|
|
|
Repurposed benzydamine targeting CDK2 suppresses the growth of esophageal squamous cell carcinoma |
Yubing Zhou1,2, Xinyu He1,2, Yanan Jiang1,2,3,4, Zitong Wang1, Yin Yu1,2, Wenjie Wu1,2, Chenyang Zhang1, Jincheng Li1, Yaping Guo1,3, Xinhuan Chen1,3, Zhicai Liu4,6, Jimin Zhao1,3,4,5, Kangdong Liu1,2,3,4,5( ), Zigang Dong1,2,3,5( ) |
1. The Pathophysiology Department, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China 2. The China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China 3. State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China 4. Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450000, China 5. Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China 6. Oncology Department, The Tumor Hospital of Linzhou City, Linzhou 456500, China |
|
|
|
|
Abstract Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer death worldwide. It is urgent to develop new drugs to improve the prognosis of ESCC patients. Here, we found benzydamine, a locally acting non-steroidal anti-inflammatory drug, had potent cytotoxic effect on ESCC cells. Benzydamine could suppress ESCC proliferation in vivo and in vitro. In terms of mechanism, CDK2 was identified as a target of benzydamine by molecular docking, pull-down assay and in vitro kinase assay. Specifically, benzydamine inhibited the growth of ESCC cells by inhibiting CDK2 activity and affecting downstream phosphorylation of MCM2, c-Myc and Rb, resulting in cell cycle arrest. Our study illustrates that benzydamine inhibits the growth of ESCC cells by downregulating the CDK2 pathway.
|
| Keywords
benzydamine
cyclin-dependent kinase 2
patient-derived xenograft
esophageal squamous cell carcinoma
|
|
Corresponding Author(s):
Kangdong Liu,Zigang Dong
|
|
Just Accepted Date: 02 November 2022
Online First Date: 27 December 2022
Issue Date: 26 May 2023
|
|
| 1 |
Z Yuan, X Wang, X Geng, Y Li, J Mu, F Tan, Q Xue, S Gao, J He. Liquid biopsy for esophageal cancer: is detection of circulating cell-free DNA as a biomarker feasible?. Cancer Commun (Lond) 2021; 41(1): 3–15
https://doi.org/10.1002/cac2.12118
pmid: 33264481
|
| 2 |
CC Abnet, M Arnold, WQ Wei. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology 2018; 154(2): 360–373
https://doi.org/10.1053/j.gastro.2017.08.023
pmid: 28823862
|
| 3 |
YM Yang, P Hong, WW Xu, QY He, B Li. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther 2020; 5(1): 229
https://doi.org/10.1038/s41392-020-00323-3
pmid: 33028804
|
| 4 |
M di Pietro, MI Canto, RC Fitzgerald. Endoscopic management of early adenocarcinoma and squamous cell carcinoma of the esophagus: screening, diagnosis, and therapy. Gastroenterology 2018; 154(2): 421–436
https://doi.org/10.1053/j.gastro.2017.07.041
pmid: 28778650
|
| 5 |
ZW Reichenbach, MG Murray, R Saxena, D Farkas, EG Karassik, A Klochkova, K Patel, C Tice, TM Hall, J Gang, HP Parkman, SJ Ward, MP Tétreault, KA Whelan. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res 2019; 144: 95–135
https://doi.org/10.1016/bs.acr.2019.05.004
pmid: 31349905
|
| 6 |
YJ Surh. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003; 3(10): 768–780
https://doi.org/10.1038/nrc1189
pmid: 14570043
|
| 7 |
P Desai, NJ Thumma, PR Wagh, S Zhan, D Ann, J Wang, S Prabhu. Cancer chemoprevention using nanotechnology-based approaches. Front Pharmacol 2020; 11: 323
https://doi.org/10.3389/fphar.2020.00323
pmid: 32317961
|
| 8 |
A Ranjan, S Ramachandran, N Gupta, I Kaushik, S Wright, S Srivastava, H Das, S Srivastava, S Prasad, SK Srivastava. Role of phytochemicals in cancer prevention. Int J Mol Sci 2019; 20(20): 4981
https://doi.org/10.3390/ijms20204981
pmid: 31600949
|
| 9 |
