|
|
|
Review of surgical robotic systems for keyhole and endoscopic procedures: state of the art and perspectives |
Yuyang Chen2, Shu’an Zhang2, Zhonghao Wu2, Bo Yang3, Qingquan Luo4, Kai Xu1( ) |
1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. RII Lab (Lab of Robotics Innovation and Intervention), UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China 3. Department of Urology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai 200433, China 4. Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China |
|
|
|
|
Abstract Minimally invasive surgery, including laparoscopic and thoracoscopic procedures, benefits patients in terms of improved postoperative outcomes and short recovery time. The challenges in hand–eye coordination and manipulation dexterity during the aforementioned procedures have inspired an enormous wave of developments on surgical robotic systems to assist keyhole and endoscopic procedures in the past decades. This paper presents a systematic review of the state-of-the-art systems, picturing a detailed landscape of the system configurations, actuation schemes, and control approaches of the existing surgical robotic systems for keyhole and endoscopic procedures. The development challenges and future perspectives are discussed in depth to point out the need for new enabling technologies and inspire future researches.
|
| Keywords
surgical robots
keyhole surgery
endoscopic surgery
|
|
Corresponding Author(s):
Kai Xu
|
|
Just Accepted Date: 28 June 2020
Online First Date: 27 July 2020
Issue Date: 26 August 2020
|
|
| 1 |
A Cuschieri. Laparoscopic surgery: current status, issues and future developments. Surgeon 2005; 3(3): 125–130, 132–133, 135–138
https://doi.org/10.1016/S1479-666X(05)80032-0
pmid: 16075996
|
| 2 |
O Alimoglu, J Sagiroglu, I Atak, A Kilic, T Eren, M Caliskan, G Bas. Robot-assisted laparoscopic (RAL) procedures in general surgery. Int J Med Robot 2016; 12(3): 427–430
https://doi.org/10.1002/rcs.1706
pmid: 26443708
|
| 3 |
RH Taylor. A perspective on medical robotics. Proc IEEE 2006; 94(9): 1652–1664
https://doi.org/10.1109/JPROC.2006.880669
|
| 4 |
CH Kuo, JS Dai, P Dasgupta. Kinematic design considerations for minimally invasive surgical robots: an overview. Int J Med Robot 2012; 8(2): 127–145
https://doi.org/10.1002/rcs.453
pmid: 22228671
|
| 5 |
C Bergeles, GZ Yang. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng 2014; 61(5): 1565–1576
https://doi.org/10.1109/TBME.2013.2293815
pmid: 24723622
|
| 6 |
JA Smith, J Jivraj, R Wong, V Yang. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann Biomed Eng 2016; 44(4): 836–846
https://doi.org/10.1007/s10439-015-1475-4
pmid: 26467553
|
| 7 |
DJ Jacofsky, M Allen. Robotics in arthroplasty: a comprehensive review. J Arthroplasty 2016; 31(10): 2353–2363
https://doi.org/10.1016/j.arth.2016.05.026
pmid: 27325369
|
| 8 |
C Kim, SC Ryu, PE Dupont. Real-time adaptive kinematic model estimation of concentric tube robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2015: 3214–3219
|
| 9 |
C Bergeles, AH Gosline, NV Vasilyev, PJ Codd, PJ Del Nido, PE Dupont. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans Robot 2015; 31(1): 67–84
https://doi.org/10.1109/TRO.2014.2378431
pmid: 26380575
|
| 10 |
H Elhawary, ZTH Tse, A Hamed, M Rea, BL Davies, MU Lamperth. The case for MR-compatible robotics: a review of the state of the art. Int J Med Robot 2008; 4(2): 105–113
https://doi.org/10.1002/rcs.192
pmid: 18481822
|
| 11 |
J Burgner-Kahrs, DC Rucker, H Choset. Continuum robots for medical applications: a survey. IEEE Trans Robot 2015; 31(6): 1261–1280
https://doi.org/10.1109/TRO.2015.2489500
|
| 12 |
RA Beasley. Medical robots: current systems and research directions. J Robot 2012; 2012: 1–14
https://doi.org/10.1155/2012/401613
|
| 13 |
M Diana, J Marescaux. Robotic surgery. Br J Surg 2015; 102(2): e15–e28
https://doi.org/10.1002/bjs.9711
pmid: 25627128
|
| 14 |
JJ Rassweiler, R Autorino, J Klein, A Mottrie, AS Goezen, JU Stolzenburg, KH Rha, M Schurr, J Kaouk, V Patel, P Dasgupta, E Liatsikos. Future of robotic surgery in urology. BJU Int 2017; 120(6): 822–841
https://doi.org/10.1111/bju.13851
pmid: 28319324
|
| 15 |
G Navarra, E Pozza, S Occhionorelli, P Carcoforo, I Donini. One-wound laparoscopic cholecystectomy. Br J Surg 1997; 84(5): 695
https://doi.org/10.1002/bjs.1800840536
pmid: 9171771
|
| 16 |
AN Kalloo, VK Singh, SB Jagannath, H Niiyama, SL Hill, CA Vaughn, CA Magee, SV Kantsevoy. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 2004; 60(1): 114–117
https://doi.org/10.1016/S0016-5107(04)01309-4
pmid: 15229442
|
| 17 |
GS Guthart, JK Salisbury. The IntuitiveTM Telesurgery System: overview and application. IEEE International Conference on Robotics and Automation (ICRA) 2000: 618–621
|
| 18 |
A Abdel Raheem, IS Troya, DK Kim, SH Kim, PD Won, PS Joon, GS Hyun, KH Rha. Robot-assisted Fallopian tube transection and anastomosis using the new REVO-I robotic surgical system: feasibility in a chronic porcine model. BJU Int 2016; 118(4): 604–609
https://doi.org/10.1111/bju.13517
pmid: 27123543
|
| 19 |
R Taylor, P Jensen, L Whitcomb, A Barnes, R Kumar, D Stoianovici, P Gupta, Z Wang, E Dejuan, L Kavoussi. A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 1999; 18(12): 1201–1210
https://doi.org/10.1177/02783649922067807
|
| 20 |
J Li, N Zhou, S Wang, Y Gao, D Liu. Design of an integrated master-slave robotic system for minimally invasive surgery. Int J Med Robot 2012; 8(1): 77–84
https://doi.org/10.1002/rcs.439
pmid: 21984343
|
| 21 |
C Freschi, V Ferrari, F Melfi, M Ferrari, F Mosca, A Cuschieri. Technical review of the da Vinci surgical telemanipulator. Int J Med Robot 2013; 9(4): 396–406
https://doi.org/10.1002/rcs.1468
pmid: 23166047
|
| 22 |
U Kim, DH Lee, YB Kim, DY Seok, J So, HR Choi. S-Surge: novel portable surgical robot with multiaxis force-sensing capability for minimally invasive surgery. IEEE/ASME Trans Mechatron 2017; 22(4): 1717–1727
https://doi.org/10.1109/TMECH.2017.2696965
|
| 23 |
MJH Lum, DCW Friedman, G Sankaranarayanan, H King, K Fodero, R Leuschke, B Hannaford, J Rosen, MN Sinanan. The RAVEN: design and validation of a telesurgery system. Int J Robot Res 2009; 28(9): 1183–1197
https://doi.org/10.1177/0278364909101795
|
| 24 |
B Hannaford, J Rosen, DW Friedman, H King, P Roan, L Cheng, D Glozman, J Ma, SN Kosari, L White. Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng 2013; 60(4): 954–959
https://doi.org/10.1109/TBME.2012.2228858
pmid: 23204264
|
| 25 |
CH Kuo, JS Dai. Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery. J Med Device 2012; 6(2): 021008
