Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (3) : 416-437    https://doi.org/10.1007/s11684-021-0852-7
REVIEW
Challenges and opportunities in improving left ventricular remodelling and clinical outcome following surgical and trans-catheter aortic valve replacement
Xu Yu Jin1,2(), Mario Petrou3,4, Jiang Ting Hu2, Ed D Nicol4,6, John R Pepper3,4,5
1. Surgical Echo-Cardiology Services, Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
2. Cardiac Surgical Physiology and Genomics Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
3. Department of Cardiac Surgery, Royal Brompton Hospital, London SW3 6NP, UK
4. National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
5. NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
6. Department of Cardiology, Royal Brompton Hospital, London SW3 6NP, UK
 Download: PDF(3822 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the last half century, surgical aortic valve replacement (SAVR) has evolved to offer a durable and efficient valve haemodynamically, with low procedural complications that allows favourable remodelling of left ventricular (LV) structure and function. The latter has become more challenging among elderly patients, particularly following trans-catheter aortic valve implantation (TAVI). Precise understanding of myocardial adaptation to pressure and volume overloading and its responses to valve surgery requires comprehensive assessments from aortic valve energy loss, valvular-vascular impedance to myocardial activation, force-velocity relationship, and myocardial strain. LV hypertrophy and myocardial fibrosis remains as the structural and morphological focus in this endeavour. Early intervention in asymptomatic aortic stenosis or regurgitation along with individualised management of hypertension and atrial fibrillation is likely to improve patient outcome. Physiological pacing via the His-Purkinje system for conduction abnormalities, further reduction in para-valvular aortic regurgitation along with therapy of angiotensin receptor blockade will improve patient outcome by facilitating hypertrophy regression, LV coordinate contraction, and global vascular function. TAVI leaflet thromboses require anticoagulation while impaired access to coronary ostia risks future TAVI-in-TAVI or coronary interventions. Until comparable long-term durability and the resolution of TAVI related complications become available, SAVR remains the first choice for lower risk younger patients.

Keywords surgical aortic valve replacement      trans-catheter aortic valve implantation      left ventricular hypertrophy and fibrosis      myocardial force-velocity relationship      His-Purkinje pacing      renin-angiotensin system inhibitors      coronary access impairment     
Corresponding Author(s): Xu Yu Jin   
Just Accepted Date: 12 April 2021   Online First Date: 28 May 2021    Issue Date: 18 June 2021
 Cite this article:   
Xu Yu Jin,Mario Petrou,Jiang Ting Hu, et al. Challenges and opportunities in improving left ventricular remodelling and clinical outcome following surgical and trans-catheter aortic valve replacement[J]. Front. Med., 2021, 15(3): 416-437.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0852-7
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I3/416
Fig.1  (A) Left ventricular (LV) pressure-dimension loop constructed from simultaneous recordings of left ventricular cavity pressure and circumferential dimension. The loop area represents the external work done on the circulation by the segment studied. The area of the rectangle (a, b, c, and d) that just encloses the loop represents the maximal possible work that could have been done by the ventricle over the same range of pressure and dimension. Cycle efficiency is defined as the ratio of loop area to that of the rectangle and reflects the efficiency of energy transfer. Loop (B), a typical example of the change in cycle efficiency (CE) before, and loop (C), 20 h after aortic valve replacement (AVR) from a patient with aortic stenosis. The lower cycle efficiency before AVR (52%) is due to abnormal dimension lengthening during isovolumic contraction and dimension shortening during isovolu- mic relaxation. These abnormalities are no longer present 20 h after AVR, and cycle efficiency has increased to 81%. Reprinted with permission from Jin et al., Am J Cardiol 1994; 74: 1142–1146.
Fig.2  (A) Peak velocity of circumferential fiber shortening (peak Vcf) plotted against mean left ventricular (LV) systolic circumferential wall stress, before relief of aortic stenosis. Note that there is an inverse significant linear correlation between the two in coordinate ventricles (closed circles, r = − 0.71, P<0.01) but not in incoordinate ones (open circles, r = − 0.45, P>0.05). Demonstrating the importance of coordination in order to preserve the force-velocity relationship. (B) Peak Vcf plotted against LV cycle efficiency, before relief of aortic stenosis. Note that there is no significant correlation between the two in coordinate ventricles (closed circles, r = − 0.27, P>0.05) but in incoordinate ventricles (open circles) peak Vcf correlated positively (r = − 0.65, P<0.02) with cycle efficiency. Reprinted with permission from Jin et al., Heart, 1996; 76: 495–501.
Fig.3  Event rates are shown over 5 years after TAVR according to baseline severity of LVH (sex-specific categories of no, mild, moderate, or severe LVH) for the composite of CV death or rehospitalization. CV, cardiovascular; LVH, left ventricular hypertrophy; TAVR, transcatheter aortic valve replacement. Modified with permission from Gonzales et al., JACC Cardiovasc Interv, 2020; 13(11): 1329−1339.
Fig.4  Cumulative percentage of the different degree of post-TAVI aortic regurgitation assessed with quantitative aortography. The incidence of mild to moderate AR was ranged in 20% to 70% with average above 50%. Second generation TAVI devices have significantly reduced the incident of moderate to severe AR but not of mild AR except for the Lotus valve. Reprinted from from Modolo et al., JACC Cardiovasc Interv, 2020; 13(11): 1303−1311.
Fig.5  Five-year absolute risk for all-cause mortality after trans-catheter aortic valve replacement (TAVA) for patients with new bundle branch block (BBB), new permanent pacemaker (PPM) or no conduction abnormalities (CA). Note that the BBB group was associated with a constant attrition rate early after TAVR while the PPM group started departure from the No-CA group from 18 months afterword and became inline with BBB group by 5 years. Modified with permission from Jørgensen et al., JACC Cardiovasc Interv, 2019; 12(1): 52−61.
Fig.6  Success rates, reduction in QRS duration and improvement in left ventricular ejection fraction with His-Purkinje conduction system pacing. AV, atrioventricular; EF, ejection fraction; HB, His bundle; HBP, His bundle pacing; HPCSP, His-Purkinje conduction system pacing; LBBAP, left bundle branch area pacing; LBB, left bundle branch; TAVR, transcatheter aortic valve replacement. Reprinted with permission from Vijayaraman et al., J Am Coll Cardiol EP, 2020; 6(6): 649–657.
Fig.7  Kaplan–Meier curves displaying cardiovascular mortality in patients with myocardial fibrosis below (black) and above (red) the median. Patients with significant myocardial fibrosis were associated with much worse survival after TAVI. Modified with permission from Puls et al., Eur Heart J, 2020; 41(20): 1903−1914.
Fig.8  Long-term survival curves after SAVR in propensity matched groups that were stratified by RAS blockade therapy. Patients on the therapy were associated with a better long-term survival. Each symbol represents a death, and vertical bars represent 95% CIs estimated by Kaplan–Meier method. Solid lines are parametric estimates enclosed within a 95% confidence band. RAS, renin–angiotensin system; SAVR, surgical aortic valve replacement. Modified with permission from Goel et al., Ann Intern Med, 2014; 161(10): 699−710.