CY Chen, CJ Kuo, YW Lee, F Lam, KW Tam. Benzydamine hydrochloride on postoperative sore throat: a meta-analysis of randomized controlled trials. Can J Anaesth 2014; 61(3): 220–228
https://doi.org/10.1007/s12630-013-0080-y
pmid: 24263969
|
| 10 |
EB Faber, N Wang, GI Georg. Review of rationale and progress toward targeting cyclin-dependent kinase 2 (CDK2) for male contraception†. Biol Reprod 2020; 103(2): 357–367
https://doi.org/10.1093/biolre/ioaa107
pmid: 32543655
|
| 11 |
R Fagundes, LK Teixeira. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front Cell Dev Biol 2021; 9: 774845
https://doi.org/10.3389/fcell.2021.774845
pmid: 34901021
|
| 12 |
O Tetsu, F McCormick. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003; 3(3): 233–245
https://doi.org/10.1016/S1535-6108(03)00053-9
pmid: 12676582
|
| 13 |
G Au-Yeung, F Lang, WJ Azar, C Mitchell, KE Jarman, K Lackovic, D Aziz, C Cullinane, RB Pearson, L Mileshkin, D Rischin, AM Karst, R Drapkin, D Etemadmoghadam, DDL Bowtell. Selective targeting of cyclin E1-amplified high-grade serous ovarian cancer by cyclin-dependent kinase 2 and AKT inhibition. Clin Cancer Res 2017; 23(7): 1862–1874
https://doi.org/10.1158/1078-0432.CCR-16-0620
pmid: 27663592
|
| 14 |
S Tadesse, AT Anshabo, N Portman, E Lim, W Tilley, CE Caldon, S Wang. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov Today 2020; 25(2): 406–413
https://doi.org/10.1016/j.drudis.2019.12.001
pmid: 31839441
|
| 15 |
S Tadesse, EC Caldon, W Tilley, S Wang. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem 2019; 62(9): 4233–4251
https://doi.org/10.1021/acs.jmedchem.8b01469
pmid: 30543440
|
| 16 |
D Gfeller, A Grosdidier, M Wirth, A Daina, O Michielin, V Zoete. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014; 42: W32–W38
https://doi.org/10.1093/nar/gku293
pmid: 24792161
|
| 17 |
A Grosdidier, V Zoete, O Michielin. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011; 39: W270–W277
https://doi.org/10.1093/nar/gkr366
pmid: 21624888
|
| 18 |
Z Wang, MA Jensen, JC Zenklusen. A practical guide to The Cancer Genome Atlas (TCGA). Methods Mol Biol 2016; 1418: 111–141
https://doi.org/10.1007/978-1-4939-3578-9_6
pmid: 27008012
|
| 19 |
Y Hu, F Liu, X Jia, P Wang, T Gu, H Liu, T Liu, H Wei, H Chen, J Zhao, R Yang, Y Chen, Z Dong, K Liu. Periplogenin suppresses the growth of esophageal squamous cell carcinoma in vitro and in vivo by targeting STAT3. Oncogene 2021; 40(23): 3942–3958
https://doi.org/10.1038/s41388-021-01817-2
pmid: 33986510
|
| 20 |
Y Jiang, Q Wu, X Yang, J Zhao, Y Jin, K Li, Y Ma, X Chen, F Tian, S Zhao, J Xu, J Lu, X Yin, K Liu, Z Dong. A method for establishing a patient-derived xenograft model to explore new therapeutic strategies for esophageal squamous cell carcinoma. Oncol Rep 2016; 35(2): 785–792
https://doi.org/10.3892/or.2015.4459
pmid: 26718633
|
| 21 |
G Jin, M Yan, K Liu, K Yao, H Chen, C Zhang, Y Yi, K Reddy, DR Gorja, KV Laster, Z Guo, Z Dong. Discovery of a novel dual-target inhibitor against RSK1 and MSK2 to suppress growth of human colon cancer. Oncogene 2020; 39(43): 6733–6746
https://doi.org/10.1038/s41388-020-01467-w
pmid: 32963350
|
| 22 |
MG Sürmen, S Sürmen, A Ali, SG Musharraf, N Emekli. Phosphoproteomic strategies in cancer research: a minireview. Analyst (Lond) 2020; 145(22): 7125–7149
https://doi.org/10.1039/D0AN00915F
pmid: 32996481
|
| 23 |
J Ma, T Chen, S Wu, C Yang, M Bai, K Shu, K Li, G Zhang, Z Jin, F He, H Hermjakob, Y Zhu. iProX: an integrated proteome resource. Nucleic Acids Res 2019; 47(D1): D1211–D1217
https://doi.org/10.1093/nar/gky869
pmid: 30252093
|
| 24 |