https://doi.org/10.1115/1.4006541
|
| 26 |
M Mitsuishi, N Sugita, P Pitakwatchara. Force feedback augmentation modes in the laparoscopic minimal invasive telesurgical system. IEEE/ASME Trans Mechatron 2007; 12(4): 447–454
https://doi.org/10.1109/TMECH.2007.901968
|
| 27 |
P Berkelman, J Ma. A compact modular teleoperated robotic system for laparoscopic surgery. Int J Robot Res 2009; 28(9): 1198–1215
https://doi.org/10.1177/0278364909104276
pmid: 21743765
|
| 28 |
E Dombre, M Michelin, F Pierrot, P Poignet, P Bidaud, G Morel, T Ortmaier, D Salle, N Zemiti, P Gravez, M Karouia, N Bonnet. MARGE project: design, modelling, and control of assistive devices for minimally invasive surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2004; LNCS 3217: 1–8
|
| 29 |
U Hagn, M Nickl, S Jörg, G Passig, T Bahls, A Nothhelfer, F Hacker, L Le-Tien, A Albu-Schäffer, R Konietschke, M Grebenstein, R Warpup, R Haslinger, M Frommberger, G Hirzinger. The DLR MIRO: a versatile lightweight robot for surgical applications. Industrial Robot 2008; 35(4): 324–336
https://doi.org/10.1108/01439910810876427
|
| 30 |
E Lopez, KW Kwok, CJ Payne, P Giataganas, GZ Yang. Implicit active constraints for robot-assisted arthroscopy. IEEE International Conference on Robotics and Automation (ICRA) 2013: 5390–5395
|
| 31 |
Z Dai, Z Wu, J Zhao, K Xu. A robotic laparoscopic tool with enhanced capabilities and modular actuation. Sci China Technol Sci 2019; 62(1): 47–59
https://doi.org/10.1007/s11431-018-9348-9
|
| 32 |
MC Çavuşoğlu, M Cohn, F Tendick, S Sastry. A laparoscopic telesurgical workstation. IEEE Trans Robot Autom 1999; 15(4): 728–739
https://doi.org/10.1109/70.782027
|
| 33 |
M Sekimoto, A Nishikawa, K Taniguchi, S Takiguchi, F Miyazaki, Y Doki, M Mori. Development of a compact laparoscope manipulator (P-arm). Surg Endosc 2009; 23(11): 2596–2604
https://doi.org/10.1007/s00464-009-0460-0
pmid: 19357921
|
| 34 |
MM Dalvand, B Shirinzadeh. Remote centre-of-motion control algorithms of 6-RRCRR parallel robot assisted surgery system (PRAMiSS). IEEE International Conference on Robotics and Automation (ICRA) 2012: 3401–3406
|
| 35 |
MC Çavuşoğlu, W Williams, F Tendick, SS Sastry. Robotics for telesurgery: second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications. Industrial Robot 2003; 30(1): 22–29
|
| 36 |
MA Nasseri, P Gschirr, M Eder, S Nair, K Kobuch, M Maier, D Zapp, C Lohmann, A Knoll. Virtual fixture control of a hybrid parallel-serial robot for assisting ophthalmic surgery: an experimental study. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB) 2014: 732–738
|
| 37 |
H Azimian, RV Patel, MD Naish. On constrained manipulation in robotics-assisted minimally invasive surgery. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB) 2010: 650–655
|
| 38 |
J Sandoval, G Poisson, P Vieyres. A new kinematic formulation of the RCM constraint for redundant torque-controlled robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017: 4576–4581
|
| 39 |
J Funda, RH Taylor, B Eldridge, S Gomory, KG Gruben. Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans Robot Autom 1996; 12(3): 453–465
https://doi.org/10.1109/70.499826
|
| 40 |
RCO Locke, RV Patel. Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery. IEEE International Conference on Robotics and Automation (ICRA) 2007: 1900–1905
|
| 41 |
N Aghakhani, M Geravand, N Shahriari, M Vendittelli, G Oriolo. Task control with remote center of motion constraint for minimally invasive robotic surgery. IEEE International Conference on Robotics and Automation (ICRA) 2013: 5807–5812
|
| 42 |
M Michelin, P Poignet, E Dombre. Dynamic task/posture decoupling for minimally invasive surgery motions: simulation results. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2004: 3625–3630
|
| 43 |
HJ Cha, BJ Yi. Modeling of a constraint force at RCM point in a needle insertion task. IEEE International Conference on Mechatronics and Automation (ICMA) 2011: 2177–2182
|
| 44 |
RH Taylor, J Funda, B Eldridge, S Gomory, K Gruben, D LaRose, M Talamini, L Kavoussi, J Anderson. A telerobotics assistant for laparoscopic surgery. IEEE Eng Med Biol Mag 1995; 14(3): 279–288
https://doi.org/10.1109/51.391776
|
| 45 |
SE Bunter, M Ghodoussi. Transforming a surgical robot for human telesurgery. IEEE Trans Robot Autom 2003; 19(5): 818–824
https://doi.org/10.1109/TRA.2003.817214
|
| 46 |
W Wang, J Li, S Wang, H Su, X Jiang. System design and animal experiment study of a novel minimally invasive surgical robot. Int J Med Robot 2016; 12(1): 73–84
https://doi.org/10.1002/rcs.1658
pmid: 25914384
|
| 47 |
K Ikuta, S Daifu, T Hasegawa, H Higashikawa. Hyper-finger for remote minimally invasive surgery in deep area. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2002; 2488: 173–181
|
| 48 |
GW Dachs, WJ Peine. A novel surgical robot design: minimizing the operating envelope within the sterile field. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 2006: 1505–1508
|
| 49 |
Y Nakamura, A Matsui, T Saito, K Yoshimoto. Shape-memory-alloy active forceps for laparoscopic surgery. IEEE International Conference on Robotics and Automation (ICRA) 1995: 2320–2327
|
| 50 |
ZY Shi, D Liu, TM Wang. A shape memory alloy-actuated surgical instrument with compact volume. Int J Med Robot 2014; 10(4): 474–481
https://doi.org/10.1002/rcs.1558
pmid: 24375955
|
| 51 |
H Takahashi, S Warisawa, M Mitsuishi, J Arata, M Hashizume. Development of high dexterity minimally invasive surgical system with augmented force feedback capability. IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB) 2006: 284–289
|
| 52 |
MB Hong, YH Jo. Design of a novel 4-DOF wrist-type surgical instrument with enhanced rigidity and dexterity. IEEE/ASME Trans Mechatron 2014; 19(2): 500–511
https://doi.org/10.1109/TMECH.2013.2245143
|
| 53 |
G Robinson, JB Davies. Continuum robots—a state of the art. IEEE International Conference on Robotics and Automation (ICRA) 1999: 2849–2853
|
| 54 |
P Francis, KW Eastwood, V Bodani, K Price, K Upadhyaya, D Podolsky, H Azimian, T Looi, J Drake. Miniaturized instruments for the da Vinci research kit: design and implementation of custom continuum tools. IEEE Robot Autom Mag 2017; 24(2): 24–33
https://doi.org/10.1109/MRA.2017.2680547
|
| 55 |
DJ Abbott, C Becke, RI Rothstein, WJ Peine. Design of an endoluminal NOTES robotic system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2007: 410–416
|
| 56 |
JH Kaouk, GP Haber, R Autorino, S Crouzet, A Ouzzane, V Flamand, A Villers. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol 2014; 66(6): 1033–1043