Fig.9  (A) All-cause 30-day to 1-year mortality after aortic valve replacement as a function of systolic blood pressure is analyzed in Cox proportional hazard models using restricted cubic splines technique. This identified worsening outcome for those with systolic blood pressure below 115−120 mmHg. (B) All-cause 30-day to 1-year mortality after aortic valve replacement as a function of diastolic blood pressure is analyzed in Cox proportional hazard models using restricted cubic splines technique. This identified worsening outcome for those with diastolic blood pressure below 55−60 mmHg. Modified with permission from Lindman et al., J Am Heart Assoc, 2019; 8(21): 100−129.
Fig.10  Concept of impaired coronary access after TAVI-in-TAVI. After the implantation of a single TAVI prosthesis, catheters can reach the coronary ostium through its open-cell stent frame (A and B). The implantation of a second device inside the previous pushes and spreads out the old leaflets along the stent, making it “covered” and not crossable anymore (C and D). The loss of stent free-flow together with the overlap of the 2 metallic stent frames even above the leaflet level will impair catheter navigation inside the aortic root and coronary cannulation. Modified with permission from Buzzatti et al., JACC Cardiovasc Imaging, 2020; 13(2 Pt 1): 508−515.
1 N Glaser, M Persson, V Jackson, MJ Holzmann, A Franco-Cereceda, U Sartipy. Loss in life expectancy after surgical aortic valve replacement: SWEDEHEART Study. J Am Coll Cardiol 2019; 74(1): 26–33 PMID:31272548
https://doi.org/10.1016/j.jacc.2019.04.053
2 R Parikh, AL Goodman, T Barr, JF Sabik, LG Svensson, LL Rodriguez, BW Lytle, RA Grimm, BP Griffin, MY Desai. Outcomes of surgical aortic valve replacement for severe aortic stenosis: Incorporation of left ventricular systolic function and stroke volume index. J Thorac Cardiovasc Surg 2015; 149(6): 1558–66.e1
https://doi.org/10.1016/j.jtcvs.2015.03.008 pmid: 25869085
3 XY Jin, JR Pepper, SJ Brecker, JA Carey, DG Gibson. Early changes in left ventricular function after aortic valve replacement for isolated aortic stenosis. Am J Cardiol 1994; 74(11): 1142–1146
https://doi.org/10.1016/0002-9149(94)90468-5 pmid: 7977075
4 XY Jin, JR Pepper, DG Gibson, MH Yacoub. Early changes in the time course of myocardial contraction after correcting aortic regurgitation. Ann Thorac Surg 1999; 67(1): 139–145
https://doi.org/10.1016/S0003-4975(98)01066-2 pmid: 10086539
5 XY Jin, JR Pepper, DG Gibson. Effects of incoordination on left ventricular force-velocity relation in aortic stenosis. Heart 1996; 76(6): 495–501
https://doi.org/10.1136/hrt.76.6.495 pmid: 9014797
6 S Ito, C Pislaru, WR Miranda, VT Nkomo, HM Connolly, SV Pislaru, PA Pellikka, BR Lewis, BA Carabello, JK Oh. Left ventricular contractility and wall stress in patients with aortic stenosis with preserved or reduced ejection fraction. JACC Cardiovasc Imaging 2020; 13(2 Pt 1): 357–369
https://doi.org/10.1016/j.jcmg.2019.01.009 pmid: 30878438
7 EA Prihadi, EM Vollema, ACT Ng, N Ajmone Marsan, JJ Bax, V Delgado. Determinants and prognostic implications of left ventricular mechanical dispersion in aortic stenosis. Eur Heart J Cardiovasc Imaging 2019; 20(7): 740–748
https://doi.org/10.1093/ehjci/jez004 pmid: 30726895
8 A Slimani, J Melchior, C de Meester, S Pierard, C Roy, M Amzulescu, C Bouzin, F Maes, A Pasquet, AC Pouleur, D Vancraeynest, B Gerber, G El Khoury, JL Vanoverschelde. Relative contribution of afterload and interstitial fibrosis to myocardial function in severe aortic stenosis. JACC Cardiovasc Imaging 2020; 13(2 Pt 2): 589–600
https://doi.org/10.1016/j.jcmg.2019.05.020 pmid: 31326472
9 N Reichek. Afterload and fibrosis: aortic stenosis co-conspirators. JACC Cardiovasc Imaging 2020; 13(2 Pt 2): 601–603
https://doi.org/10.1016/j.jcmg.2019.05.021 pmid: 31326482
10 OM Hess, B Villari, HP Krayenbuehl. Diastolic dysfunction in aortic stenosis. Circulation 1993; 87(5 Suppl): IV73–IV76
pmid: 8485837
11 JJ Thaden, M Balakrishnan, J Sanchez, R Adigun, VT Nkomo, M Eleid, J Dahl, C Scott, S Pislaru, JK Oh, H Schaff, PA Pellikka. Left ventricular filling pressure and survival following aortic valve replacement for severe aortic stenosis. Heart 2020; 106(11): 830–837
https://doi.org/10.1136/heartjnl-2019-315908 pmid: 32066613
12 G Ong, P Pibarot, B Redfors, NJ Weissman, WA Jaber, RR Makkar, S Lerakis, D Gopal, O Khalique, SK Kodali, VH Thourani, S Anwaruddin, T McAndrew, Y Zhang, MC Alu, PS Douglas, RT Hahn. Diastolic function and clinical outcomes after transcatheter aortic valve replacement: PARTNER 2 SAPIEN 3 Registry. J Am Coll Cardiol 2020; 76(25): 2940–2951
https://doi.org/10.1016/j.jacc.2020.10.032 pmid: 33334422
13 B Villari, S Sossalla, Q Ciampi, B Petruzziello, J Turina, J Schneider, M Turina, OM Hess. Persistent diastolic dysfunction late after valve replacement in severe aortic regurgitation. Circulation 2009; 120(23): 2386–2392
https://doi.org/10.1161/CIRCULATIONAHA.108.812685 pmid: 19933939
14 P Gjertsson, K Caidahl, M Farasati, A Odén, O Bech-Hanssen. Preoperative moderate to severe diastolic dysfunction: a novel Doppler echocardiographic long-term prognostic factor in patients with severe aortic stenosis. J Thorac Cardiovasc Surg 2005; 129(4): 890–896
https://doi.org/10.1016/j.jtcvs.2004.09.004 pmid: 15821660
15 O Lund, K Emmertsen, I Dørup, FT Jensen, C Flø. Regression of left ventricular hypertrophy during 10 years after valve replacement for aortic stenosis is related to the preoperative risk profile. Eur Heart J 2003; 24(15): 1437–1446