M Kanehisa, M Furumichi, M Tanabe, Y Sato, K Morishima. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353–D361
https://doi.org/10.1093/nar/gkw1092
pmid: 27899662
|
| 25 |
SK Burley, HM Berman, GJ Kleywegt, JL Markley, H Nakamura, S Velankar. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 2017; 1607: 627–641
https://doi.org/10.1007/978-1-4939-7000-1_26
pmid: 28573592
|
| 26 |
O Trott, AJ Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455–461
pmid: 19499576
|
| 27 |
H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
https://doi.org/10.3322/caac.21660
pmid: 33538338
|
| 28 |
V Cioli, C Corradino, P Scorza Barcellona. Review of pharmacological data on benzydamine. Int J Tissue React 1985; 7(3): 205–213
pmid: 3899969
|
| 29 |
PA Quane, GG Graham, JB Ziegler. Pharmacology of benzydamine. Inflammopharmacology 1998; 6(2): 95–107
https://doi.org/10.1007/s10787-998-0026-0
pmid: 17694367
|
| 30 |
NP Singh, JK Makkar, V Wourms, PM Singh. Topical benzydamine for preventing postoperative sore throat. Anaesthesia 2018; 73(10): 1297
https://doi.org/10.1111/anae.14437
pmid: 30216428
|
| 31 |
H V Worthington. , Clarkson JE, Bryan G, Furness S, Glenny AM, Littlewood A, McCabe MG, Meyer S, Khalid T, Riley P. Interventions for preventing oral mucositis for patients with cancer receiving treatment. Cochrane database Syst Rev 2011; 2011(4): CD000978
|
| 32 |
RM Golsteyn. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Lett 2005; 217(2): 129–138
https://doi.org/10.1016/j.canlet.2004.08.005
pmid: 15617830
|
| 33 |
T Tsuji, SB Ficarro, W Jiang. Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell 2006; 17(10): 4459–4472
https://doi.org/10.1091/mbc.e06-03-0241
pmid: 16899510
|
| 34 |
RYC Poon. Cell cycle control: a system of interlinking oscillators. Methods Mol Biol 2016; 1342: 3–19
https://doi.org/10.1007/978-1-4939-2957-3_1
pmid: 26254915
|
| 35 |
JW Harbour, RX Luo, AD Santi, AA Postigo, DC Dean. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999; 98(6): 859–869
https://doi.org/10.1016/S0092-8674(00)81519-6
pmid: 10499802
|
| 36 |
P Hydbring, LG Larsson. Tipping the balance: Cdk2 enables Myc to suppress senescence. Cancer Res 2010; 70(17): 6687–6691
https://doi.org/10.1158/0008-5472.CAN-10-1383
pmid: 20713526
|
| 37 |
P Hydbring, A Castell, LG Larsson. MYC modulation around the CDK2/p27/SKP2 axis. Genes (Basel) 2017; 8(7): 174
https://doi.org/10.3390/genes8070174
pmid: 28665315
|
| 38 |
PL Garcia, AL Miller, KJ Yoon. Patient-derived xenograft models of pancreatic cancer: overview and comparison with other types of models. Cancers (Basel) 2020; 12(5): 1327
https://doi.org/10.3390/cancers12051327
pmid: 32456018
|
| 39 |
S Klöß, S Dehmel, A Braun, MJ Parnham, U Köhl, S Schiffmann. From cancer to immune-mediated diseases and tolerance induction: lessons learned from immune oncology and classical anti-cancer treatment. Front Immunol 2020; 11: 1423
https://doi.org/10.3389/fimmu.2020.01423
pmid: 32733473
|
| 40 |
M Hidalgo, F Amant, AV Biankin, E Budinská, AT Byrne, C Caldas, RB Clarke, Jong S de, J Jonkers, GM Mælandsmo, S Roman-Roman, J Seoane, L Trusolino, A Villanueva. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 2014; 4(9): 998–1013
https://doi.org/10.1158/2159-8290.CD-14-0001
pmid: 25185190
|
| 41 |
TO Nielsen, SCY Leung, DL Rimm, A Dodson, B Acs, S Badve, C Denkert, MJ Ellis, S Fineberg, M Flowers, HH Kreipe, AV Laenkholm, H Pan, FM Penault-Llorca, MY Polley, R Salgado, IE Smith, T Sugie, JMS Bartlett, LM McShane, M Dowsett, DF Hayes. Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst 2021; 113(7): 808–819
https://doi.org/10.1093/jnci/djaa201
pmid: 33369635
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|