https://doi.org/10.1016/j.eururo.2014.06.039
pmid: 25041850
|
| 57 |
K Xu, J Zhao, M Fu. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans Mechatron 2015; 20(5): 2133–2145
https://doi.org/10.1109/TMECH.2014.2364625
|
| 58 |
J Arata, Y Fujisawa, R Nakadate, K Kiguchi, K Harada, M Mitsuishi, M Hashizume. Compliant four degree-of-freedom manipulator with locally deformable elastic elements for minimally invasive surgery. IEEE International Conference on Robotics and Automation (ICRA) 2019: 2663–2669
|
| 59 |
H Tobushi, Y Furuichi, T Sakuragi, Y Sugimoto. Bending fatigue properties of a superelastic thin tube and a high-elastic thin wire of TiNi alloy. Mater Trans 2009; 50(8): 2043–2049
https://doi.org/10.2320/matertrans.M2009073
|
| 60 |
C Vaida, N Plitea, D Pisla, B Gherman. Orientation module for surgical instruments—a systematical approach. Meccanica 2013; 48(1): 145–158
https://doi.org/10.1007/s11012-012-9590-x
|
| 61 |
T Kanno, D Haraguchi, M Yamamoto, K Tadano, K Kawashima. A forceps manipulator with flexible 4-DOF mechanism for laparoscopic surgery. IEEE/ASME Trans Mechatron 2015; 20(3): 1170–1178
https://doi.org/10.1109/TMECH.2014.2327223
|
| 62 |
Z Sa, Y Chen, Q Li, B Zhao, K Xu. Kinematic optimization of a continuum surgical manipulator. IEEE International Conference on Robotics and Biomimetics (ROBIO) 2018: 2069–2074
|
| 63 |
Z Wu, Q Li, J Zhao, J Gao, K Xu. Design of a modular continuum-articulated laparoscopic robotic tool with decoupled kinematics. IEEE Robot Autom Lett 2019; 4(4): 3545–3552
https://doi.org/10.1109/LRA.2019.2927929
|
| 64 |
L Morelli, S Guadagni, G Di Franco, M Palmeri, G Di Candio, F Mosca. Da Vinci single site© surgical platform in clinical practice: a systematic review. Int J Med Robot 2016; 12(4): 724–734
https://doi.org/10.1002/rcs.1713
pmid: 26525827
|
| 65 |
H Choi, HS Kwak, YA Lim, HJ Kim. Surgical robot for single-incision laparoscopic surgery. IEEE Trans Biomed Eng 2014; 61(9): 2458–2466
https://doi.org/10.1109/TBME.2014.2320941
pmid: 24835120
|
| 66 |
B Seeliger, M Diana, JP Ruurda, KM Konstantinidis, J Marescaux, LL Swanström. Enabling single-site laparoscopy: the SPORT platform. Surg Endosc 2019; 33(11): 3696–3703
https://doi.org/10.1007/s00464-018-06658-x
pmid: 30623255
|
| 67 |
AS Walker, SR Steele. The future of robotic instruments in colon and rectal surgery. Semin Colon Rectal Surg 2016; 27(3): 144–149
https://doi.org/10.1053/j.scrs.2016.04.006
|
| 68 |
KS Roh, S Yoon, Y Do Kwon, Y Shim, YJ Kim. Single-port surgical robot system with flexible surgical instruments. International Conference on Intelligent Robotics and Applications (ICIRA) 2015: 447–459
|
| 69 |
G Petroni, M Niccolini, A Menciassi, P Dario, A Cuschieri. A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc 2013; 27(2): 665–670
https://doi.org/10.1007/s00464-012-2453-7
pmid: 22806518
|
| 70 |
TD Wortman, JM Mondry, SM Farritor, D Oleynikov. Single-site colectomy with miniature in vivo robotic platform. IEEE Trans Biomed Eng 2013; 60(4): 926–929
https://doi.org/10.1109/TBME.2012.2226884
pmid: 23362242
|
| 71 |
KL Yung, JLK Cheung, SW Chung, S Singh, CK Yeung. A single-port robotic platform for laparoscopic surgery with a large central channel for additional instrument. Ann Biomed Eng 2017; 45(9): 2211–2221
https://doi.org/10.1007/s10439-017-1865-x
pmid: 28584937
|
| 72 |
Y Kobayashi, Y Sekiguchi, T Noguchi, Y Takahashi, Q Liu, S Oguri, K Toyoda, M Uemura, S Ieiri, M Tomikawa, T Ohdaira, M Hashizume, MG Fujie. Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery. Int J Med Robot 2015; 11(2): 235–246
https://doi.org/10.1002/rcs.1600
pmid: 24965141
|
| 73 |
B Cheon, E Gezgin, DK Ji, M Tomikawa, M Hashizume, HJ Kim, J Hong. A single port laparoscopic surgery robot with high force transmission and a large workspace. Surg Endosc 2014; 28(9): 2719–2729
https://doi.org/10.1007/s00464-014-3534-6
pmid: 24789128
|
| 74 |
K Xu, RE Goldman, J Ding, PK Allen, DL Fowler, N Simaan. System design of an insertable robotic effector platform for single port access (SPA) surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2009: 5546–5552
|
| 75 |
H Wang, R Zhang, W Chen, X Wang, R Pfeifer. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals. Surg Endosc 2017; 31(8): 3152–3158
https://doi.org/10.1007/s00464-016-5340-9
pmid: 27858208
|
| 76 |
J Zhao, B Feng, MH Zheng, K Xu. Surgical robots for SPL and NOTES: a review. Minim Invasive Ther Allied Technol 2015; 24(1): 8–17
https://doi.org/10.3109/13645706.2014.999687
pmid: 25597629
|
| 77 |
Y Mintz, S Horgan, J Cullen, D Stuart, E Falor, MA Talamini. NOTES: a review of the technical problems encountered and their solutions. J Laparoendosc Adv Surg Tech A 2008; 18(4): 583–587
https://doi.org/10.1089/lap.2007.0153
pmid: 18721009
|
| 78 |
K Ikuta, K Yamamoto, K Sasaki. Development of remote microsurgery robot and new surgical procedure for deep and narrow space. IEEE International Conference on Robotics and Automation (ICRA) 2003: 1103–1108
|
| 79 |
SJ Phee, SC Low, ZL Sun, KY Ho, WM Huang, ZM Thant. Robotic system for no-scar gastrointestinal surgery. Int J Med Robot 2008; 4(1): 15–22
https://doi.org/10.1002/rcs.179
pmid: 18314917
|
| 80 |
AC Lehman, J Dumpert, NA Wood, L Redden, AQ Visty, S Farritor, B Varnell, D Oleynikov. Natural orifice cholecystectomy using a miniature robot. Surg Endosc 2009; 23(2): 260–266
https://doi.org/10.1007/s00464-008-0195-3
pmid: 19057960
|
| 81 |
G Tortora, P Dario, A Menciassi. Array of robots augmenting the kinematics of endocavitary surgery. IEEE/ASME Trans Mechatron 2014; 19(6): 1821–1829
https://doi.org/10.1109/TMECH.2013.2296531
|
| 82 |
J Son, CN Cho, KG Kim, TY Chang, H Jung, SC Kim, MT Kim, N Yang, TY Kim, DK Sohn. A novel semi-automatic snake robot for natural orifice transluminal endoscopic surgery: preclinical tests in animal and human cadaver models (with video). Surg Endosc 2015; 29(6): 1643–1647
https://doi.org/10.1007/s00464-014-3854-6
pmid: 25294539
|
| 83 |
J Clark, DP Noonan, V Vitiello, MH Sodergren, J Shang, CJ Payne, TP Cundy, GZ Yang, A Darzi. A novel flexible hyper-redundant surgical robot: prototype evaluation using a single incision flexible access pelvic application as a clinical exemplar. Surg Endosc 2015; 29(3): 658–667
https://doi.org/10.1007/s00464-014-3716-2
pmid: 25106715
|
| 84 |
J Zhao, X Zheng, M Zheng, AJ Shih, K Xu. An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for NOTES procedures. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2013: 63–70
|
| 85 |
RE Goldman, A Bajo, LS MacLachlan, R Pickens, SD Herrell, N Simaan. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention. IEEE Trans Biomed Eng 2013; 60(4): 918–925
https://doi.org/10.1109/TBME.2012.2226031
pmid: 23144027
|
| 86 |
J Burgner, DC Rucker, HB Gilbert, PJ Swaney, PT Russell 3rd, KD Weaver, RJ Webster 3rd. A telerobotic system for transnasal surgery. IEEE/ASME Trans Mechatron 2014; 19(3): 996–1006
https://doi.org/10.1109/TMECH.2013.2265804
pmid: 25089086
|
| 87 |
S Thakkar, M Awad, KC Gurram, S Tully, C Wright, S Sanan, H Choset. A novel, new robotic platform for natural orifice distal pancreatectomy. Surg Innov 2015; 22(3): 274–282
https://doi.org/10.1177/1553350614554232
pmid: 25320108
|
| 88 |
CR Mitchell, RJ Hendrick, RJ Webster 3rd, SD Herrell. Toward improving transurethral prostate surgery: development and initial experiments with a prototype concentric tube robotic platform. J Endourol 2016; 30(6): 692–696
https://doi.org/10.1089/end.2016.0155
pmid: 26983892
|
| 89 |
A Légner, M Diana, P Halvax, YY Liu, L Zorn, P Zanne, F Nageotte, M De Mathelin, B Dallemagne, J Marescaux. Endoluminal surgical triangulation 2.0: a new flexible surgical robot. Preliminary pre-clinical results with colonic submucosal dissection. Int J Med Robot 2017; 13(3): e1819
https://doi.org/10.1002/rcs.1819
pmid: 28467024
|
| 90 |
K Xu, B Liang, Z Dai, J Zhao, B Zhao, H Liu, L Xiao, Y Sun. Preliminary development of a continuum dual-arm surgical robotic system for transurethral procedures. International Conference on Intelligent Robotics and Applications (ICIRA) 2017: 311–322
|
| 91 |
CR Wagner, RD Howe. Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. IEEE Trans Robot Autom 2007; 23(6): 1235–1240
https://doi.org/10.1109/TRO.2007.904891
|
| 92 |
CR Wagner, N Stylopoulos, RD Howe. The role of force feedback in surgery: analysis of blunt dissection. Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS) 2002: 68–74
|
| 93 |
K Xu, N Simaan. An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot 2008; 24(3): 576–587
https://doi.org/10.1109/TRO.2008.924266
|
| 94 |
MB Hong, YH Jo. Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans Robot 2012; 28(4): 932–941
https://doi.org/10.1109/TRO.2012.2194889
|
| 95 |
S Sokhanvar, M Packirisamy, J Dargahi. A multifunctional PVDF-based tactile sensor for minimally invasive surgery. Smart Mater Struct 2007; 16(4): 989–998
https://doi.org/10.1088/0964-1726/16/4/006
|
| 96 |
PS Zarrin, A Escoto, R Xu, RV Patel, MD Naish, AL Trejos. Development of an optical fiber-based sensor for grasping and axial force sensing. IEEE International Conference on Robotics and Automation (ICRA) 2017: 939–944
|
| 97 |
U Kim, YB Kim, J So, D Seok, HR Choi. Sensorized surgical forceps for robotic-assisted minimally invasive surgery. IEEE Trans Ind Electron 2018; 65(12): 9604–9613
https://doi.org/10.1109/TIE.2018.2821626
|
| 98 |
C He, S Wang, H Sang, J Li, L Zhang. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. Int J Med Robot 2014; 10(3): 314–324
https://doi.org/10.1002/rcs.1532
pmid: 24030887
|
| 99 |
D Lee, U Kim, T Gulrez, WJ Yoon, B Hannaford, HR Choi. A laparoscopic grasping tool with force sensing capability. IEEE/ASME Trans Mechatron 2016; 21(1): 130–141
|
| 100 |
G Tholey, JP Desai, AE Castellanos. Force feedback plays a significant role in minimally invasive surgery results and analysis. Ann Surg 2005; 241(1): 102–109
https://doi.org/10.1097/01.sla.0000149301.60553.1e
|
| 101 |
U Seibold, B Kubler, G Hirzinger. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. IEEE International Conference on Robotics and Automation (ICRA) 2005: 496–501
|
| 102 |
M Moradi Dalvand, B Shirinzadeh, AH Shamdani, J Smith, Y Zhong. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. Int J Med Robot 2014; 10(1): 11–21
https://doi.org/10.1002/rcs.1503
pmid: 23640908
|
| 103 |
J Peirs, J Clijnen, D Reynaerts, HV Brussel, P Herijgers, B Corteville, S Boone. A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A Phys 2004; 115(2): 447–455
https://doi.org/10.1016/j.sna.2004.04.057
|
| 104 |
Y Noh, S Sareh, H Würdemann, H Liu, J Back, J Housden, K Rhode, K Althoefer. Three-axis fiber-optic body force sensor for flexible manipulators. IEEE Sens J 2016; 16(6): 1641–1651
https://doi.org/10.1109/JSEN.2015.2488099
|
| 105 |
R Haslinger, P Leyendecker, U Seibold. A fiberoptic force-torque-sensor for minimally invasive robotic surgery. 2013 IEEE International Conference on Robotics and Automation 2013: 4390–4395
|
| 106 |
MA Qasaimeh, S Sokhanvar, J Dargahi, M Kahrizi. PVDF-based microfabricated tactile sensor for minimally invasive surgery. J Microelectromech Syst 2009; 18(1): 195–207
https://doi.org/10.1109/JMEMS.2008.2008559
|
| 107 |
K Xu, N Simaan. Intrinsic wrench estimation and its performance index of multi-segment continuum robots. IEEE Trans Robot 2010; 26(3): 555–561
https://doi.org/10.1109/TRO.2010.2046924
|
| 108 |
SJ Lee, SC Lee, HS Ahn. Design and control of tele-matched surgery robot. Mechatronics 2014; 24(5): 395–406
https://doi.org/10.1016/j.mechatronics.2014.02.008
|
| 109 |
B Kuebler, U Seibold, G Hirzinger. Development of actuated and sensor integrated forceps for minimally invasive robotic surger. Int J Med Robot 2005; 1(3): 96–107
https://doi.org/10.1002/rcs.33
pmid: 17518396
|
| 110 |
M Baumhauer, M Feuerstein, HP Meinzer, J Rassweiler. Navigation in endoscopic soft tissue surgery: perspectives and limitations. J Endourol 2008; 22(4): 751–766
https://doi.org/10.1089/end.2007.9827
pmid: 18366319
|
| 111 |
RM Schols, ND Bouvy, RM van Dam, LP Stassen. Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg Endosc 2013; 27(6): 1851–1859
https://doi.org/10.1007/s00464-012-2701-x
pmid: 23242493
|
| 112 |
D Stoyanov, GP Mylonas, F Deligianni, A Darzi, GZ Yang. Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2005: 139–146
|
| 113 |
LM Su, BP Vagvolgyi, R Agarwal, CE Reiley, RH Taylor, GD Hager. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 2009; 73(4): 896–900
https://doi.org/10.1016/j.urology.2008.11.040
pmid: 19193404
|
| 114 |
S Röhl, S Bodenstedt, S Suwelack, R Dillmann, S Speidel, H Kenngott, BP Muller-Stich. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Med Phys 2012; 39(3): 1632–1645
https://doi.org/10.1118/1.3681017
pmid: 22380395
|
| 115 |
NT Clancy, D Stoyanov, L Maier-Hein, A Groch, GZ Yang, DS Elson. Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging. Biomed Opt Express 2011; 2(11): 3119–3128
https://doi.org/10.1364/BOE.2.003119
pmid: 22076272
|
| 116 |
C Schmalz, F Forster, A Schick, E Angelopoulou. An endoscopic 3D scanner based on structured light. Med Image Anal 2012; 16(5): 1063–1072
https://doi.org/10.1016/j.media.2012.04.001
pmid: 22542326
|
| 117 |
HND Le, H Nguyen, Z Wang, J Opfermann, S Leonard, A Krieger, JU Kang. Demonstration of a laparoscopic structured-illumination three-dimensional imaging system for guiding reconstructive bowel anastomosis. J Biomed Opt 2018; 23(5): 1–10
https://doi.org/10.1117/1.JBO.23.5.056009
pmid: 29797865
|
| 118 |
L Maier-Hein, P Mountney, A Bartoli, H Elhawary, D Elson, A Groch, A Kolb, M Rodrigues, J Sorger, S Speidel, D Stoyanov. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 2013; 17(8): 974–996
https://doi.org/10.1016/j.media.2013.04.003
pmid: 23837969
|
| 119 |
A Bartoli, Y Gerard, F Chadebecq, T Collins. On template-based reconstruction from a single view: analytical solutions and proofs of wellposedness for developable, isometric and conformal surfaces. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012: 2026–2033
|
| 120 |
C Wu, SG Narasimhan, B Jaramaz. A multi-image shape-from-shading framework for near-lighting perspective endoscopes. Int J Comput Vis 2010; 86(2–3): 211–228
https://doi.org/10.1007/s11263-009-0207-3
|
| 121 |
P Mountney, D Stoyanov, A Davison, GZ Yang. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2006: 347–354
|
| 122 |
P Mountney, GZ Yang. Motion compensated SLAM for image guided surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2010: 496–504
|
| 123 |
N Mahmoud, I Cirauqui, A Hostettler, C Doignon, L Soler, J Marescaux, JMM Montiel. ORBSLAM-based endoscope tracking and 3D reconstruction. International Workshop on Computer-Assisted and Robotic Endoscopy (CARE) 2016: 72–83
|
| 124 |
J Song, J Wang, L Zhao, S Huang, G Dissanayake. MIS-SLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot Autom Lett 2018; 3(4): 4068–4075
https://doi.org/10.1109/LRA.2018.2856519
|
| 125 |
D Daskalaki, F Aguilera, K Patton, PC Giulianotti. Fluorescence in robotic surgery. J Surg Oncol 2015; 112(3): 250–256
https://doi.org/10.1002/jso.23910
pmid: 25974861
|
| 126 |
B Regeling, B Thies, AOH Gerstner, S Westermann, NA Müller, J Bendix, W Laffers. Hyperspectral imaging using flexible endoscopy for laryngeal cancer detection. Sensors (Basel) 2016; 16(8): E1288
https://doi.org/10.3390/s16081288
pmid: 27529255
|
| 127 |
MS Erden, B Rosa, N Boularot, B Gayet, G Morel, J Szewczyk. Conic-spiraleur: a miniature distal scanner for confocal microlaparoscope. IEEE/ASME Trans Mechatron 2014; 19(6): 1786–1798
https://doi.org/10.1109/TMECH.2013.2293519
|
| 128 |
JV Frangioni. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003; 7(5): 626–634
https://doi.org/10.1016/j.cbpa.2003.08.007
pmid: 14580568
|
| 129 |
S Tobis, J Knopf, C Silvers, J Yao, H Rashid, G Wu, D Golijanin. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 2011; 186(1): 47–52
https://doi.org/10.1016/j.juro.2011.02.2701
pmid: 21571337
|
| 130 |
MA Bjurlin, M Gan, TR McClintock, A Volpe, MS Borofsky, A Mottrie, MD Stifelman. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol 2014; 65(4): 793–801
https://doi.org/10.1016/j.eururo.2013.09.023
pmid: 24099660
|
| 131 |
G Spinoglio, F Priora, PP Bianchi, FS Lucido, A Licciardello, V Maglione, F Grosso, R Quarati, F Ravazzoni, LM Lenti. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 2013; 27(6): 2156–2162
https://doi.org/10.1007/s00464-012-2733-2
pmid: 23271272
|
| 132 |
OJ Wagner, BE Louie, E Vallières, RW Aye, AS Farivar. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg 2012; 94(2): 622–625
https://doi.org/10.1016/j.athoracsur.2012.04.119
pmid: 22818309
|
| 133 |
RW Holloway, RAM Bravo, JA Rakowski, JA James, CN Jeppson, SB Ingersoll, S Ahmad. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol 2012; 126(1): 25–29
https://doi.org/10.1016/j.ygyno.2012.04.009
pmid: 22507531
|
| 134 |
MD Jafari, KH Lee, WJ Halabi, SD Mills, JC Carmichael, MJ Stamos, A Pigazzi. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 2013; 27(8): 3003–3008
https://doi.org/10.1007/s00464-013-2832-8
pmid: 23404152
|
| 135 |
RS Decker, A Shademan, JD Opfermann, S Leonard, PCW Kim, A Krieger. Biocompatible near-infrared three-dimensional tracking system. IEEE Trans Biomed Eng 2017; 64(3): 549–556
pmid: 28129145
|
| 136 |
Q Li, X He, Y Wang, H Liu, D Xu, F Guo. Review of spectral imaging technology in biomedical engineering: achievements and challenges. J Biomed Opt 2013; 18(10): 100901
https://doi.org/10.1117/1.JBO.18.10.100901
pmid: 24114019
|
| 137 |
D Stoyanov. Surgical vision. Ann Biomed Eng 2012; 40(2): 332–345
https://doi.org/10.1007/s10439-011-0441-z
pmid: 22012086
|
| 138 |
J Lian, Y Zheng, W Jiao, F Yan, B Zhao. Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information. Med Biol Eng Comput 2018; 56(6): 1107–1113
https://doi.org/10.1007/s11517-017-1743-6
pmid: 29178064
|
| 139 |
EO Olweny, S Faddegon, SL Best, N Jackson, EF Wehner, YK Tan, KJ Zuzak, JA Cadeddu. Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J Endourol 2013; 27(3): 265–269
https://doi.org/10.1089/end.2012.0207
pmid: 22973969
|
| 140 |
S Moccia, SJ Wirkert, H Kenngott, AS Vemuri, M Apitz, B Mayer, E De Momi, LS Mattos, L Maier-Hein. Uncertainty-aware organ classification for surgical data science applications in laparoscopy. IEEE Trans Biomed Eng 2018; 65(11): 2649–2659
https://doi.org/10.1109/TBME.2018.2813015
pmid: 29993443
|
| 141 |
AF Gmitro, D Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt Lett 1993; 18(8): 565–567
https://doi.org/10.1364/OL.18.000565
pmid: 19802201
|
| 142 |
S Zuo, GZ Yang. Endomicroscopy for computer and robot assisted intervention. IEEE Rev Biomed Eng 2017; 10: 12–25
https://doi.org/10.1109/RBME.2017.2686483
pmid: 28333642
|
| 143 |
S Zuo, M Hughes, C Seneci, TP Chang, GZ Yang. Toward intraoperative breast endomicroscopy with a novel surface-scanning device. IEEE Trans Biomed Eng 2015; 62(12): 2941–2952
https://doi.org/10.1109/TBME.2015.2455597
pmid: 26186762
|
| 144 |
P Giataganas, M Hughes, GZ Yang. Force adaptive robotically assisted endomicroscopy for intraoperative tumour identification. Int J CARS 2015; 10(6): 825–832
https://doi.org/10.1007/s11548-015-1179-0
pmid: 25900339
|
| 145 |
B Rosa, MS Erden, T Vercauteren, B Herman, J Szewczyk, G Morel. Building large mosaics of confocal edomicroscopic images using visual servoing. IEEE Trans Biomed Eng 2013; 60(4): 1041–1049
https://doi.org/10.1109/TBME.2012.2228859
pmid: 23192481
|
| 146 |
P Giataganas, V Vitiello, V Simaiaki, E Lopez, GZ Yang. Cooperative in situ microscopic scanning and simultaneous tissue surface reconstruction using a compliant robotic manipulator. IEEE International Conference on Robotics and Automation (ICRA) 2013: 5378–5383
|
| 147 |
P Mountney, S Giannarou, D Elson, GZ Yang. Optical biopsy mapping for minimally invasive cancer screening. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2009: 483–490
|
| 148 |
S Avgousti, EG Christoforou, AS Panayides, S Voskarides, C Novales, L Nouaille, CS Pattichis, P Vieyres. Medical telerobotic systems: current status and future trends. Biomed Eng Online 2016; 15(1): 96
https://doi.org/10.1186/s12938-016-0217-7
pmid: 27520552
|
| 149 |
GZ Yang, J Cambias, K Cleary, E Daimler, J Drake, PE Dupont, N Hata, P Kazanzides, S Martel, RV Patel, VJ Santos, RH Taylor. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2017; 2(4): eaam8638
https://doi.org/10.1126/scirobotics.aam8638
|
| 150 |
M Yip, N Das. Robot autonomy for surgery. The Encyclopedia of Medical Robotics. World Scientific Publishing, 2018: 281–313
|
| 151 |
A Rovetta, R Sala, F Cosmi, X Wen, D Sabbadini, S Milanesi, A Togno, L Angelini, A Bejczy. The first experiment in the world of robotic telesurgery for laparoscopy carried out by means of satellites networks and optical fibres networks on 7th July 1993. International Conference on Industrial Electronics, Control, and Instrumentation (IECON) 1993; 1: 51–56
|
| 152 |
AM Okamura. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Rob 2004; 31(6): 499–508
https://doi.org/10.1108/01439910410566362
pmid: 16429611
|
| 153 |
A Talasaz, AL Trejos, RV Patel. Effect of force feedback on performance of robotics-assisted suturing. IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 2012: 823–828
|
| 154 |
L Birglen, C Gosselin, N Pouliot, B Monsarrat, T Laliberté. SHaDe, a new 3-DOF haptic device. IEEE Trans Robot Autom 2002; 18(2): 166–175
https://doi.org/10.1109/TRA.2002.999645
|
| 155 |
R Steger, K Lin, BD Adelstein, H Kazerooni. Design of a passively balanced spatial linkage haptic interface. J Mech Des 2004; 126(6): 984–991
https://doi.org/10.1115/1.1798111
|
| 156 |
J Arata, H Kondo, N Ikedo, H Fujimoto. Haptic device using a newly developed redundant parallel mechanism. IEEE Trans Robot 2011; 27(2): 201–214
https://doi.org/10.1109/TRO.2010.2098272
|
| 157 |
G Tholey, JPA Desai. General-purpose 7 DOF haptic device: applications toward robot-assisted surgery. IEEE/ASME Trans Mechatron 2007; 12(6): 662–669
https://doi.org/10.1109/TMECH.2007.910105
|
| 158 |
LJ Stocco, SE Salcudean, F Sassani. Optimal kinematic design of a haptic pen. IEEE/ASME Trans Mechatron 2001; 6(3): 210–220
https://doi.org/10.1109/3516.951359
|
| 159 |
M Ueberle, M Buss. Design, control, and evaluation of a new 6 DOF haptic device. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2002: 2949–2954
|
| 160 |
K Kim, W Kyun. Design and analysis of a new 7-DOF parallel type haptic device: PATHOS-II. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2003: 2241–2246
|
| 161 |
EL Faulring, JE Colgate, MA Peshkin. The cobotic hand controller: design, control and performance of a novel haptic display. Int J Robot Res 2006; 25(11): 1099–1119
https://doi.org/10.1177/0278364906072094
|
| 162 |
Z Najdovski, S Nahavandi, T Fukuda. Design, development, and evaluation of a pinch–grasp haptic interface. IEEE/ASME Trans Mechatron 2014; 19(1): 45–54
https://doi.org/10.1109/TMECH.2012.2218662
|
| 163 |
G Lee, SM Hur, Y Oh. A novel haptic device with high-force display capability and wide workspace. IEEE International Conference on Robotics and Automation (ICRA) 2016: 2704–2709
|
| 164 |
B Zhao, Z Sa, Z Wu, Q Li, K Xu. CombX: design of a haptic device for teleoperation. IEEE International Conference on Robotics and Biomimetics (ROBIO) 2018: 1969–1974
|
| 165 |
PF Hokayem, MW Spong. Bilateral teleoperation: an historical survey. Automatica 2006; 42(12): 2035–2057
https://doi.org/10.1016/j.automatica.2006.06.027
|
| 166 |
K Hashtrudi-Zaad, SE Salcudean. Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int J Robot Res 2001; 20(6): 419–445
https://doi.org/10.1177/02783640122067471
|
| 167 |
DA Lawrence. Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 1993; 9(5): 624–637
https://doi.org/10.1109/70.258054
|
| 168 |
M Tavakoli, A Aziminejad, RV Patel, M Moallem. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics. IEEE Trans Syst Man Cybern B Cybern 2007; 37(6): 1512–1528
https://doi.org/10.1109/TSMCB.2007.903700
pmid: 18179070
|
| 169 |
M Mahvash, A Okamura. Friction compensation for enhancing transparency of a teleoperator with compliant transmission. IEEE Trans Robot 2007; 23(6): 1240–1246
https://doi.org/10.1109/TRO.2007.909825
pmid: 20514151
|
| 170 |
A Torabi, M Khadem, K Zareinia, GR Sutherland, M Tavakoli. Application of a redundant haptic interface in enhancing soft-tissue stiffness discrimination. IEEE Robot Autom Lett 2019; 4(2): 1037–1044
https://doi.org/10.1109/LRA.2019.2893606
|
| 171 |
C Preusche, T Ortmaier, G Hirzinger. Teleoperation concepts in minimal invasive surgery. Control Eng Pract 2002; 10(11): 1245–1250
https://doi.org/10.1016/S0967-0661(02)00084-9
|
| 172 |
M Tavakoli, RV Patel, M Moallem. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Int J Med Robot 2005; 1(2): 53–63
https://doi.org/10.1002/rcs.16
pmid: 17518379
|
| 173 |
U Kim, DY Seok, YB Kim, DH Lee, HR Choi. Development of a grasping force-feedback user interface for surgical robot system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016: 845–850
|
| 174 |
MC Cavusoglu, A Sherman, F Tendick. Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments. IEEE Trans Robot Autom 2002; 18(4): 641–647
https://doi.org/10.1109/TRA.2002.802199
|
| 175 |
M Tavakoli, RD Howe. Haptic effects of surgical teleoperator flexibility. Int J Robot Res 2009; 28(10): 1289–1302
https://doi.org/10.1177/0278364909101231
|
| 176 |
LB Rosenberg. Virtual fixtures: perceptual tools for telerobotic manipulation. Proceedings of IEEE Virtual Reality Annual International Symposium 1993: 76–82
|
| 177 |
JJ Abbott, P Marayong, AM Okamura. Haptic virtual fixtures for robot-assisted manipulation. Robotics Research 2007; 28: 49–64
https://doi.org/10.1007/978-3-540-48113-3_5
|
| 178 |
E Lopez, L Zollo, E Guglielmelli. Teleoperated control based on virtual fixtures for a redundant surgical system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013: 450–455
|
| 179 |
A Kapoor, M Li, RH Taylor. Spatial motion constraints for robot assisted suturing using virtual fixtures. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2005: 89–96
|
| 180 |
M Shahbazi, SF Atashzar, RV Patel. A dual-user teleoperated system with virtual fixtures for robotic surgical training. IEEE International Conference on Robotics and Automation (ICRA) 2013: 3639–3644
|
| 181 |
MA Vitrani, C Poquet, G Morel. Applying virtual fixtures to the distal end of a minimally invasive surgery instrument. IEEE Trans Robot 2017; 33(1): 114–123
https://doi.org/10.1109/TRO.2016.2623332
|
| 182 |
Z Chen, A Malpani, P Chalasani, A Deguet, SS Vedula, P Kazanzides, RH Taylor. Virtual fixture assistance for needle passing and knot tying. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016: 2343–2350
|
| 183 |
GA Fontanelli, GZ Yang, B Siciliano. A comparison of assistive methods for suturing in MIRS. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2018: 4389–4395
|
| 184 |
T Haidegger. Autonomy for surgical robots: concepts and paradigms. IEEE Transactions on Medical Robotics and Bionics 2019; 1(2): 65–76
https://doi.org/10.1109/TMRB.2019.2913282
|
| 185 |
GP Moustris, SC Hiridis, KM Deliparaschos, KM Konstantinidis. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot 2011; 7(4): 375–392
https://doi.org/10.1002/rcs.408
pmid: 21815238
|
| 186 |
M Hoeckelmann, IJ Rudas, P Fiorini, F Kirchne, T Haidegger. Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 2015; 12(5): 61
https://doi.org/10.5772/60133
|
| 187 |
B Münzer, K Schoeffmann, L Böszörmenyi. Content-based processing and analysis of endoscopic images and videos: a survey. Multimedia Tools Appl 2018; 77(1): 1323–1362
https://doi.org/10.1007/s11042-016-4219-z
|
| 188 |
GQ Wei, K Arbter, G Hirzinger. Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation. IEEE Eng Med Biol Mag 1997; 16(1): 40–45
https://doi.org/10.1109/51.566151
pmid: 9058581
|
| 189 |
S Voros, JA Long, P Cinquin. Automatic detection of instruments in laparoscopic images: a first step towards high-level command of robotic endoscopic holders. Int J Robot Res 2007; 26(11–12): 1173–1190
https://doi.org/10.1177/0278364907083395
|
| 190 |
Z Pezzementi, S Voros, GD Hager. Articulated object tracking by rendering consistent appearance parts. IEEE International Conference on Robotics and Automation (ICRA) 2009: 3940–3947
|
| 191 |
M Kranzfelder, A Schneider, A Fiolka, E Schwan, S Gillen, D Wilhelm, R Schirren, S Reiser, B Jensen, H Feussner. Real-time instrument detection in minimally invasive surgery using radiofrequency identification technology. J Surg Res 2013; 185(2): 704–710
https://doi.org/10.1016/j.jss.2013.06.022
pmid: 23859134
|
| 192 |
A Krupa, J Gangloff, C Doignon, MF de Mathelin, G Morel, J Leroy, L Soler, J Marescaux. Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. IEEE Trans Robot Autom 2003; 19(5): 842–853
https://doi.org/10.1109/TRA.2003.817086
|
| 193 |
F Nageotte, P Zanne, C Doignon, M de Mathelin. Visual servoing-based endoscopic path following for robot-assisted laparoscopic surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2006: 2364–2369
|
| 194 |
A Reiter, PK Allen, T Zhao. Feature classification for tracking articulated surgical tools. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2012: 592–600
|
| 195 |
M Ye, L Zhang, S Giannarou, GZ Yang. Real-time 3D tracking of articulated tools for robotic surgery. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2016: 386–394
|
| 196 |
R Wolf, J Duchateau, P Cinquin, S Voros. 3D tracking of laparoscopic instruments using statistical and geometric modeling. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2011: 203–210
|
| 197 |
M Allan, S Ourselin, S Thompson, DJ Hawkes, J Kelly, D Stoyanov. Toward detection and localization of instruments in minimally invasive surgery. IEEE Trans Biomed Eng 2013; 60(4): 1050–1058
https://doi.org/10.1109/TBME.2012.2229278
pmid: 23192482
|
| 198 |
A Reiter, PK Allen, T Zhao. Appearance learning for 3D tracking of robotic surgical tools. Int J Robot Res 2014; 33(2): 342–356
https://doi.org/10.1177/0278364913507796
|
| 199 |
A Reiter, RE Goldman, A Bajo, K Iliopoulos, N Simaan, PK Allen. A learning algorithm for visual pose estimation of continuum robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2011: 2390–2396
|
| 200 |
LC García-Peraza-Herrera, W Li, L Fidon, C Gruijthuijsen, A Devreker, G Attilakos, J Deprest, EV Poorten, D Stoyanov, T Vercauteren, SE Ourselin. Toolnet: holistically-nested real-time segmentation of robotic surgical tools. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017: 5717–5722
|
| 201 |
AA Shvets, A Rakhlin, AA Kalinin, VI Iglovikov. Automatic instrument segmentation in robot-assisted surgery using deep learning. IEEE International Conference on Machine Learning and Applications (ICMLA) 2018: 624–628
|
| 202 |
A Shademan, RS Decker, JD Opfermann, S Leonard, A Krieger, PCW Kim. Supervised autonomous robotic soft tissue surgery. Sci Transl Med 2016; 8(337): 337ra64
https://doi.org/10.1126/scitranslmed.aad9398
pmid: 27147588
|
| 203 |
M Nakamoto, O Ukimura, IS Gill, A Mahadevan, T Miki, M Hashizume, Y Sato. Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. International Workshop on Medical Imaging and Virtual Reality 2008: 359–366
|
| 204 |
MS Nosrati, JM Peyrat, J Abinahed, O Al-Alao, A Al-Ansari, R Abugharbieh, G Hamarneh. Efficient multi-organ segmentation in multi-view endoscopic videos using pre-operative priors. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2014: 324–331
|
| 205 |
GA Bilodeau, Y Shu, F Cheriet. Multistage graph-based segmentation of thoracoscopic images. Comput Med Imaging Graph 2006; 30(8): 437–446
https://doi.org/10.1016/j.compmedimag.2006.07.003
pmid: 17029724
|
| 206 |
MP Tjoa, SM Krishnan, C Kugean, P Wang, R Doraiswaini. Segmentation of clinical endoscopic image based on homogeneity and hue. International Conference of the IEEE Engineering in Medicine and Biology Society 2001: 2665–2668
|
| 207 |
IN Figueiredo, JC Moreno, VBS Prasath, PN Figueiredo. A segmentation model and application to endoscopic images. International Conference Image Analysis and Recognition 2012: 164–171
|
| 208 |
S Wu, M Nakao, T Matsuda. Continuous lung region segmentation from endoscopic images for intra-operative navigation. Comput Biol Med 2017; 87(1): 200–210
https://doi.org/10.1016/j.compbiomed.2017.05.029
pmid: 28601029
|
| 209 |
S Bodenstedt, M Wagner, B Mayer, K Stemmer, H Kenngott, B Müller-Stich, R Dillmann, S Speidel. Image-based laparoscopic bowel measurement. Int J CARS 2016; 11(3): 407–419
https://doi.org/10.1007/s11548-015-1291-1
pmid: 26410840
|
| 210 |
A Chhatkuli, A Bartoli, A Malti, T Collins. Live image parsing in uterine laparoscopy. International Symposium on Biomedical Imaging 2014: 1263–1266
|
| 211 |
S Moccia, S Foti, SM Rossi, I Rota, M Scotti, S Toffoli, LS Mattos, ED Momi, E Frontoni. FCNN-based segmentation of kidney vessels—towards constraints definition for safe robot-assisted nephrectomy. Joint Workshop on New Technologies for Computer/Robot Assisted Surgery 2018
|
| 212 |
J Rosen, B Hannaford, CG Richards, MN Sinanan. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. IEEE Trans Biomed Eng 2001; 48(5): 579–591
https://doi.org/10.1109/10.918597
pmid: 11341532
|
| 213 |
HC Lin, I Shafran, D Yuh, GD Hager. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 2006; 11(5): 220–230
https://doi.org/10.3109/10929080600989189
pmid: 17127647
|
| 214 |
A Murali, S Sen, B Kehoe, A Garg, S McFarland, S Patil, WD Boyd, S Lim, P Abbeel, K Goldberg. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. IEEE International Conference on Robotics and Automation (ICRA) 2015: 1202–1209
|
| 215 |
N Padoy, T Blum, SA Ahmadi, H Feussner, MO Berger, N Navab. Statistical modeling and recognition of surgical workflow. Med Image Anal 2012; 16(3): 632–641
https://doi.org/10.1016/j.media.2010.10.001
pmid: 21195015
|
| 216 |
N Ahmidi, L Tao, S Sefati, Y Gao, C Lea, BB Haro, L Zappella, S Khudanpur, R Vidal, GD Hager. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 2017; 64(9): 2025–2041
https://doi.org/10.1109/TBME.2016.2647680
pmid: 28060703
|
| 217 |
L Tao, E Elhamifar, S Khudanpur, GD Hager, R Vidal. Sparse hidden Markov models for surgical gesture classification and skill evaluation. International Conference on Information Processing in Computer-Assisted Interventions 2012: 167–177
|
| 218 |
L Zappella, B Béjar, G Hager, R Vidal. Surgical gesture classification from video and kinematic data. Med Image Anal 2013; 17(7): 732–745
https://doi.org/10.1016/j.media.2013.04.007
pmid: 23706754
|
| 219 |
F Despinoy, D Bouget, G Forestier, C Penet, N Zemiti, P Poignet, P Jannin. Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 2016; 63(6): 1280–1291
https://doi.org/10.1109/TBME.2015.2493100
pmid: 26513773
|
| 220 |
A Murali, A Garg, S Krishnan, FT Pokorny, P Abbeel, T Darrell, K Goldberg. TSC-DL: unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning. IEEE International Conference on Robotics and Automation (ICRA) 2016: 4150–4157
|
| 221 |
S Krishnan, A Garg, S Patil, C Lea, G Hager, P Abbeel, K Goldberg. Transition state clustering: unsupervised surgical trajectory segmentation for robot learning. Int J Robot Res 2017; 36(13–14): 1595–1618
https://doi.org/10.1177/0278364917743319
|
| 222 |
H Kang, JT Wen. Endobot: a robotic assistant in minimally invasive surgeries. IEEE Int Conf Robot Autom 2001; 2: 2031–2036 (ICRA)
|
| 223 |
F Nageotte, P Zanne, C Doignon, M de Mathelin. Stitching planning in laparoscopic surgery: towards robot-assisted suturing. Int J Robot Res 2009; 28(10): 1303–1321
https://doi.org/10.1177/0278364909101786
|
| 224 |
RC Jackson, MC Çavuşoğlu. Needle path planning for autonomous robotic surgical suturing. IEEE International Conference on Robotics and Automation (ICRA) 2013: 1669–1675
|
| 225 |
S Sen, A Garg, DV Gealy, S McKinley, Y Jen, K Goldberg. Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization. IEEE International Conference on Robotics and Automation (ICRA) 2016: 4178–4185
|
| 226 |
C Staub, T Osa, A Knoll, R Bauernschmitt. Automation of tissue piercing using circular needles and vision guidance for computer aided laparoscopic surgery. IEEE International Conference on Robotics and Automation (ICRA) 2010: 4585–4590
|
| 227 |
S Leonard, KL Wu, Y Kim, A Krieger, PCW Kim. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng 2014; 61(4): 1305–1317
https://doi.org/10.1109/TBME.2014.2302385
pmid: 24658254
|
| 228 |
F Zhong, Y Wang, Z Wang, YH Liu. Dual-arm robotic needle insertion with active tissue deformation for autonomous suturing. IEEE Robot Autom Lett 2019; 4(3): 2669–2676
https://doi.org/10.1109/LRA.2019.2913082
|
| 229 |
H Mayer, F Gomez, D Wierstra, I Nagy, A Knoll, J Schmidhuber. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2006: 543–548
|
| 230 |
H Mayer, I Nagy, D Burschka, A Knoll, EU Braun, R Lange, R Bauernschmitt. Automation of manual tasks for minimally invasive surgery. International Conference on Autonomic and Autonomous Systems (ICAS) 2008: 260–265
|
| 231 |
B Jvd. S Miller, D Duckworth, H Hu, A Wan, X-Y Fu, K Goldberg, P Abbeel. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. IEEE International Conference on Robotics and Automation (ICRA) 2010: 2074–2081
|
| 232 |
J Schulman, A Gupta, S Venkatesan, M Tayson-Frederick, P Abbeel. A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013: 4111–4117
|
| 233 |
B Kehoe, G Kahn, J Mahler, J Kim, A Lee, A Lee, K Nakagawa, S Patil, WD Boyd, P Abbeel, K Goldberg. Autonomous multilateral debridement with the raven surgical robot. IEEE International Conference on Robotics and Automation (ICRA) 2014: 1432–1439
|
| 234 |
HND Le, JD Opfermann, M Kam, S Raghunathan, H Saeidi, S Leonard, JU Kang, A Krieger. Semi-autonomous laparoscopic robotic electro-surgery with a novel 3D Endoscope. IEEE International Conference on Robotics and Automation (ICRA) 2018: 6637–6644
|
| 235 |
KA Nichols, AM Okamura. Autonomous robotic palpation: machine learning techniques to identify hard inclusions in soft tissues. IEEE International Conference on Robotics and Automation (ICRA) 2013: 4384–4389
|
| 236 |
DÁ Nagy, TD Nagy, R Elek, IJ Rudas, T Haidegger. Ontology-based surgical subtask automation, automating blunt dissection. J Med Robot Res 2018; 3(03n04): 1841005
|
| 237 |
TD Nagy, T Haidegger. A DVRK-based framework for surgical subtask automation. Acta Polytech Hung 2019; 16(8): 61–78
|
| 238 |
S Awtar, TT Trutna, JM Nielsen, R Abani, J Geiger. FlexDex™: a minimally invasive surgical tool with enhanced dexterity and intuitive control. J Med Device 2010; 4(3): 035003–035011
https://doi.org/10.1115/1.4002234
|
| 239 |
R Miyazaki, K Hirose, Y Ishikawa, T Kanno, K Kawashima. A master-slave integrated surgical robot with active motion transformation using wrist axis. IEEE/ASME Trans Mechatron 2018; 23(3): 1215–1225
https://doi.org/10.1109/TMECH.2018.2817212
|
| 240 |
ET Roche, MA Horvath, I Wamala, A Alazmani, S-E Song, W Whyte, Z Machaidze, CJ Payne, JC Weaver, G Fishbein, J Kuebler, NV Vasilyev, DJ Mooney, FA Pigula, CJ Walsh. Soft robotic sleeve supports heart function. Sci Transl Med 2017; 9(373): eaaf3925
https://doi.org/10.1126/scitranslmed.aaf3925
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|