https://doi.org/10.1016/S0195-668X(03)00316-6 pmid: 12909073
16 SJ Head, MM Mokhles, RL Osnabrugge, P Pibarot, MJ Mack, JJ Takkenberg, AJ Bogers, AP Kappetein. The impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: a systematic review and meta-analysis of 34 observational studies comprising 27 186 patients with 133 141 patient-years. Eur Heart J 2012; 33(12): 1518–1529
https://doi.org/10.1093/eurheartj/ehs003 pmid: 22408037
17 D Mohty, JG Dumesnil, N Echahidi, P Mathieu, F Dagenais, P Voisine, P Pibarot. Impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: influence of age, obesity, and left ventricular dysfunction. J Am Coll Cardiol 2009; 53(1): 39–47
https://doi.org/10.1016/j.jacc.2008.09.022 pmid: 19118723
18 XY Jin, S Westaby. In vivo hemodynamic characteristics of porcine stentless aortic valves. Semin Thorac Cardiovasc Surg 2001; 13(4 Suppl 1): 67–74
pmid: 11805952
19 R Pillai, C Ratnatunga, JL Soon, H Kattach, A Khalil, XY Jin. 3f prosthesis aortic cusp replacement: implantation technique and early results. Asian Cardiovasc Thorac Ann 2010; 18(1): 13–16
https://doi.org/10.1177/0218492309355489 pmid: 20124290
20 XY Jin, S Westaby. Aortic root geometry and stentless porcine valve competence. Semin Thorac Cardiovasc Surg 1999; 11(4 Suppl 1): 145–150
pmid: 10660183
21 YB Liao, YJ Li, L Jun-Li, ZG Zhao, X Wei, JY Tsauo, TY Xiong, YN Xu, Y Feng, M Chen. Incidence, predictors and outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement: a systematic review and meta-analysis. Sci Rep 2017; 7(1): 15014
https://doi.org/10.1038/s41598-017-15396-4 pmid: 29118326
22 P Pibarot, NJ Weissman, WJ Stewart, RT Hahn, BR Lindman, T McAndrew, SK Kodali, MJ Mack, VH Thourani, DC Miller, LG Svensson, HC Herrmann, CR Smith, J Rodés-Cabau, J Webb, S Lim, K Xu, I Hueter, PS Douglas, MB Leon. Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus surgical valve replacement in high-risk patients with severe aortic stenosis: a PARTNER trial cohort—a analysis. J Am Coll Cardiol 2014; 64(13): 1323–1334
https://doi.org/10.1016/j.jacc.2014.06.1195 pmid: 25257633
23 F Poulin, T Yingchoncharoen, WM Wilson, EM Horlick, P Généreux, EM Tuzcu, W Stewart, MD Osten, A Woo, P Thavendiranathan. Impact of prosthesis-patient mismatch on left ventricular myocardial mechanics after transcatheter aortic valve replacement. J Am Heart Assoc 2016; 5(2): e002866
https://doi.org/10.1161/JAHA.115.002866 pmid: 26857069
24 A Ngo, C Hassager, HGH Thyregod, L Søndergaard, PS Olsen, D Steinbrüchel, PB Hansen, J Kjærgaard, M Winther-Jensen, N Ihlemann. Differences in left ventricular remodelling in patients with aortic stenosis treated with transcatheter aortic valve replacement with corevalve prostheses compared to surgery with porcine or bovine biological prostheses. Eur Heart J Cardiovasc Imaging 2018; 19(1): 39–46
https://doi.org/10.1093/ehjci/jew321 pmid: 28158582
25 XY Jin, ZM Zhang, DG Gibson, MH Yacoub, JR Pepper. Effects of valve substitute on changes in left ventricular function and hypertrophy after aortic valve replacement. Ann Thorac Surg 1996; 62(3): 683–690
https://doi.org/10.1016/S0003-4975(96)00438-9 pmid: 8783993
26 B Kunadian, K Vijayalakshmi, AR Thornley, MA de Belder, S Hunter, S Kendall, R Graham, M Stewart, J Thambyrajah, J Dunning. Meta-analysis of valve hemodynamics and left ventricular mass regression for stentless versus stented aortic valves. Ann Thorac Surg 2007; 84(1): 73–78
https://doi.org/10.1016/j.athoracsur.2007.02.057 pmid: 17588387
27 XY Jin, C Ratnatunga. Invited commentary. Ann Thorac Surg 2007; 84(1): 78–79
https://doi.org/10.1016/j.athoracsur.2007.04.039 pmid: 17588388
28 XY Jin. Elucidation of cardiac physiology in aortic valve replacement: what should we know? J Heart Valve Dis 2004; 13(Suppl 1): S70–S75
pmid: 15225009
29 JM Beach, T Mihaljevic, J Rajeswaran, T Marwick, ST Edwards, ER Nowicki, J Thomas, LG Svensson, B Griffin, AM Gillinov, EH Blackstone. Ventricular hypertrophy and left atrial dilatation persist and are associated with reduced survival after valve replacement for aortic stenosis. J Thorac Cardiovasc Surg 2014; 147(1): 362–369.e8 PMID:23312984
https://doi.org/10.1016/j.jtcvs.2012.12.016
30 H Gonzales, PS Douglas, P Pibarot, RT Hahn, OK Khalique, WA Jaber, P Cremer, NJ Weissman, FM Asch, Y Zhang, ZM Gertz, S Elmariah, MA Clavel, VH Thourani, M Daubert, MC Alu, MB Leon, BR Lindman. Left ventricular hypertrophy and clinical outcomes over 5 years after TAVR: an analysis of the PARTNER trials and registries. JACC Cardiovasc Interv 2020; 13(11): 1329–1339
https://doi.org/10.1016/j.jcin.2020.03.011 pmid: 32499024
31 KH Chau, PS Douglas, P Pibarot, RT Hahn, OK Khalique, WA Jaber, P Cremer, NJ Weissman, FM Asch, Y Zhang, ZM Gertz, S Elmariah, MA Clavel, VH Thourani, M Daubert, MC Alu, MB Leon, BR Lindman. Regression of left ventricular mass after transcatheter aortic valve replacement: the PARTNER trials and registries. J Am Coll Cardiol 2020; 75(19): 2446–2458
https://doi.org/10.1016/j.jacc.2020.03.042 pmid: 32408979
32 XY Jin, R Pillai, S Westaby. Medium-term determinants of left ventricular mass index after stentless aortic valve replacement. Ann Thorac Surg 1999; 67(2): 411–416
https://doi.org/10.1016/S0003-4975(98)01134-5 pmid: 10197662
33 BM van Dalen, A Tzikas, OI Soliman, F Kauer, HJ Heuvelman, WB Vletter, FJ ten Cate, ML Geleijnse. Left ventricular twist and untwist in aortic stenosis. Int J Cardiol 2011; 148(3): 319–324
https://doi.org/10.1016/j.ijcard.2009.11.022 pmid: 20036018
34 S Carasso, O Cohen, D Mutlak, Z Adler, J Lessick, D Aronson, SA Reisner, H Rakowski, G Bolotin, Y Agmon. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol 2011; 107(7): 1052–1057
https://doi.org/10.1016/j.amjcard.2010.11.032 pmid: 21296330
35 CG Meyer, M Frick, S Lotfi, E Altiok, R Koos, A Kirschfink, M Lehrke, R Autschbach, R Hoffmann. Regional left ventricular function after transapical vs. transfemoral transcatheter aortic valve implantation analysed by cardiac magnetic resonance feature tracking. Eur Heart J Cardiovasc Imaging 2014; 15(10): 1168–1176
https://doi.org/10.1093/ehjci/jeu103 pmid: 24906997
36 MD Deng, X Wei, XL Zhang, XD Li, GY Liu, D Zhu, YQ Guo, H Tang. Changes in left ventricular function in patients with aortic regurgitation 12 months after transapical transcatheter aortic valve implantation. Int J Cardiovasc Imaging 2019; 35(1): 99–105
https://doi.org/10.1007/s10554-018-1445-7 pmid: 30264363
37 HB Ribeiro, A Dahou, M Urena, JL Carrasco, S Mohammadi, D Doyle, F Le Ven, R Allende, I Amat-Santos, JM Paradis, R DeLarochellière, R Puri, O Abdul-Jawad Altisent, M del Trigo, F Campelo-Parada, P Pibarot, É Dumont, J Rodés-Cabau. Myocardial injury after transaortic versus transapical transcatheter aortic valve replacement. Ann Thorac Surg 2015; 99(6): 2001–2009 PMID:25863732
https://doi.org/10.1016/j.athoracsur.2015.01.029
38 HB Ribeiro, L Nombela-Franco, AJ Muñoz-García, PA Lemos, I Amat-Santos, V Serra, FS de Brito Jr, A Abizaid, R Sarmento-Leite, R Puri, AN Cheema, M Ruel, F Nietlispach, F Maisano, C Moris, R Del Valle, M Urena, O Abdul Jawad Altisent, M Del Trigo, F Campelo-Parada, P Jimenez Quevedo, JH Alonso-Briales, H Gutiérrez, B García Del Blanco, MA Perin, D Siqueira, G Bernardi, É Dumont, M Côté, P Pibarot, J Rodés-Cabau. Predictors and impact of myocardial injury after transcatheter aortic valve replacement: a multicenter registry. J Am Coll Cardiol 2015; 66(19): 2075–2088
https://doi.org/10.1016/j.jacc.2015.08.881 pmid: 26541917
39 S Elmariah, WF Fearon, I Inglessis, GJ Vlahakes, BR Lindman, MC Alu, A Crowley, S Kodali, MB Leon, L Svensson, P Pibarot, RT Hahn, VH Thourani, IF Palacios, DC Miller, PS Douglas, JJ; PARTNER Trial Investigators and PARTNER Publications Office Passeri. Transapical transcatheter aortic valve replacement is associated with increased cardiac mortality in patients with left ventricular dysfunction: insights from the PARTNER I trial. JACC Cardiovasc Interv 2017; 10(23): 2414–2422
https://doi.org/10.1016/j.jcin.2017.09.023 pmid: 29217004
40 R Modolo, CC Chang, M Abdelghani, H Kawashima, M Ono, H Tateishi, Y Miyazaki, M Pighi, JJ Wykrzykowska, RJ de Winter, A Ruck, A Chieffo, MS van Mourik, K Yamaji, G Richardt, FS de Brito Jr, PA Lemos, B Al-Kassou, N Piazza, D Tchetche, JM Sinning, M Abdel-Wahab, O Soliman, L Søndergaard, D Mylotte, Y Onuma, NM Van Mieghem, PW Serruys. Quantitative assessment of acute regurgitation following TAVR: a multicenter pooled analysis of 2,258 valves. JACC Cardiovasc Interv 2020; 13(11): 1303–1311
https://doi.org/10.1016/j.jcin.2020.03.002 pmid: 32499020
41 R Rampat, MZ Khawaja, J Byrne, P MacCarthy, DJ Blackman, A Krishnamurthy, A Gunarathne, J Kovac, A Banning, R Kharbanda, S Firoozi, S Brecker, S Redwood, V Bapat, M Mullen, S Aggarwal, G Manoharan, MS Spence, S Khogali, M Dooley, J Cockburn, A de Belder, U Trivedi, D Hildick-Smith. Transcatheter aortic valve replacement using the repositionable LOTUS valve: United Kingdom experience. JACC Cardiovasc Interv 2016; 9(4): 367–372
https://doi.org/10.1016/j.jcin.2015.12.012 pmid: 26892082
42 SS Kalra, S Firoozi, J Yeh, DJ Blackman, S Rashid, S Davies, N Moat, M Dalby, T Kabir, SS Khogali, RA Anderson, PH Groves, D Mylotte, D Hildick-Smith, R Rampat, J Kovac, A Gunarathne, JC Laborde, SJ Brecker. Initial experience of a second-generation self-expanding transcatheter aortic valve: the UK & Ireland Evolut R Implanters’ Registry. JACC Cardiovasc Interv 2017; 10(3): 276–282
https://doi.org/10.1016/j.jcin.2016.11.025 pmid: 28183467
43 H Thiele, T Kurz, HJ Feistritzer, G Stachel, P Hartung, I Eitel, C Marquetand, H Nef, O Doerr, A Lauten, U Landmesser, M Abdel-Wahab, M Sandri, D Holzhey, M Borger, H Ince, A Öner, R Meyer-Saraei, H Wienbergen, A Fach, N Frey, IR König, R Vonthein, Y Rückert, AK Funkat, S de Waha-Thiele, S Desch. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial. Eur Heart J 2020; 41(20): 1890–1899
https://doi.org/10.1093/eurheartj/ehaa036 pmid: 32049283
44 F Poulin, S Carasso, EM Horlick, H Rakowski, KD Lim, H Finn, CM Feindel, M Greutmann, MD Osten, RJ Cusimano, A Woo. Recovery of left ventricular mechanics after transcatheter aortic valve implantation: effects of baseline ventricular function and postprocedural aortic regurgitation. J Am Soc Echocardiogr 2014; 27(11): 1133–1142
https://doi.org/10.1016/j.echo.2014.07.001 pmid: 25125314
45 SK Kodali, MR Williams, CR Smith, LG Svensson, JG Webb, RR Makkar, GP Fontana, TM Dewey, VH Thourani, AD Pichard, M Fischbein, WY Szeto, S Lim, KL Greason, PS Teirstein, SC Malaisrie, PS Douglas, RT Hahn, B Whisenant, A Zajarias, D Wang, JJ Akin, WN Anderson, MB; the PARTNER Trial Investigators Leon. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 2012; 366(18): 1686–1695
https://doi.org/10.1056/NEJMoa1200384 pmid: 22443479
46 N Yoshijima, R Yanagisawa, H Hase, M Tanaka, H Tsuruta, H Shimizu, K Fukuda, T Naganuma, K Mizutani, M Araki, N Tada, F Yamanaka, S Shirai, M Tabata, H Ueno, K Takagi, A Higashimori, Y Watanabe, M Yamamoto, K; the OCEAN‐TAVI investigators Hayashida. Update on the clinical impact of mild aortic regurgitation after transcatheter aortic valve implantation: insights from the Japanese multicenter OCEAN-TAVI registry. Catheter Cardiovasc Interv 2020; 95(1): 35–44
https://doi.org/10.1002/ccd.28279 pmid: 30977256
47 KL Greason, BD Lahr, JM Stulak, YM Cha, RF Rea, HV Schaff, JA Dearani. Long-term mortality effect of early pacemaker implantation after surgical aortic valve replacement. Ann Thorac Surg 2017; 104(4): 1259–1264
https://doi.org/10.1016/j.athoracsur.2017.01.083 pmid: 28433222
48 TT Poels, P Houthuizen, LA Van Garsse, MA Soliman Hamad, JG Maessen, FW Prinzen, AH Van Straten. Frequency and prognosis of new bundle branch block induced by surgical aortic valve replacement. Eur J Cardiothorac Surg 2015; 47(2): e47–e53
https://doi.org/10.1093/ejcts/ezu435 pmid: 25473031
49 YM Hwang, J Kim, JH Lee, M Kim, J Hwang, JB Kim, SH Jung, SJ Choo, GB Nam, KJ Choi, CH Chung, JW Lee, YH Kim. Conduction disturbance after isolated surgical aortic valve replacement in degenerative aortic stenosis. J Thorac Cardiovasc Surg 2017; 154(5): 1556–1565.e1
https://doi.org/10.1016/j.jtcvs.2017.05.101 pmid: 28712585
50 MA Romano, M Koeckert, MA Mumtaz, FN Slachman, HJ Patel, WR Chitwood Jr, GR Barnhart, EA; the TRANSFORM Trial Investigators Grossi. Permanent pacemaker implantation after rapid deployment aortic valve replacement. Ann Thorac Surg 2018; 106(3): 685–690
https://doi.org/10.1016/j.athoracsur.2018.03.055 pmid: 29705366
51 SH Sohn, MJ Jang, HY Hwang, KH Kim. Rapid deployment or sutureless versus conventional bioprosthetic aortic valve replacement: a meta-analysis. J Thorac Cardiovasc Surg 2018; 155(6): 2402–2412.e5
https://doi.org/10.1016/j.jtcvs.2018.01.084 pmid: 29548584
52 I Coti, C Schukro, F Drevinja, T Haberl, A Kaider, A Kocher, G Laufer, M Andreas. Conduction disturbances following surgical aortic valve replacement with a rapid-deployment bioprosthesis. J Thorac Cardiovasc Surg. 2020; [Epub ahead of print] doi: 10.1016/j.jtcvs.2020.01.083 .
https://doi.org/10.1016/j.jtcvs.2020.01.083
53 KY Lam, F Akca, NJ Verberkmoes, C van Dijk, A Claessens, MA Soliman Hamad, AHM van Straten. Conduction disorders and impact on survival after sutureless aortic valve replacement compared to conventional stented bioprostheses. Eur J Cardiothorac Surg 2019; 55(6): 1168–1173
https://doi.org/10.1093/ejcts/ezy417 pmid: 30561575
54 JM Dizon, TM Nazif, PL Hess, A Biviano, H Garan, PS Douglas, S Kapadia, V Babaliaros, HC Herrmann, WY Szeto, H Jilaihawi, WF Fearon, EM Tuzcu, AD Pichard, R Makkar, M Williams, RT Hahn, K Xu, CR Smith, MB Leon, SK; the PARTNER Publications Office Kodali. Chronic pacing and adverse outcomes after transcatheter aortic valve implantation. Heart 2015; 101(20): 1665–1671
https://doi.org/10.1136/heartjnl-2015-307666 pmid: 26261157
55 LG Klaeboe, PH Brekke, ØH Lie, L Aaberge, KH Haugaa, T Edvardsen. Classical mechanical dyssynchrony is rare in transcatheter aortic valve implantation-induced left bundle branch block. Eur Heart J Cardiovasc Imaging 2019; 20(3): 271–278
https://doi.org/10.1093/ehjci/jey127 pmid: 30247533
56 S Calle, M Coeman, K Desmet, T De Backer, M De Buyzere, J De Pooter, F Timmermans. Septal flash is a prevalent and early dyssynchrony marker in transcatheter aortic valve replacement-induced left bundle branch block. Int J Cardiovasc Imaging 2020; 36(6): 1041–1050
https://doi.org/10.1007/s10554-020-01791-y pmid: 32056088
57 LG Klaeboe, PH Brekke, L Aaberge, K Haugaa, T Edvardsen. Impact of transcatheter aortic valve implantation on mechanical dispersion. Open Heart 2020; 7(1): e001199
https://doi.org/10.1136/openhrt-2019-001199 pmid: 32153792
58 L Faroux, S Chen, G Muntané-Carol, A Regueiro, F Philippon, L Sondergaard, TH Jørgensen, J Lopez-Aguilera, S Kodali, M Leon, T Nazif, J Rodés-Cabau. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis. Eur Heart J 2020; 41(29): 2771–2781
https://doi.org/10.1093/eurheartj/ehz924 pmid: 31899484
59 TH Jørgensen, O De Backer, TA Gerds, G Bieliauskas, JH Svendsen, L Søndergaard. Mortality and heart failure hospitalization in patients with conduction abnormalities after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2019; 12(1): 52–61
https://doi.org/10.1016/j.jcin.2018.10.053 pmid: 30621978
60 G Muntané-Carol, L Guimaraes, AN Ferreira-Neto, J Wintzer-Wehekind, L Junquera, D Del Val, L Faroux, F Philippon, J Rodés-Cabau. How does new-onset left bundle branch block affect the outcomes of transcatheter aortic valve repair? Expert Rev Med Devices 2019; 16(7): 589–602
https://doi.org/10.1080/17434440.2019.1624161 pmid: 31172837
61 P Moriña-Vázquez, MT Moraleda-Salas, AJ Manovel-Sánchez, JM Fernández-Gómez, Á Arce-Léon, J Venegas-Gamero, R Barba-Pichardo. Early improvement of left ventricular ejection fraction by cardiac resynchronization through His bundle pacing in patients with heart failure. Europace 2020; 22(1): 125–132
pmid: 31746996
62 PS Sharma, FA Subzposh, KA Ellenbogen, P Vijayaraman. Permanent His-bundle pacing in patients with prosthetic cardiac valves. Heart Rhythm 2017; 14(1): 59–64
https://doi.org/10.1016/j.hrthm.2016.09.016 pmid: 27663607
63 J De Pooter, A Gauthey, S Calle, A Noel, J Kefer, S Marchandise, M Coeman, T Philipsen, P Kayaert, P Gheeraert, L Jordaens, F Timmermans, F Van Heuverswyn, P Bordachar, JB le Polain de Waroux. Feasibility of His-bundle pacing in patients with conduction disorders following transcatheter aortic valve replacement. J Cardiovasc Electrophysiol 2020; 31(4): 813–821
https://doi.org/10.1111/jce.14371 pmid: 31990128
64 P Vijayaraman, Ó Cano, JS Koruth, FA Subzposh, S Nanda, J Pugliese, V Ravi, A Naperkowski, PS Sharma. His-Purkinje conduction system pacing following transcatheter aortic valve replacement: feasibility and safety. JACC Clin Electrophysiol 2020; 6(6): 649–657
https://doi.org/10.1016/j.jacep.2020.02.010 pmid: 32553214
65 R Knöll, G Iaccarino, G Tarone, D Hilfiker-Kleiner, J Bauersachs, AF Leite-Moreira, PH Sugden, JL Balligand. Towards a re-definition of ‘cardiac hypertrophy’ through a rational characterization of left ventricular phenotypes: a position paper of the Working Group ‘Myocardial Function’ of the ESC. Eur J Heart Fail 2011; 13(8): 811–819
https://doi.org/10.1093/eurjhf/hfr071 pmid: 21708908
66 G Olivetti, M Melissari, JM Capasso, P Anversa. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991; 68(6): 1560–1568
https://doi.org/10.1161/01.RES.68.6.1560 pmid: 2036710
67 AH van Straten, MA Soliman Hamad, KC Peels, KC van den Broek, JF ter Woorst, TW Elenbaas, JM van Dantzig. Increased septum wall thickness in patients undergoing aortic valve replacement predicts worse late survival. Ann Thorac Surg 2012; 94(1): 66–71
https://doi.org/10.1016/j.athoracsur.2012.03.027 pmid: 22607789
68 M Puls, BE Beuthner, R Topci, A Vogelgesang, A Bleckmann, M Sitte, T Lange, SJ Backhaus, A Schuster, T Seidler, I Kutschka, K Toischer, EM Zeisberg, C Jacobshagen, G Hasenfuß. Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis. Eur Heart J 2020; 41(20): 1903–1914
https://doi.org/10.1093/eurheartj/ehaa033 pmid: 32049275
69 F Weidemann, S Herrmann, S Störk, M Niemann, S Frantz, V Lange, M Beer, S Gattenlöhner, W Voelker, G Ertl, JM Strotmann. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009; 120(7): 577–584
https://doi.org/10.1161/CIRCULATIONAHA.108.847772 pmid: 19652094
70 S Herrmann, B Fries, T Salinger, D Liu, K Hu, D Gensler, J Strotmann, M Christa, M Beer, S Gattenlöhner, S Störk, W Voelker, C Bening, K Lorenz, R Leyh, S Frantz, G Ertl, F Weidemann, P Nordbeck. Myocardial fibrosis predicts 10-year survival in patients undergoing aortic valve replacement. Circ Cardiovasc Imaging 2018; 11(8): e007131
https://doi.org/10.1161/CIRCIMAGING.117.007131 pmid: 30354492
71 IC Hwang, HK Kim, JB Park, EA Park, W Lee, SP Lee, YJ Kim, DW Sohn, JK Oh. Aortic valve replacement-induced changes in native T1 are related to prognosis in severe aortic stenosis: T1 mapping cardiac magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging 2020; 21(6): 653–663
https://doi.org/10.1093/ehjci/jez201 pmid: 31377777
72 CW Chin, D Messika-Zeitoun, AS Shah, G Lefevre, S Bailleul, EN Yeung, M Koo, S Mirsadraee, T Mathieu, SI Semple, NL Mills, A Vahanian, DE Newby, MR Dweck. A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. Eur Heart J 2016; 37(8): 713–723
https://doi.org/10.1093/eurheartj/ehv525 pmid: 26491110
73 LG Kearney, K Lu, M Ord, SK Patel, K Profitis, G Matalanis, LM Burrell, PM Srivastava. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 2012; 13(10): 827–833
https://doi.org/10.1093/ehjci/jes115 pmid: 22736713
74 R Dulgheru, J Magne, L Davin, A Nchimi, C Oury, LA Pierard, P Lancellotti. Left ventricular regional function and maximal exercise capacity in aortic stenosis. Eur Heart J Cardiovasc Imaging 2016; 17(2): 217–224
https://doi.org/10.1093/ehjci/jev147 pmid: 26060203
75 S Levy-Neuman, V Meledin, G Gandelman, S Goland, L Zilberman, O Edri, N Shneider, N Abaeh, T Bdolah-Abram, J George, S Shimoni. The association between longitudinal strain at rest and stress and outcome in asymptomatic patients with moderate and severe aortic stenosis. J Am Soc Echocardiogr 2019; 32(6): 722–729
https://doi.org/10.1016/j.echo.2019.01.019 pmid: 30926404
76 D Zhu, S Ito, WR Miranda, VT Nkomo, SV Pislaru, HR Villarraga, PA Pellikka, DJ Crusan, JK Oh. Left ventricular global longitudinal strain is associated with long-term outcomes in moderate aortic stenosis. Circ Cardiovasc Imaging 2020; 13(4): e009958
https://doi.org/10.1161/CIRCIMAGING.119.009958 pmid: 32268808
77 MF Eleid, P Sorajja, HI Michelena, JF Malouf, CG Scott, PA Pellikka. Flow-gradient patterns in severe aortic stenosis with preserved ejection fraction: clinical characteristics and predictors of survival. Circulation 2013; 128(16): 1781–1789
https://doi.org/10.1161/CIRCULATIONAHA.113.003695 pmid: 24048203
78 Q Zheng, AH Djohan, E Lim, ZP Ding, LH Ling, L Shi, ES Chan, CWL Chin. Effects of aortic valve replacement on severe aortic stenosis and preserved systolic function: systematic review and network meta-analysis. Sci Rep 2017; 7(1): 5092
https://doi.org/10.1038/s41598-017-05021-9 pmid: 28698585
79 A Altes, A Ringle, Y Bohbot, O Bouchot, L Appert, RA Guerbaai, M Gun, PV Ennezat, C Tribouilloy, S Maréchaux. Clinical significance of energy loss index in patients with low-gradient severe aortic stenosis and preserved ejection fraction. Eur Heart J Cardiovasc Imaging 2020; 21(6): 608–615
https://doi.org/10.1093/ehjci/jeaa010 pmid: 32031603
80 Z Hachicha, JG Dumesnil, P Pibarot. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol 2009; 54(11): 1003–1011
https://doi.org/10.1016/j.jacc.2009.04.079 pmid: 19729117
81 Z Hachicha, JG Dumesnil, P Bogaty, P Pibarot. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007; 115(22): 2856–2864
https://doi.org/10.1161/CIRCULATIONAHA.106.668681 pmid: 17533183
82 D Cramariuc, G Cioffi, AE Rieck, RB Devereux, EM Staal, S Ray, K Wachtell, E Gerdts. Low-flow aortic stenosis in asymptomatic patients: valvular-arterial impedance and systolic function from the SEAS Substudy. JACC Cardiovasc Imaging 2009; 2(4): 390–399
https://doi.org/10.1016/j.jcmg.2008.12.021 pmid: 19580719
83 RJ Nuis, JA Goudzwaard, MJAG de Ronde-Tillmans, H Kroon, JF Ooms, MP van Wiechen, ML Geleijnse, F Zijlstra, J Daemen, NM Van Mieghem, FUS Mattace-Raso, MJ Lenzen, PPT de Jaegere. Impact of valvulo-arterial impedance on long-term quality of life and exercise performance after transcatheter aortic valve replacement. Circ Cardiovasc Interv 2020; 13(1): e008372
https://doi.org/10.1161/CIRCINTERVENTIONS.119.008372 pmid: 31937136
84 DH Kang, SJ Park, SA Lee, S Lee, DH Kim, HK Kim, SC Yun, GR Hong, JM Song, CH Chung, JK Song, JW Lee, SW Park. Early surgery or conservative care for asymptomatic aortic stenosis. N Engl J Med 2020; 382(2): 111–119
https://doi.org/10.1056/NEJMoa1912846 pmid: 31733181
85 P Lancellotti, MA Vannan. Timing of intervention in aortic stenosis. N Engl J Med 2020; 382(2): 191–193
https://doi.org/10.1056/NEJMe1914382 pmid: 31733179
86 MA Nadir, L Wei, DH Elder, R Libianto, TK Lim, M Pauriah, SD Pringle, AD Doney, AM Choy, AD Struthers, CC Lang. Impact of renin-angiotensin system blockade therapy on outcome in aortic stenosis. J Am Coll Cardiol 2011; 58(6): 570–576
https://doi.org/10.1016/j.jacc.2011.01.063 pmid: 21798417
87 S Bull, M Loudon, JM Francis, J Joseph, S Gerry, TD Karamitsos, BD Prendergast, AP Banning, S Neubauer, SG Myerson. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor ramipril in aortic stenosis (RIAS trial). Eur Heart J Cardiovasc Imaging 2015; 16(8): 834–841
https://doi.org/10.1093/ehjci/jev043 pmid: 25796267
88 Q Ding, Z Zhang, H Liu, H Nie, M Berguson, JE Goldhammer, N Young, D Boyd, R Morris, J Sun. Perioperative use of renin-angiotensin system inhibitors and outcomes in patients undergoing cardiac surgery. Nat Commun 2019; 10(1): 4202
https://doi.org/10.1038/s41467-019-11678-9 pmid: 31519895
89 JS Dahl, L Videbaek, MK Poulsen, PA Pellikka, K Veien, LI Andersen, T Haghfelt, JE Møller. Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis. Am J Cardiol 2010; 106(5): 713–719
https://doi.org/10.1016/j.amjcard.2010.04.028 pmid: 20723651
90 U Benedetto, G Melina, S Refice, R di Bartolomeo, A Roscitano, E Angeloni, R Sinatra. Dual renin-angiotensin system blockade for patients with prosthesis-patient mismatch. Ann Thorac Surg 2010; 90(6): 1899–1903
https://doi.org/10.1016/j.athoracsur.2010.08.023 pmid: 21095333
91 SS Goel, O Aksoy, S Gupta, PL Houghtaling, EM Tuzcu, T Marwick, T Mihaljevic, L Svensson, EH Blackstone, BP Griffin, WJ Stewart, B Barzilai, V Menon, SR Kapadia. Renin-angiotensin system blockade therapy after surgical aortic valve replacement for severe aortic stenosis: a cohort study. Ann Intern Med 2014; 161(10): 699–710
https://doi.org/10.7326/M13-1505 pmid: 25402513
92 J Magne, B Guinot, A Le Guyader, E Bégot, JP Marsaud, D Mohty, V Aboyans. Relation between renin-angiotensin system blockers and survival following isolated aortic valve replacement for aortic stenosis. Am J Cardiol 2018; 121(4): 455–460
https://doi.org/10.1016/j.amjcard.2017.11.013 pmid: 29254679
93 T Ochiai, S Saito, F Yamanaka, K Shishido, Y Tanaka, T Yamabe, S Shirai, N Tada, M Araki, T Naganuma, Y Watanabe, M Yamamoto, K Hayashida. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation. Heart 2018; 104(8): 644–651
https://doi.org/10.1136/heartjnl-2017-311738 pmid: 28986405
94 T Inohara, P Manandhar, AS Kosinski, RA Matsouaka, S Kohsaka, RJ Mentz, VH Thourani, JD Carroll, AJ Kirtane, JE Bavaria, DJ Cohen, TL Kiefer, JG Gaca, SR Kapadia, ED Peterson, S Vemulapalli. Association of renin-angiotensin inhibitor treatment with mortality and heart failure readmission in patients with transcatheter aortic valve replacement. JAMA 2018; 320(21): 2231–2241
https://doi.org/10.1001/jama.2018.18077 pmid: 30512100
95 T Rodriguez-Gabella, P Catalá, AJ Muñoz-García, L Nombela-Franco, R Del Valle, E Gutiérrez, A Regueiro, VA Jimenez-Diaz, HB Ribeiro, F Rivero, JA Fernandez-Diaz, P Pibarot, JH Alonso-Briales, G Tirado-Conte, C Moris, F Diez Del Hoyo, G Jiménez-Britez, N Zaderenko, F Alfonso, I Gómez, M Carrasco-Moraleja, J Rodés-Cabau, JA San Román Calvar, IJ Amat-Santos. Renin-angiotensin system inhibition following transcatheter aortic valve replacement. J Am Coll Cardiol 2019; 74(5): 631–641
https://doi.org/10.1016/j.jacc.2019.05.055 pmid: 31370954
96 AB Biviano, T Nazif, J Dizon, H Garan, J Fleitman, D Hassan, S Kapadia, V Babaliaros, K Xu, R Parvataneni, J Rodes-Cabau, WY Szeto, WF Fearon, D Dvir, T Dewey, M Williams, MJ Mack, JG Webb, DC Miller, CR Smith, MB Leon, S Kodali. Atrial fibrillation is associated with increased mortality in patients undergoing transcatheter aortic valve replacement: insights from the placement of aortic transcatheter valve (PARTNER) trial. Circ Cardiovasc Interv 2016; 9(1): e002766
https://doi.org/10.1161/CIRCINTERVENTIONS.115.002766 pmid: 26733582
97 A Mentias, M Saad, S Girotra, M Desai, A Elbadawi, A Briasoulis, P Alvarez, M Alqasrawi, M Giudici, S Panaich, PA Horwitz, H Jneid, S Kapadia, M Vaughan Sarrazin. Impact of pre-existing and new-onset atrial fibrillation on outcomes after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2019; 12(21): 2119–2129
https://doi.org/10.1016/j.jcin.2019.06.019 pmid: 31629743
98 M Gaudino, F Alessandrini, F Glieca, N Luciani, C Cellini, C Pragliola, M Morelli, C Canosa, G Nasso, G Possati. Survival after aortic valve replacement for aortic stenosis: does left ventricular mass regression have a clinical correlate? Eur Heart J 2005; 26(1): 51–57
https://doi.org/10.1093/eurheartj/ehi012 pmid: 15615799
99 S Westaby, XY Jin, T Katsumata, A Arifi, P Braidley. Valve replacement with a stentless bioprosthesis: versatility of the porcine aortic root. J Thorac Cardiovasc Surg 1998; 116(3): 477–484
https://doi.org/10.1016/S0022-5223(98)70014-5 pmid: 9731790
100 K Imanaka, O Kohmoto, S Nishimura, Y Yokote, S Kyo. Impact of postoperative blood pressure control on regression of left ventricular mass following valve replacement for aortic stenosis. Eur J Cardiothorac Surg 2005; 27(6): 994–999
https://doi.org/10.1016/j.ejcts.2005.02.034 pmid: 15896607
101 BR Lindman, K Goel, J Bermejo, J Beckman, J O’Leary, CM Barker, C Kaiser, JL Cavalcante, S Elmariah, J Huang, GL Hickey, DH Adams, JJ Popma, MJ Reardon. Lower blood pressure after transcatheter or surgical aortic valve replacement is associated with increased mortality. J Am Heart Assoc 2019; 8(21): e014020
https://doi.org/10.1161/JAHA.119.014020 pmid: 31665959
102 MJ Mack, MB Leon, VH Thourani, R Makkar, SK Kodali, M Russo, SR Kapadia, SC Malaisrie, DJ Cohen, P Pibarot, J Leipsic, RT Hahn, P Blanke, MR Williams, JM McCabe, DL Brown, V Babaliaros, S Goldman, WY Szeto, P Genereux, A Pershad, SJ Pocock, MC Alu, JG Webb, CR; the PARTNER 3 Investigators Smith. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 2019; 380(18): 1695–1705
https://doi.org/10.1056/NEJMoa1814052 pmid: 30883058
103 JJ Popma, GM Deeb, SJ Yakubov, M Mumtaz, H Gada, D O’Hair, T Bajwa, JC Heiser, W Merhi, NS Kleiman, J Askew, P Sorajja, J Rovin, SJ Chetcuti, DH Adams, PS Teirstein, GL Zorn 3rd, JK Forrest, D Tchétché, J Resar, A Walton, N Piazza, B Ramlawi, N Robinson, G Petrossian, TG Gleason, JK Oh, MJ Boulware, H Qiao, AS Mugglin, MJ; the Evolut Low Risk Trial Investigators Reardon. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 2019; 380(18): 1706–1715
https://doi.org/10.1056/NEJMoa1816885 pmid: 30883053
104 DJ Blackman, S Saraf, PA MacCarthy, A Myat, SG Anderson, CJ Malkin, MS Cunnington, K Somers, P Brennan, G Manoharan, J Parker, O Aldalati, SJ Brecker, C Dowling, SP Hoole, S Dorman, M Mullen, S Kennon, M Jerrum, P Chandrala, DH Roberts, J Tay, SN Doshi, PF Ludman, TA Fairbairn, J Crowe, RD Levy, AP Banning, N Ruparelia, MS Spence, D Hildick-Smith. Long-term durability of transcatheter aortic valve prostheses. J Am Coll Cardiol 2019; 73(5): 537–545
https://doi.org/10.1016/j.jacc.2018.10.078 pmid: 30732706
105 L Søndergaard, N Ihlemann, D Capodanno, TH Jørgensen, H Nissen, BJ Kjeldsen, Y Chang, DA Steinbrüchel, PS Olsen, AS Petronio, HGH Thyregod. Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. J Am Coll Cardiol 2019; 73(5): 546–553 PMID:30732707
https://doi.org/10.1016/j.jacc.2018.10.083
106 T Ochiai, T Chakravarty, SH Yoon, D Kaewkes, N Flint, V Patel, S Mahani, R Tiwana, N Sekhon, M Nakamura, W Cheng, R Makkar. Coronary access after TAVR. JACC Cardiovasc Interv 2020; 13(6): 693–705
https://doi.org/10.1016/j.jcin.2020.01.216 pmid: 32192689
107 N Buzzatti, V Romano, O De Backer, L Soendergaard, L Rosseel, P Maurovich-Horvat, J Karady, B Merkely, S Ruggeri, B Prendergast, M De Bonis, A Colombo, M Montorfano, A Latib. Coronary access after repeated transcatheter aortic valve implantation: a glimpse into the future. JACC Cardiovasc Imaging 2020; 13(2 Pt 1): 508–515
https://doi.org/10.1016/j.jcmg.2019.06.025 pmid: 31422142
108 L Nai Fovino, A Scotti, M Massussi, F Cardaioli, G Rodinò, Y Matsuda, A Pavei, G Masiero, M Napodano, C Fraccaro, T Fabris, G. Tarantini Coronary angiography after transcatheter aortic valve replacement (TAVR) to evaluate the risk of coronary access impairment after TAVR-in-TAVR. J Am Heart Assoc 2020; 9(13): e016446 PMID: 32578484
https://doi.org/10.1161/JAHA.120.016446
109 N Nalluri, V Atti, AB Munir, B Karam, NJ Patel, V Kumar, P Vemula, S Edla, D Asti, A Paturu, S Gayam, J Spagnola, E Barsoum, GA Maniatis, F Tamburrino, R Kandov, J Lafferty, C Kliger. Valve in valve transcatheter aortic valve implantation (ViV-TAVI) versus redo-Surgical aortic valve replacement (redo-SAVR): a systematic review and meta-analysis. J Interv Cardiol 2018; 31(5): 661–671 PMID: 29781182
https://doi.org/10.1111/joic.12520
110 S Fukuhara, AA Brescia, GM Deeb. Surgical explantation of transcatheter aortic bioprostheses: an analysis from the Society of Thoracic Surgeons Database. Circulation 2020; 142(23): 2285–2287 PMID: 33284653
https://doi.org/10.1161/CIRCULATIONAHA.120.050499
111 F D’Ascenzo, S Salizzoni, A Saglietto, M Cortese, A Latib, A Franzone, M Barbanti, F Nietlispach, EW Holy, G Burriesci, A De Paoli, P Fonio, F Atzeni, C Moretti, L Perl, M D’Amico, M Rinaldi, F Conrotto. Incidence, predictors and cerebrovascular consequences of leaflet thrombosis after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur J Cardiothorac Surg 2019; 56(3): 488–494
https://doi.org/10.1093/ejcts/ezz099 pmid: 31321408
112 T Rheude, C Pellegrini, S Stortecky, M Marwan, E Xhepa, F Ammon, T Pilgrim, NP Mayr, O Husser, S Achenbach, S Windecker, S Cassese, M Joner. Meta-analysis of bioprosthetic valve thrombosis after transcatheter aortic valve implantation. Am J Cardiol 2021; 138: 92–99
https://doi.org/10.1016/j.amjcard.2020.10.018 pmid: 33065085
113 PA Midha, V Raghav, R Sharma, JF Condado, IU Okafor, T Rami, G Kumar, VH Thourani, H Jilaihawi, V Babaliaros, RR Makkar, AP Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 2017; 136(17): 1598–1609
https://doi.org/10.1161/CIRCULATIONAHA.117.029479 pmid: 28724752
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed