|
|
|
Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma |
Chao Gao1, Shenghao Wang1, Weiqing Shao1, Yu Zhang1, Lu Lu1, Huliang Jia1, Kejin Zhu2, Jinhong Chen1, Qiongzhu Dong1,3, Ming Lu1, Wenwei Zhu1( ), Lunxiu Qin1,3( ) |
1. Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China 2. Kanion Research Institute, Lianyungang 222002, China 3. Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China |
|
|
|
|
Abstract Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.
|
| Keywords
hepatocellular carcinoma
cabozantinib
primary resistance
rapamycin
|
|
Corresponding Author(s):
Wenwei Zhu,Lunxiu Qin
|
|
Just Accepted Date: 30 August 2021
Online First Date: 15 October 2021
Issue Date: 18 July 2022
|
|
| 1 |
F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
https://doi.org/10.3322/caac.21492
pmid: 30207593
|
| 2 |
A Villanueva. Hepatocellular carcinoma. N Engl J Med 2019; 380(15): 1450–1462
https://doi.org/10.1056/NEJMra1713263
pmid: 30970190
|
| 3 |
JD Yang, P Hainaut, GJ Gores, A Amadou, A Plymoth, LR Roberts. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604
https://doi.org/10.1038/s41575-019-0186-y
pmid: 31439937
|
| 4 |
CR Maroun, T Rowlands. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2014; 142(3): 316–338
https://doi.org/10.1016/j.pharmthera.2013.12.014
pmid: 24384534
|
| 5 |
FM Yakes, J Chen, J Tan, K Yamaguchi, Y Shi, P Yu, F Qian, F Chu, F Bentzien, B Cancilla, J Orf, A You, AD Laird, S Engst, L Lee, J Lesch, YC Chou, AH Joly. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011; 10(12): 2298–2308
https://doi.org/10.1158/1535-7163.MCT-11-0264
pmid: 21926191
|
| 6 |
GK Abou-Alfa, T Meyer, AL Cheng, AB El-Khoueiry, L Rimassa, BY Ryoo, I Cicin, P Merle, Y Chen, JW Park, JF Blanc, L Bolondi, HJ Klümpen, SL Chan, V Zagonel, T Pressiani, MH Ryu, AP Venook, C Hessel, AE Borgman-Hagey, G Schwab, RK Kelley. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018; 379(1): 54–63
https://doi.org/10.1056/NEJMoa1717002
pmid: 29972759
|
| 7 |
JM Llovet, R Montal, D Sia, RS Finn. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 2018; 15(10): 599–616
https://doi.org/10.1038/s41571-018-0073-4
pmid: 30061739
|
| 8 |
S Faivre, G Kroemer, E Raymond. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5(8): 671–688
https://doi.org/10.1038/nrd2062
pmid: 16883305
|
| 9 |
F Chiarini, C Evangelisti, JA McCubrey, AM Martelli. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci 2015; 36(2): 124–135
https://doi.org/10.1016/j.tips.2014.11.004
pmid: 25497227
|
| 10 |
A Carracedo, L Ma, J Teruya-Feldstein, F Rojo, L Salmena, A Alimonti, A Egia, AT Sasaki, G Thomas, SC Kozma, A Papa, C Nardella, LC Cantley, J Baselga, PP Pandolfi. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118(9): 3065–3074
https://doi.org/10.1172/JCI34739
pmid: 18725988
|
| 11 |
RA Saxton, DM Sabatini. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6): 960–976
https://doi.org/10.1016/j.cell.2017.02.004
pmid: 28283069
|
| 12 |
Y Zhang, X Gao, Y Zhu, D Kadel, H Sun, J Chen, Q Luo, H Sun, L Yang, J Yang, Y Sheng, Y Zheng, K Zhu, Q Dong, L Qin. The dual blockade of MET and VEGFR2 signaling demonstrates pronounced inhibition on tumor growth and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res 2018; 37(1): 93
https://doi.org/10.1186/s13046-018-0750-2
pmid: 29712569
|
| 13 |
TC Chou. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70(2): 440–446
https://doi.org/10.1158/0008-5472.CAN-09-1947
pmid: 20068163
|
| 14 |
E Gherardi, W Birchmeier, C Birchmeier, G Vande Woude. Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012; 12(2): 89–103
https://doi.org/10.1038/nrc3205
pmid: 22270953
|
| 15 |
A D’Errico, M Fiorentino, A Ponzetto, Y Daikuhara, H Tsubouchi, C Brechot, JY Scoazec, WF Grigioni. Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver lesions: its specific receptor c-met does. Hepatology 1996; 24(1): 60–64
https://doi.org/10.1053/jhep.1996.v24.pm0008707284
pmid: 8707284
|
| 16 |
P Kaposi-Novak, JS Lee, L Gòmez-Quiroz, C Coulouarn, VM Factor, SS Thorgeirsson. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 2006; 116(6): 1582–1595
https://doi.org/10.1172/JCI27236
pmid: 16710476
|
| 17 |
L Rimassa, E Assenat, M Peck-Radosavljevic, V Zagonel, M Pracht, ER Caremoli, P Mathurin, WP Harris, L Bolondi, M Reig, N Damjanov, B Daniele, C Porta, V Mazzaferro, G Abbadessa, BE Schwartz, M Lamar, TR Goldberg, A Santoro, J Bruix. Second-line tivantinib (ARQ 197) vs placebo in patients (Pts) with MET-high hepatocellular carcinoma (HCC): Results of the METIV-HCC phase III trial. J Clin Oncol 2017; 35(15 suppl): 4000
https://doi.org/10.1200/JCO.2017.35.15_suppl.4000
|
| 18 |
D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
pmid: 21376230
|
| 19 |
I Dagogo-Jack, AT Shaw. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018; 15(2): 81–94
https://doi.org/10.1038/nrclinonc.2017.166
pmid: 29115304
|
| 20 |
X Li, MT Lewis, J Huang, C Gutierrez, CK Osborne, MF Wu, SG Hilsenbeck, A Pavlick, X Zhang, GC Chamness, H Wong, J Rosen, JC Chang. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100(9): 672–679
https://doi.org/10.1093/jnci/djn123
pmid: 18445819
|
| 21 |
J Bruix, LG da Fonseca, M Reig. Insights into the success and failure of systemic therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2019; 16(10): 617–630
https://doi.org/10.1038/s41575-019-0179-x
pmid: 31371809
|
| 22 |
Z Ezzoukhry, C Louandre, E Trécherel, C Godin, B Chauffert, S Dupont, M Diouf, JC Barbare, JC Mazière, A Galmiche. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 2012; 131(12): 2961–2969
https://doi.org/10.1002/ijc.27604
pmid: 22514082
|
| 23 |
DY Chiang, A Villanueva, Y Hoshida, J Peix, P Newell, B Minguez, AC LeBlanc, DJ Donovan, SN Thung, M Solé, V Tovar, C Alsinet, AH Ramos, J Barretina, S Roayaie, M Schwartz, S Waxman, J Bruix, V Mazzaferro, AH Ligon, V Najfeld, SL Friedman, WR Sellers, M Meyerson, JM Llovet. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008; 68(16): 6779–6788
https://doi.org/10.1158/0008-5472.CAN-08-0742
pmid: 18701503
|
| 24 |
Y Hoshida, SM Nijman, M Kobayashi, JA Chan, JP Brunet, DY Chiang, A Villanueva, P Newell, K Ikeda, M Hashimoto, G Watanabe, S Gabriel, SL Friedman, H Kumada, JM Llovet, TR Golub. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69(18): 7385–7392
https://doi.org/10.1158/0008-5472.CAN-09-1089
pmid: 19723656
|
| 25 |
S Boyault, DS Rickman, A de Reyniès, C Balabaud, S Rebouissou, E Jeannot, A Hérault, J Saric, J Belghiti, D Franco, P Bioulac-Sage, P Laurent-Puig, J Zucman-Rossi. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007; 45(1): 42–52
https://doi.org/10.1002/hep.21467
pmid: 17187432
|
| 26 |
M Laplante, DM Sabatini. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274–293
https://doi.org/10.1016/j.cell.2012.03.017
pmid: 22500797
|
| 27 |
L Asnaghi, P Bruno, M Priulla, A Nicolin. mTOR: a protein kinase switching between life and death. Pharmacol Res 2004; 50(6): 545–549
https://doi.org/10.1016/j.phrs.2004.03.007
pmid: 15501691
|
| 28 |
A Villanueva, DY Chiang, P Newell, J Peix, S Thung, C Alsinet, V Tovar, S Roayaie, B Minguez, M Sole, C Battiston, S Van Laarhoven, MI Fiel, A Di Feo, Y Hoshida, S Yea, S Toffanin, A Ramos, JA Martignetti, V Mazzaferro, J Bruix, S Waxman, M Schwartz, M Meyerson, SL Friedman, JM Llovet. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008; 135(6): 1972–1983.e1–11
https://doi.org/10.1053/j.gastro.2008.08.008
pmid: 18929564
|
| 29 |
Y Imura, H Yasui, H Outani, T Wakamatsu, K Hamada, T Nakai, S Yamada, A Myoui, N Araki, T Ueda, K Itoh, H Yoshikawa, N Naka. Combined targeting of mTOR and c-MET signaling pathways for effective management of epithelioid sarcoma. Mol Cancer 2014; 13(1): 185
https://doi.org/10.1186/1476-4598-13-185
pmid: 25098767
|
| 30 |
C Wigerup, S Påhlman, D Bexell. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164: 152–169
https://doi.org/10.1016/j.pharmthera.2016.04.009
pmid: 27139518
|
| 31 |
CW Pugh, PJ Ratcliffe. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9(6): 677–684
https://doi.org/10.1038/nm0603-677
pmid: 12778166
|
| 32 |
GL Semenza. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33(4): 207–214
https://doi.org/10.1016/j.tips.2012.01.005
pmid: 22398146
|
| 33 |
H You, W Ding, H Dang, Y Jiang, CB Rountree. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology 2011; 54(3): 879–889
https://doi.org/10.1002/hep.24450
pmid: 21618573
|
| 34 |
V Finisguerra, G Di Conza, M Di Matteo, J Serneels, S Costa, AA Thompson, E Wauters, S Walmsley, H Prenen, Z Granot, A Casazza, M Mazzone. MET is required for the recruitment of anti-tumoural neutrophils. Nature 2015; 522(7556): 349–353
https://doi.org/10.1038/nature14407
pmid: 25985180
|
| 35 |
C Zhu, Y Wei, X Wei. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18(1): 153
https://doi.org/10.1186/s12943-019-1090-3
pmid: 31684958
|
| 36 |
AY Li, MG McCusker, A Russo, KA Scilla, A Gittens, K Arensmeyer, R Mehra, V Adamo, C Rolfo. RET fusions in solid tumors. Cancer Treat Rev 2019; 81: 101911
https://doi.org/10.1016/j.ctrv.2019.101911
pmid: 31715421
|
| 37 |
F Janku, TA Yap, F Meric-Bernstam. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 2018; 15(5): 273–291
https://doi.org/10.1038/nrclinonc.2018.28
pmid: 29508857
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|