan, A Garg, S Patil, C Lea, G Hager, P Abbeel, K Goldberg. Transition state clustering: unsupervised surgical trajectory segmentation for robot learning. Int J Robot Res 2017; 36(13–14): 1595–1618
https://doi.org/10.1177/0278364917743319
222 H Kang, JT Wen. Endobot: a robotic assistant in minimally invasive surgeries. IEEE Int Conf Robot Autom 2001; 2: 2031–2036 (ICRA)
223 F Nageotte, P Zanne, C Doignon, M de Mathelin. Stitching planning in laparoscopic surgery: towards robot-assisted suturing. Int J Robot Res 2009; 28(10): 1303–1321
https://doi.org/10.1177/0278364909101786
224 RC Jackson, MC Çavuşoğlu. Needle path planning for autonomous robotic surgical suturing. IEEE International Conference on Robotics and Automation (ICRA) 2013: 1669–1675
225 S Sen, A Garg, DV Gealy, S McKinley, Y Jen, K Goldberg. Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization. IEEE International Conference on Robotics and Automation (ICRA) 2016: 4178–4185
226 C Staub, T Osa, A Knoll, R Bauernschmitt. Automation of tissue piercing using circular needles and vision guidance for computer aided laparoscopic surgery. IEEE International Conference on Robotics and Automation (ICRA) 2010: 4585–4590
227 S Leonard, KL Wu, Y Kim, A Krieger, PCW Kim. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng 2014; 61(4): 1305–1317
https://doi.org/10.1109/TBME.2014.2302385 pmid: 24658254
228 F Zhong, Y Wang, Z Wang, YH Liu. Dual-arm robotic needle insertion with active tissue deformation for autonomous suturing. IEEE Robot Autom Lett 2019; 4(3): 2669–2676
https://doi.org/10.1109/LRA.2019.2913082
229 H Mayer, F Gomez, D Wierstra, I Nagy, A Knoll, J Schmidhuber. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2006: 543–548
230 H Mayer, I Nagy, D Burschka, A Knoll, EU Braun, R Lange, R Bauernschmitt. Automation of manual tasks for minimally invasive surgery. International Conference on Autonomic and Autonomous Systems (ICAS) 2008: 260–265
231 B Jvd. S Miller, D Duckworth, H Hu, A Wan, X-Y Fu, K Goldberg, P Abbeel. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. IEEE International Conference on Robotics and Automation (ICRA) 2010: 2074–2081
232 J Schulman, A Gupta, S Venkatesan, M Tayson-Frederick, P Abbeel. A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013: 4111–4117
233 B Kehoe, G Kahn, J Mahler, J Kim, A Lee, A Lee, K Nakagawa, S Patil, WD Boyd, P Abbeel, K Goldberg. Autonomous multilateral debridement with the raven surgical robot. IEEE International Conference on Robotics and Automation (ICRA) 2014: 1432–1439
234 HND Le, JD Opfermann, M Kam, S Raghunathan, H Saeidi, S Leonard, JU Kang, A Krieger. Semi-autonomous laparoscopic robotic electro-surgery with a novel 3D Endoscope. IEEE International Conference on Robotics and Automation (ICRA) 2018: 6637–6644
235 KA Nichols, AM Okamura. Autonomous robotic palpation: machine learning techniques to identify hard inclusions in soft tissues. IEEE International Conference on Robotics and Automation (ICRA) 2013: 4384–4389
236 DÁ Nagy, TD Nagy, R Elek, IJ Rudas, T Haidegger. Ontology-based surgical subtask automation, automating blunt dissection. J Med Robot Res 2018; 3(03n04): 1841005
237 TD Nagy, T Haidegger. A DVRK-based framework for surgical subtask automation. Acta Polytech Hung 2019; 16(8): 61–78
238 S Awtar, TT Trutna, JM Nielsen, R Abani, J Geiger. FlexDex™: a minimally invasive surgical tool with enhanced dexterity and intuitive control. J Med Device 2010; 4(3): 035003–035011
https://doi.org/10.1115/1.4002234
239 R Miyazaki, K Hirose, Y Ishikawa, T Kanno, K Kawashima. A master-slave integrated surgical robot with active motion transformation using wrist axis. IEEE/ASME Trans Mechatron 2018; 23(3): 1215–1225
https://doi.org/10.1109/TMECH.2018.2817212
240 ET Roche, MA Horvath, I Wamala, A Alazmani, S-E Song, W Whyte, Z Machaidze, CJ Payne, JC Weaver, G Fishbein, J Kuebler, NV Vasilyev, DJ Mooney, FA Pigula, CJ Walsh. Soft robotic sleeve supports heart function. Sci Transl Med 2017; 9(373): eaaf3925
https://doi.org/10.1126/scitranslmed.aaf3925
[1] Junqing Wang, Lu Zhang, Weize Wu. Current progress on natural orifice transluminal endoscopic surgery (NOTES)[J]. Front Med, 2012, 6(2): 187-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed