Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (5) : 686-700    https://doi.org/10.1007/s11684-022-0957-7
REVIEW
Recent advances in systemic lupus erythematosus and microbiota: from bench to bedside
Yijing Zhan1, Qianmei Liu1, Bo Zhang1, Xin Huang2(), Qianjin Lu1()
1. Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
2. Department of Dermatology, The Second Xiangya Hospital of Central South University, Institute of Dermatology and Venereology of Central South University, Hunan Clinical Medicine Research Center for Major Skin Diseases and Skin Health, Changsha 410011, China
 Download: PDF(2530 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Systemic lupus erythematosus (SLE) is a complicated autoimmune disease affecting multiple systems and organs. It is highly heterogeneous, and it preferentially affects women at childbearing age, causing worldwide social burden. The pathogenesis of SLE mostly involves genetic predisposition, epigenetic dysregulation, overactivation of the immune system, and environment factors. Human microbiome, which is mostly composed of microbiota colonized in the gut, skin, and oral cavity, provides a natural microbiome barrier against environmental risks. The past decade of research has demonstrated a strong association between microbiota and metabolic diseases or gastrointestinal diseases. However, the role of microbiota in autoimmunity remains largely unknown until recently, when the technological and methodological progress facilitates further microbiota research in SLE. In this review, the latest research about the role and mechanisms of microbiota in SLE and the advances in the development of diagnostic and therapeutic strategies based on microbiota for SLE were summarized.

Keywords systemic lupus erythematosus      microbiota      biotherapy     
Corresponding Author(s): Xin Huang,Qianjin Lu   
Just Accepted Date: 23 September 2022   Online First Date: 27 October 2022    Issue Date: 18 November 2022
 Cite this article:   
Yijing Zhan,Qianmei Liu,Bo Zhang, et al. Recent advances in systemic lupus erythematosus and microbiota: from bench to bedside[J]. Front. Med., 2022, 16(5): 686-700.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0957-7
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I5/686
Human subjects (n) Region Colonization site Bacteria in SLE Reference
SLE (20) vs. HC (20) Spain Gut Phyla: Firmicutes/Bacteroidetes ratio ↓; Firmicutes ↓ [25]
SLE (20) vs. HC (20) Spain Gut Phyla: Firmicutes/Bacteroidetes ratio, Synergistetes ↓ [29]
SLE (16) vs. HC (14) China Gut Phyla: Proteobacteria ↑Family: Enterobacterlaceae ↑; Ruminococcaceae, Prevotellaceae, Clostridiales ↓ [30]
SLE (45) vs. HC (48) China Gut Phyla: Bacteroidetes, Actinobacteria, Proteobacteria ↑; Firmicutes/Bacteroidetes ratio, Firmicutes ↓Genus: Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium, Flavonifractor↑; Dialister, Pseudobutyrivibrio [31]
SLE (20) vs. HC (20) Egypt Gut Phyla: Firmicutes/Bacteroidetes ↓Genus: Lactobacillus [32]
SLE (32) vs. HC (26) China Gut Phyla: Bifidobacterium, Firmicutes/Bacteroidetes ratio↓; Enterobacteriaceae ↑Family: Sartiphaea,Plavococcus ↓; Veillonella, Enterococci ↑Genus: Sartiphaea, Plavococcus↓; Enterococcus, Veillonella [33]
SLE (14) vs. HC (17) USA Gut Gram-negative bacteria ↑Phyla: Firmicutes/Bacteroidetes ratio was not different; Rikenellaceae, Proteobacteria ↑Genus: Odoribacter↓, Blautia [34]
SLE (61) vs. HC (17) USA Gut Species: Ruminococcus gnavus [35]
SLE (40) vs. HC (22) China Gut Genus: Streptococcus, Campylobacter, Veillonella↑; Bifidobacterium ↓Species: Streptococcus anginosus , Veillonella dispar [36]
SLE-G (17) vs. SLE + G (20) + HC (20) China Gut Phyla: Bacteroidetes↓; Firmicutes/Bacteroidetes ratio ↑ [40]
SLE (33) vs. HC (28) China Gut Phyla: Proteobacteria↑Family: Ruminococcaceae, Christensenellaceae, Akkermansiaceae, Ruminococcaceae↓; Enterobacteriaceae↑ Genus: Gammaproteobacteria, Bacilli, Escherichia, Shigella, Lachnoclostridium, Kluyvera↑; Agathobacter, Ruminococcus, Coprococcus, Dialister, Faecalibacterium, and Subdoligranulum↓Species: Ruminococcus gnavus↑; Eubacterium coprostanoligenes [41]
SLE (21) vs. HC (25) Spain Gut Phyla: Firmicutes/Bacteroidetes ratio ↓ [44]
SLE (21) vs. HC (21) Spain Gut Phyla: The serum malondialdehyde was inverse correlations with Cyanobacteria and Firmicutes and positive with Actinobacteria; the C reactive protein was positive association with Lentisphaerae, Proteobacteria, and Verrucomicrobia [45]
SLE (27) vs. HC (27) Australia Gut Family: Coriobacteriaceae, Enterobacteriaceae ↑Genus: Bifidobacterium, Ruminiclostridium, Streptococcus, Collinsella↑; Lachnoclostridium, Lachnospira, and Sutterella [47]
SLE (47) vs. HC (203) Japan Gut Species: Streptococcus intermedius, Streptococcus anginosus [48]
SLE (117) vs. HC (115) China Gut Genus: Desulfovibrio↓; Blautia↑Species: Clostridium species ATCC BAA-442, Atopobium rimae, Shuttleworthia satelles, Actinomyces massiliensis, Bacteroides fragilis, Clostridium leptum [49]
SLE (30) vs. HC (965) Netherlands Gut Phyla: Firmicutes/Bacteroidetes ratio ↓; Bacteroidetes, Proteobacteria ↑Genus: Bacteroides, Alistipes↑Species: Bacteroides vulgatus, Bacteroides uniformis, Bacteroides ovatus, Bacteroides thetaiotaomicron [57]
SLE (35) vs. HC (35) China Gut Family: Ruminococcaceae ↓Genus: Lactobacillus, Prevotella, Blautia, Ruminococcus↑; Bifidobacterium↓Species: Lactobacillus iners↑; Bifidobacterium adolescentis, Bifidobacterium longum [64]
SLE (16) vs. HC (11) USA Gut Phyla: Firmicutes/Bacteroidetes ratio ↓ [71]
SLE (12) vs. HC (22) USA Gut Species: Lactobacillus spp. ↑ [72]
SLE (92) vs. HC (217) China Gut Phyla: Bacteroidetes, Proteobacteria, and Actinobacteria ↑; Firmicutes ↓Family: Bacteroidaceae, Streptococcaceae ↑; Ruminococcaceae, Veillonellaceae, Lachnospiraceae ↓Genus: Ruminococcus, Klebsiella, Erysipelotrichaceae↑; Faecalibacterium [73]
SLE (69) vs. HC (49) China Skin Phyla: Firmicutes, Acidobacteria, Gemmatimonadetes, and Tenericutes ↑Genus: Corynebacterium, Staphylococcus, Rothia, Actinomyces, Deinococcus↑; Prevotella, Cutibacterium, Rhodococcus, Klebsiella↓Species: Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis↑; Klebsiella pneumoniae, Rhodococcus erythropolis, Erwinia mallotivora [12]
SLE (20) vs. HC (20) China Skin Phyla: Firmicutes, Bacteroidetes, Spirochaetae, Verrucomicrobia, Tenericutes↑; Actinobacteria and Armatimonadetes ↓Class: Alphaproteobacteria ↓Order: Sphingomonadales ↓Family: Acetobacteraceae, Sphingomonadaceae, Phyllobacteriaceae ↓; Christensenellaceae, Erysipelotrichaceae, Methylocystaceae, Burkholderiaceae, and Verrucomicrobiaceae↑Genus: Nevskia, Stenotrophomonas, Phyllobacterium, Novosphingobium↓; Barnesiella, Acinetobacter↑Species: Chryseobacterium taiwanense, Nevskia aquatilis↓; Corynebacterium matruchotii, Ruminococcus sp. 5_1_39BFAA ↑Compared with non-rash region of SLE, genus in the rash region: Halomonas; Pelagibacterium, Novosphingobium, Curvibacter [56]
SLE (117) vs. HC (115) China Oral Species: Clostridium species ATCC BAA-442, Atopobium rimae, Shuttleworthia satelles, Actinomyces massiliensis, Bacteroides fragilis, Clostridium leptum [49]
SLE (30) vs. HC (965) Netherlands Oral Genus: Actinomyces↓; Lactobacillu [57]
Anti-Ro+ mothers of neonatal lupus children (25) vs. HC (7) USA Oral Phyla: Proteobacteria ↓; Actinobacteria, Firmicutes, Bacteroidetes ↑Class: Coriobacteriia, Bacilli, Negativicutes↑; Betaproteobacteria ↓Order: Neisseriale ↓Family: Neisseriaceae ↓Genus: Streptococcus, Veillonella↑; Neisseria [59]
SLE (52) vs. HC (52) Brazil Oral Genus: Fretibacterium, Selenomonas↑Species: Prevotella nigrescens [60]
SLE-A (31) vs. SLE-I (29) + HC (31) USA Oral Species in SLE-A: Treponema denticola, Tannerella forsythia↑; Capnocytophaga gingivalis, Streptococcus gordonii, Prevotella nigrescens, Capnocytophaga ochracea, Fusobacterium nucleatum, Streptococcus sanguinis [61]
SLE (35) vs. HC (35) China Oral Genus: Streptococcus↓; Prevotella, Selenomonas, Veillonella↑Species: Streptococcus anginosus [64]
Tab.1  Microbiota alternation in patients with SLE
Fig.1  Role of skin–gut axis in SLE. The host skin and gut microbiota are linked via metabolic pathways. Genetic, environment, and hormonal factors affect the composition of skin and gut microbiota through the innate and adaptive immune responses. The activation of TLR7/8 was induced by specific gut bacteria, such as Enterococcus gallisepticum. The translocation of E. gallisepticum resulted in the activation of the aryl hydrocarbon receptor (AhR) system, which enhanced the activation and differentiation of Th17 and follicular helper T (Tfh) cells and autoantibody production. In the lamina propria of the small intestine, E. gallisepticum could also induce an increase in pDCs that produce IFN-α. In addition, reduction in Paenibacillus genus may lead to elevated lipopolysaccharide and increased expression of TLR4 in the vasculature, leading to increased NADPH oxidase-dependent superoxide production, inflammation, and endothelial dysfunction. Along with the activation of the innate immune response, bacteria such as Odoribacter splanchnicus could activate the adaptive immune response by increasing the secretion of IFN-γ and IL-17A. The proportion of Ruminococcus and Lactobacillus was positively correlated with the absolute count of Treg lymphocytes. When T and B cells are overactivated, autoantibodies such as ANA and dsDNA are produced, and high-avidity IgA (sIgA) is secreted. The immune complex deposited on skin, intestine, and other organs and inflammatory cytokines, such as IL-17, IFN-γ, and IL-6, were released, resulting in organ damage. The relationship between skin microbiota and SLE remains to be elusive, even though studies have shown that certain bacteria strains, such as Staphylococcus and Corynebacterium, increased in the skin of patients with SLE. Some research showed that superficial colonization of Staphylococcus epidermidis may induce the elevation of IL17A producing CD8+ T cell. SLE, systemic lupus erythematosus; TLR7/8, Toll-like receptor 7/8; Th17, T helper 17; IFN-α, interferon-α; pDC, plasmacytoid dendritic cells; IFN-γ, interferon-γ; IL-17A, interleukin-17A; IL-6, interleukin-6.
Microecological agents Intervention Models Mode of administration Effects Reference
Probiotics Lactobacillus oris (F0423), Lactobacillus rhamnosus (LMS201), Lactobacillu reuteri (CF48-3A), Lactobacillu johnsonii (135-1-CHN), and Lactobacillu gasseri (JV-V03) MRL/lpr Oral gavage, 3 W to dissection “leaky gut,” IL-6, IgG2a ↓; IL-10 ↑ [61]
Lactobacillus fermentum CECT5716 NZB/W F1 Oral gavage, 15 W B and T cell, lymphocytes, IL-17α, IFN-γ, TNF-α, IL-21 ↓ [84]
Lactobacillus fermentum CECT5716 and/or Bifidobacterium breve CECT7263 Imiquimod-induced lupus model Oral gavage, 8–16 W SLE activity and vascular inflammation ↓ [85]
Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89, and Lactobacillus reuteri GMNL-263 NZB/W F1 Oral gavage, 8–20 W IL-1β, IL-6, and TNF-α ↓ [86]
Lactobacillus reuteri GMNL-263 NZB/W F1 Oral gavage, 16–28 W TUNEL-positive cells, Fas death receptor-related components, apoptosis ↓ [87]
Lactobacillus delbrueckii PTCC 1743 and Lactobacillus rhamnosus ATCC 9595 Pristane-induced lupus model Oral gavage, 2–6 M Th17, Th1, CTL, IFN-γ, IL-17 ↓ [90]
Lactobacillus delbrueckii and Lactobacillus rhamnosus Pristane-induced lupus model Oral gavage, 0–6 M Tregs, Foxp3 ↑; lipogranuloma, ANA, anti-dsDNA, IL-6 ↓ [91]
Dietary deviations Resistant starch TLR7.1 Tg, TLR7 KO, and C57BL/6 mice Oral gavage, 7 W Lactobacillus reuteri, pDCs, interferon pathways, organ involvement, mortality ↓ [72]
Regular diet Patients with SLE (20) vs. HC (20) Diet Orange intake was directly associated with Lactobacillus and apple intake was associated with Bifidobacterium in SLE, whilst red wine was the best contributor to Faecalibacterium variation [92]
Autoclaved neutral pH (7.0–7.2) water vs. acidic pH (3.0–3.2) water (SWR×NZB) F1 Oral gavage, to dissection Simple dietary deviations, such as pH of drinking water, influenced lupus incidence and affected the composition of gut microbiome [93]
Low fiber vs. normal fiber NZB/W F1 mice Oral gavage, 4 W to dissection Low fiber diet is related with overall survival ↓; CD44, IFN-γ, IL-10, Treg, effector Treg, Tfh ↑ [95]
Microbiota transplant Fecal microbiota transplantation C57BL/6J, TC (SLE mice) Fecal gavage, once every other day for 10 days ds-DNA antibody in germ free mice after FMT from SLE mice ↑ [100]
Fecal microbiota transplantation MRL/lpr Oral gavage, 2 W antibiotics, 4W fecal suspensions Lupus severity and progression ↓ [101]
Tab.2  Application of microecological agents in the treatment of SLE in vivo
Fig.2  Current microbial interventions and therapies in SLE. The dysbiosis of the gut, skin, and oral microbiota plays an important role in the occurrence and development of SLE. Biological therapies of SLE, including probiotics, dietary deviations, and fecal microbiota transplant (FMT) alleviated SLE through the regulation of microbiota. The currently reported probiotics mainly include Lactobacillus and Bifidobacterium, and the dietary deviations mainly include the intake of fiber, wine, and fruit. FMT and miniFMT that selects specific intestinal bacterial strains for colonization appeared to be a promising therapy for lupus.
1 GC Tsokos. Systemic lupus erythematosus. N Engl J Med 2011; 365(22): 2110–2121
https://doi.org/10.1056/NEJMra1100359 pmid: 22129255
2 B Dema, N Charles. Autoantibodies in SLE: specificities, isotypes and receptors. Antibodies (Basel) 2016; 5(1): 2
https://doi.org/10.3390/antib5010002 pmid: 31557984
3 GC Tsokos, MS Lo, P Costa Reis, KE Sullivan. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2016; 12(12): 716–730
https://doi.org/10.1038/nrrheum.2016.186 pmid: 27872476
4 M Espéli, KG Smith, MR Clatworthy. FcγRIIB and autoimmunity. Immunol Rev 2016; 269(1): 194–211
https://doi.org/10.1111/imr.12368 pmid: 26683154
5 K Honda, DR Littman. The microbiota in adaptive immune homeostasis and disease. Nature 2016; 535(7610): 75–84
https://doi.org/10.1038/nature18848 pmid: 27383982
6 R Fu, Y Xia, M Li, R Mao, C Guo, M Zhou, H Tan, M Liu, S Wang, N Yang, J Zhao. Pim-1 as a therapeutic target in human lupus nephritis. Arthritis Rheumatol 2019; 71(8): 1308–1318
https://doi.org/10.1002/art.40863 pmid: 30791224
7 S Singh, SSL Li. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 2012; 13(8): 10143–10153
https://doi.org/10.3390/ijms130810143 pmid: 22949852
8 SE Wu, S Hashimoto-Hill, V Woo, EM Eshleman, J Whitt, L Engleman, R Karns, LA Denson, DB Haslam, T Alenghat. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 2020; 586(7827): 108–112
https://doi.org/10.1038/s41586-020-2604-2 pmid: 32731255
9 B Sánchez, A Hevia, S González, A Margolles. Interaction of intestinal microorganisms with the human host in the framework of autoimmune diseases. Front Immunol 2015; 6: 594
https://doi.org/10.3389/fimmu.2015.00594 pmid: 26635808
10 T Gensollen, SS Iyer, DL Kasper, RS Blumberg. How colonization by microbiota in early life shapes the immune system. Science 2016; 352(6285): 539–544
https://doi.org/10.1126/science.aad9378 pmid: 27126036
11 JF Bach. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2018; 18(2): 105–120
https://doi.org/10.1038/nri.2017.111 pmid: 29034905
12 C Huang, X Yi, H Long, G Zhang, H Wu, M Zhao, Q Lu. Disordered cutaneous microbiota in systemic lupus erythematosus. J Autoimmun 2020; 108: 102391
https://doi.org/10.1016/j.jaut.2019.102391 pmid: 31883828
13 S LuoH Long Q Lu. Recent advances in understanding pathogenesis and therapeutic strategies of systemic lupus erythematosus. Int Immunopharmacol 2020; 89 (Pt A): 107028
14 K Biliouris, I Nestorov, H Naik, D Dai, G Xiao, Q Wang, A Pellerin, D Rabah, LJ Lesko, MN Trame. A pre-clinical quantitative model predicts the pharmacokinetics/pharmacodynamics of an anti-BDCA2 monoclonal antibody in humans. J Pharmacokinet Pharmacodyn 2018; 45(6): 817–827
https://doi.org/10.1007/s10928-018-9609-6 pmid: 30377889
15 A Markham. Baricitinib: first global approval. Drugs 2017; 77(6): 697–704
https://doi.org/10.1007/s40265-017-0723-3 pmid: 28290136
16 A Mathian, M Pha, J Haroche, F Cohen-Aubart, M Hié, de Chambrun M Pineton, THD Boutin, M Miyara, G Gorochov, H Yssel, P Cherin, H Devilliers, Z Amoura. Withdrawal of low-dose prednisone in SLE patients with a clinically quiescent disease for more than 1 year: a randomised clinical trial. Ann Rheum Dis 2020; 79(3): 339–346
https://doi.org/10.1136/annrheumdis-2019-216303 pmid: 31852672
17 Rahbar Saadat Y, Hejazian M, Bastami M, Hosseinian Khatibi SM, Ardalan M, Zununi Vahed S. The role of microbiota in the pathogenesis of lupus: dose it impact lupus nephritis? Pharmacol Res 2019; 139: 191–198 doi:10.1016/j.phrs.2018.11.023
pmid: 30471408
18 Microbiome Project Consortium Human. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207–214
https://doi.org/10.1038/nature11234 pmid: 22699609
19 A Andoh. Physiological role of gut microbiota for maintaining human health. Digestion 2016; 93(3): 176–181
https://doi.org/10.1159/000444066 pmid: 26859303
20 SC Choi, J Brown, M Gong, Y Ge, M Zadeh, W Li, BP Croker, G Michailidis, TJ Garrett, M Mohamadzadeh, L Morel. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 12(551): eaax2220
https://doi.org/10.1126/scitranslmed.aax2220 pmid: 32641487
21 L Zhang, P Qing, H Yang, Y Wu, Y Liu, Y Luo. Gut microbiome and metabolites in systemic lupus erythematosus: link, mechanisms and intervention. Front Immunol 2021; 12: 686501
https://doi.org/10.3389/fimmu.2021.686501 pmid: 34335588
22 AS Neish. Microbes in gastrointestinal health and disease. Gastroenterology 2009; 136(1): 65–80
https://doi.org/10.1053/j.gastro.2008.10.080 pmid: 19026645
23 A Heintz-Buschart, P Wilmes. Human gut microbiome: function matters. Trends Microbiol 2018; 26(7): 563–574
https://doi.org/10.1016/j.tim.2017.11.002 pmid: 29173869
24 HZ Apperloo-Renkema, H Bootsma, BI Mulder, CG Kallenberg, D van der Waaij. Host-microflora interaction in systemic lupus erythematosus (SLE): circulating antibodies to the indigenous bacteria of the intestinal tract. Epidemiol Infect 1995; 114(1): 133–141
https://doi.org/10.1017/S0950268800051980 pmid: 7867731
25 A Hevia, C Milani, P López, A Cuervo, S Arboleya, S Duranti, F Turroni, S González, A Suárez, M Gueimonde, M Ventura, B Sánchez, A Margolles. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 2014; 5(5): e01548–14
https://doi.org/10.1128/mBio.01548-14 pmid: 25271284
26 BP Boerner, NE Sarvetnick. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 2011; 1243(1): 103–118
https://doi.org/10.1111/j.1749-6632.2011.06340.x pmid: 22211896
27 CT Brown, AG Davis-Richardson, A Giongo, KA Gano, DB Crabb, N Mukherjee, G Casella, JC Drew, J Ilonen, M Knip, H Hyöty, R Veijola, T Simell, O Simell, J Neu, CH Wasserfall, D Schatz, MA Atkinson, EW Triplett. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6(10): e25792
https://doi.org/10.1371/journal.pone.0025792 pmid: 22043294
28 LJ Kasselman, NA Vernice, J DeLeon, AB Reiss. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 2018; 271: 203–213
https://doi.org/10.1016/j.atherosclerosis.2018.02.036 pmid: 29524863
29 P López, Paz B de, J Rodríguez-Carrio, A Hevia, B Sánchez, A Margolles, A Suárez. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 2016; 6(1): 24072
https://doi.org/10.1038/srep24072 pmid: 27044888
30 F Wei, H Xu, C Yan, C Rong, B Liu, H Zhou. Changes of intestinal flora in patients with systemic lupus erythematosus in northeast China. PLoS One 2019; 14(3): e0213063
https://doi.org/10.1371/journal.pone.0213063 pmid: 30870437
31 Z He, T Shao, H Li, Z Xie, C Wen. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog 2016; 8(1): 64
https://doi.org/10.1186/s13099-016-0146-9 pmid: 27980687
32 MA Gerges, NE Esmaeel, WK Makram, DM Sharaf, MG Gebriel. Altered profile of fecal microbiota in newly diagnosed systemic lupus erythematosus Egyptian patients. Int J Microbiol 2021; 2021: 9934533
https://doi.org/10.1155/2021/9934533 pmid: 34257666
33 WF Zhu. Alteration of gut microbiome in patients with systemic lupus erythematosus. Doctoral dissertation. Hangzhou: Zhejiang University, 2018 (in Chinese)
34 XM Luo, MR Edwards, Q Mu, Y Yu, MD Vieson, CM Reilly, SA Ahmed, AA Bankole. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol 2018; 84(4): e02288–17
https://doi.org/10.1128/AEM.02288-17 pmid: 29196292
35 D Azzouz, A Omarbekova, A Heguy, D Schwudke, N Gisch, BH Rovin, R Caricchio, JP Buyon, AV Alekseyenko, GJ Silverman. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 2019; 78(7): 947–956
https://doi.org/10.1136/annrheumdis-2018-214856 pmid: 30782585
36 Y Li, HF Wang, X Li, HX Li, Q Zhang, HW Zhou, Y He, P Li, C Fu, XH Zhang, YR Qiu, JL Li. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin Sci (Lond) 2019; 133(7): 821–838
https://doi.org/10.1042/CS20180841 pmid: 30872359
37 Q Lu, A Wu, L Tesmer, D Ray, N Yousif, B Richardson. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179(9): 6352–6358
https://doi.org/10.4049/jimmunol.179.9.6352 pmid: 17947713
38 Q Mu, X Cabana-Puig, J Mao, B Swartwout, L Abdelhamid, TE Cecere, H Wang, CM Reilly, XM Luo. Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota. Microbiome 2019; 7(1): 105
https://doi.org/10.1186/s40168-019-0720-8 pmid: 31311609
39 Mu Q, Zhang H, Luo XM. SLE: another autoimmune disorder influenced by microbes and diet? Front Immunol 2015; 6: 608 doi:10.3389/fimmu.2015.00608
pmid: 26648937
40 M Guo, H Wang, S Xu, Y Zhuang, J An, C Su, Y Xia, J Chen, ZZ Xu, Q Liu, J Wang, Z Dan, K Chen, X Luan, Z Liu, K Liu, F Zhang, Y Xia, X Liu. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes 2020; 11(6): 1758–1773
https://doi.org/10.1080/19490976.2020.1768644 pmid: 32507008
41 M Wen, T Liu, M Zhao, X Dang, S Feng, X Ding, Z Xu, X Huang, Q Lin, W Xiang, X Li, X He, Q He. Correlation analysis between gut microbiota and metabolites in children with systemic lupus erythematosus. J Immunol Res 2021; 2021: 5579608
https://doi.org/10.1155/2021/5579608 pmid: 34341764
42 JL Sonnenburg, F Bäckhed. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535(7610): 56–64
https://doi.org/10.1038/nature18846 pmid: 27383980
43 D Rojo, A Hevia, R Bargiela, P López, A Cuervo, S González, A Suárez, B Sánchez, M Martínez-Martínez, C Milani, M Ventura, C Barbas, A Moya, A Suárez, A Margolles, M Ferrer. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep 2015; 5(1): 8310
https://doi.org/10.1038/srep08310 pmid: 25655524
44 J Rodríguez-Carrio, P López, B Sánchez, S González, M Gueimonde, A Margolles, Los Reyes-Gavilán CG de, A Suárez. Intestinal dysbiosis is associated with altered short-chain fatty acids and serum-free fatty acids in systemic lupus erythematosus. Front Immunol 2017; 8: 23
https://doi.org/10.3389/fimmu.2017.00023 pmid: 28167944
45 S González, Rrez-Díaz I Gutie, Pez P Lo, A Suárez, T Fernández-Navarro, B Sánchez, A Margolles. Microbiota and oxidant-antioxidant balance in systemic lupus erythematosus. Nutr Hosp 2017; 34(4): 934–941
pmid: 29095019
46 S Manfredo Vieira, M Hiltensperger, V Kumar, D Zegarra-Ruiz, C Dehner, N Khan, FRC Costa, E Tiniakou, T Greiling, W Ruff, A Barbieri, C Kriegel, SS Mehta, JR Knight, D Jain, AL Goodman, MA Kriegel. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359(6380): 1156–1161
https://doi.org/10.1126/science.aar7201 pmid: 29590047
47 C Bellocchi, Á Fernández-Ochoa, G Montanelli, B Vigone, A Santaniello, R Quirantes-Piné, I Borrás-Linares, M Gerosa, C Artusi, R Gualtierotti, A Segura-Carrettero, ME Alarcón-Riquelme, L Beretta. Identification of a shared microbiomic and metabolomic profile in systemic autoimmune diseases. J Clin Med 2019; 8(9): 1291
https://doi.org/10.3390/jcm8091291 pmid: 31450824
48 Y Tomofuji, Y Maeda, E Oguro-Igashira, T Kishikawa, K Yamamoto, K Sonehara, D Motooka, Y Matsumoto, H Matsuoka, M Yoshimura, M Yagita, T Nii, S Ohshima, S Nakamura, H Inohara, K Takeda, A Kumanogoh, Y Okada. Metagenome-wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese. Ann Rheum Dis 2021; 80(12): 1575–1583
https://doi.org/10.1136/annrheumdis-2021-220687 pmid: 34426398
49 BD Chen, XM Jia, JY Xu, LD Zhao, JY Ji, BX Wu, Y Ma, H Li, XX Zuo, WY Pan, XH Wang, S Ye, GC Tsokos, J Wang, X Zhang. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic lupus erythematosus. Arthritis Rheumatol 2021; 73(2): 232–243
https://doi.org/10.1002/art.41511 pmid: 33124780
50 la Visitación N de, I Robles-Vera, M Toral, J Duarte. Protective effects of probiotic consumption in cardiovascular disease in systemic lupus erythematosus. Nutrients 2019; 11(11): 2676
https://doi.org/10.3390/nu11112676 pmid: 31694260
51 Q Mu, H Zhang, X Liao, K Lin, H Liu, MR Edwards, SA Ahmed, R Yuan, L Li, TE Cecere, DB Branson, JL Kirby, P Goswami, CM Leeth, KA Read, KJ Oestreich, MD Vieson, CM Reilly, XM Luo. Control of lupus nephritis by changes of gut microbiota. Microbiome 2017; 5(1): 73
https://doi.org/10.1186/s40168-017-0300-8 pmid: 28697806
52 la Visitación N de, I Robles-Vera, M Toral, M Gómez-Guzmán, M Sánchez, J Moleón, C González-Correa, N Martín-Morales, F O’Valle, R Jiménez, M Romero, J Duarte. Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic lupus erythematosus. Br J Pharmacol 2021; 178(18): 3708–3729
https://doi.org/10.1111/bph.15512 pmid: 33931880
53 M Egert, R Simmering, CU Riedel. The association of the skin microbiota with health, immunity, and disease. Clin Pharmacol Ther 2017; 102(1): 62–69
https://doi.org/10.1002/cpt.698 pmid: 28380682
54 L Flowers, EA Grice. The skin microbiota: balancing risk and reward. Cell Host Microbe 2020; 28(2): 190–200
https://doi.org/10.1016/j.chom.2020.06.017 pmid: 32791112
55 S Ribero, S Sciascia, L Borradori, D Lipsker. The cutaneous spectrum of lupus erythematosus. Clin Rev Allergy Immunol 2017; 53(3): 291–305
https://doi.org/10.1007/s12016-017-8627-2 pmid: 28752372
56 HY Zhou, NW Cao, B Guo, WJ Chen, JH Tao, XJ Chu, X Meng, TX Zhang, BZ Li. Systemic lupus erythematosus patients have a distinct structural and functional skin microbiota compared with controls. Lupus 2021; 30(10): 1553–1564
https://doi.org/10.1177/09612033211025095 pmid: 34139926
57 TA van der Meulen, HJM Harmsen, AV Vila, A Kurilshikov, SC Liefers, A Zhernakova, J Fu, C Wijmenga, RK Weersma, K de Leeuw, H Bootsma, FKL Spijkervet, A Vissink, FGM Kroese. Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J Autoimmun 2019; 97: 77–87
https://doi.org/10.1016/j.jaut.2018.10.009 pmid: 30416033
58 RM Clancy, MC Marion, HC Ainsworth, MJ Blaser, M Chang, TD Howard, PM Izmirly, C Lacher, M Masson, K Robins, JP Buyon, CD Langefeld. Salivary dysbiosis and the clinical spectrum in anti-Ro positive mothers of children with neonatal lupus. J Autoimmun 2020; 107: 102354
https://doi.org/10.1016/j.jaut.2019.102354 pmid: 31677965
59 JD Corrêa, DC Calderaro, GA Ferreira, SM Mendonça, GR Fernandes, E Xiao, AL Teixeira, EJ Leys, DT Graves, TA Silva. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status. Microbiome 2017; 5(1): 34
https://doi.org/10.1186/s40168-017-0252-z pmid: 28320468
60 Z Rutter-Locher, TO Smith, I Giles, N Sofat. Association between systemic lupus erythematosus and periodontitis: a systematic review and meta-analysis. Front Immunol 2017; 8: 1295
https://doi.org/10.3389/fimmu.2017.01295 pmid: 29089946
61 L Pessoa, G Aleti, S Choudhury, D Nguyen, T Yaskell, Y Zhang, W Li, KE Nelson, LLS Neto, ACP Sant’Ana, M Freire. Host-microbial interactions in systemic lupus erythematosus and periodontitis. Front Immunol 2019; 10: 2602
https://doi.org/10.3389/fimmu.2019.02602 pmid: 31781106
62 CP Marques, EC Victor, MM Franco, JM Fernandes, Y Maor, MS de Andrade, VP Rodrigues, BB Benatti. Salivary levels of inflammatory cytokines and their association to periodontal disease in systemic lupus erythematosus patients. A case-control study. Cytokine 2016; 85: 165–170
https://doi.org/10.1016/j.cyto.2016.06.025 pmid: 27371775
63 C Fabbri, R Fuller, E Bonfá, LK Guedes, PS D’Alleva, EF Borba. Periodontitis treatment improves systemic lupus erythematosus response to immunosuppressive therapy. Clin Rheumatol 2014; 33(4): 505–509
https://doi.org/10.1007/s10067-013-2473-2 pmid: 24415114
64 F Liu, T Ren, X Li, Q Zhai, X Xu, N Zhang, P Jiang, Y Niu, L Lv, G Shi, N Feng. Distinct microbiomes of gut and saliva in patients with systemic lupus erythematous and clinical associations. Front Immunol 2021; 12: 626217
https://doi.org/10.3389/fimmu.2021.626217 pmid: 34276643
65 BZ Li, HY Zhou, B Guo, WJ Chen, JH Tao, NW Cao, XJ Chu, X Meng. Dysbiosis of oral microbiota is associated with systemic lupus erythematosus. Arch Oral Biol 2020; 113: 104708
https://doi.org/10.1016/j.archoralbio.2020.104708 pmid: 32203722
66 M Potgieter, J Bester, DB Kell, E Pretorius. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39(4): 567–591
https://doi.org/10.1093/femsre/fuv013 pmid: 25940667
67 H Kiyohara, T Sujino, T Teratani, K Miyamoto, MM Arai, E Nomura, Y Harada, R Aoki, Y Koda, Y Mikami, S Mizuno, M Naganuma, T Hisamatsu, T Kanai. Toll-like receptor 7 agonist-induced dermatitis causes severe dextran sulfate sodium colitis by altering the gut microbiome and immune cells. Cell Mol Gastroenterol Hepatol 2019; 7(1): 135–156
https://doi.org/10.1016/j.jcmgh.2018.09.010 pmid: 30510995
68 L Shi, Z Zhang, AM Yu, W Wang, Z Wei, E Akhter, K Maurer, P Costa Reis, L Song, M Petri, KE Sullivan. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One 2014; 9(5): e93846
https://doi.org/10.1371/journal.pone.0093846 pmid: 24796678
69 L Fotis, N Shaikh, KW Baszis, CM Samson, R Lev-Tzion, AR French, PI Tarr. Serologic evidence of gut-driven systemic inflammation in juvenile idiopathic arthritis. J Rheumatol 2017; 44(11): 1624–1631
https://doi.org/10.3899/jrheum.161589 pmid: 28916545
70 TM Greiling, C Dehner, X Chen, K Hughes, AJ Iñiguez, M Boccitto, DZ Ruiz, SC Renfroe, SM Vieira, WE Ruff, S Sim, C Kriegel, J Glanternik, X Chen, M Girardi, P Degnan, KH Costenbader, AL Goodman, SL Wolin, MA Kriegel. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med 2018; 10(434): eaan2306
https://doi.org/10.1126/scitranslmed.aan2306 pmid: 29593104
71 JD Corrêa, DC Calderaro, GA Ferreira, SM Mendonça, GR Fernandes, E Xiao, AL Teixeira, EJ Leys, DT Graves, TA Silva. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status. Microbiome 2017; 5(1): 34
https://doi.org/10.1186/s40168-017-0252-z pmid: 28320468
72 DF Zegarra-Ruiz, Beidaq A El, AJ Iñiguez, Di Ricco M Lubrano, Vieira S Manfredo, WE Ruff, D Mubiru, RL Fine, J Sterpka, TM Greiling, C Dehner, MA Kriegel. A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 2019; 25(1): 113–127.e6
https://doi.org/10.1016/j.chom.2018.11.009 pmid: 30581114
73 WE Ruff, TM Greiling, MA Kriegel. Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 2020; 18(9): 521–538
https://doi.org/10.1038/s41579-020-0367-2 pmid: 32457482
74 Y Belkaid, TW Hand. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121–141
https://doi.org/10.1016/j.cell.2014.03.011 pmid: 24679531
75 S Zhang, J Wang, J Chen, M Zhang, Y Zhang, F Hu, Z Lv, C Gao, Y Li, X Li. The level of peripheral regulatory T cells is linked to changes in gut commensal microflora in patients with systemic lupus erythematosus. Ann Rheum Dis 2021; 80(11): e177
https://doi.org/10.1136/annrheumdis-2019-216504
76 S Naik, N Bouladoux, JL Linehan, SJ Han, OJ Harrison, C Wilhelm, S Conlan, S Himmelfarb, AL Byrd, C Deming, M Quinones, JM Brenchley, HH Kong, R Tussiwand, KM Murphy, M Merad, JA Segre, Y Belkaid. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 2015; 520(7545): 104–108
https://doi.org/10.1038/nature14052 pmid: 25539086
77 P Coit, AH Sawalha. The human microbiome in rheumatic autoimmune diseases: a comprehensive review. Clin Immunol 2016; 170: 70–79
https://doi.org/10.1016/j.clim.2016.07.026 pmid: 27493014
78 N Katz-Agranov, G Zandman-Goddard. The microbiome and systemic lupus erythematosus. Immunol Res 2017; 65(2): 432–437
https://doi.org/10.1007/s12026-017-8906-2 pmid: 28233089
79 M Toral, M Gómez-Guzmán, R Jiménez, M Romero, M Sánchez, MP Utrilla, N Garrido-Mesa, ME Rodríguez-Cabezas, M Olivares, J Gálvez, J Duarte. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (Lond) 2014; 127(1): 33–45
https://doi.org/10.1042/CS20130339 pmid: 24410749
80 Y Zhao, B Zhang, C Liu, G Ren. Method for accurate diagnose of lupus erythematosus skin lesions based on microbial rDNA sequencing. Saudi J Biol Sci 2020; 27(8): 2111–2115
https://doi.org/10.1016/j.sjbs.2020.05.035 pmid: 32714036
81 Z He, X Kong, T Shao, Y Zhang, C Wen. Alterations of the gut microbiota associated with promoting efficacy of prednisone by bromofuranone in MRL/lpr mice. Front Microbiol 2019; 10: 978
https://doi.org/10.3389/fmicb.2019.00978 pmid: 31118928
82 M Toral, I Robles-Vera, M Romero, la Visitación N de, M Sánchez, F O’Valle, A Rodriguez-Nogales, J Gálvez, J Duarte, R Jiménez. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB J 2019; 33(9): 10005–10018
https://doi.org/10.1096/fj.201900545RR pmid: 31173526
83 la Visitación N de, I Robles-Vera, J Moleón-Moya, M Sánchez, R Jiménez, M Gómez-Guzmán, C González-Correa, M Olivares, M Toral, M Romero, J Duarte. Probiotics prevent hypertension in a murine model of systemic lupus erythematosus induced by Toll-like receptor 7 activation. Nutrients 2021; 13(8): 2669
https://doi.org/10.3390/nu13082669 pmid: 34444829
84 TC Hsu, CY Huang, CH Liu, KC Hsu, YH Chen, BS Tzang. Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice.. Br J Nutr 2017; 117(8): 1066–1074
https://doi.org/10.1017/S0007114517001039 pmid: 28502277
85 YL Yeh, MC Lu, BC Tsai, BS Tzang, SM Cheng, X Zhang, LY Yang, B Mahalakshmi, WW Kuo, P Xiang, CY Huang. Heat-killed Lactobacillus reuteri GMNL-263 inhibits systemic lupus erythematosus-induced cardiomyopathy in NZB/W F1 mice. Probiotics Antimicrob Proteins 2021; 13(1): 51–59
https://doi.org/10.1007/s12602-020-09668-1 pmid: 32514746
86 BS Tzang, CH Liu, KC Hsu, YH Chen, CY Huang, TC Hsu. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice. Br J Nutr 2017; 118(5): 333–342
https://doi.org/10.1017/S0007114517002112 pmid: 28901888
87 SA Esmaeili, M Mahmoudi, Z Rezaieyazdi, M Sahebari, N Tabasi, A Sahebkar, M Rastin. Generation of tolerogenic dendritic cells using Lactobacillus rhamnosus and Lactobacillus delbrueckii as tolerogenic probiotics. J Cell Biochem 2018; 119(9): 7865–7872
https://doi.org/10.1002/jcb.27203 pmid: 29943843
88 F Mardani, M Mahmoudi, SA Esmaeili, S Khorasani, N Tabasi, M Rastin. In vivo study: Th1-Th17 reduction in pristane-induced systemic lupus erythematosus mice after treatment with tolerogenic Lactobacillus probiotics. J Cell Physiol 2019; 234(1): 642–649
https://doi.org/10.1002/jcp.26819 pmid: 30078223
89 S Khorasani, M Mahmoudi, MR Kalantari, F Lavi Arab, SA Esmaeili, F Mardani, N Tabasi, M Rastin. Amelioration of regulatory T cells by Lactobacillus delbrueckii and Lactobacillus rhamnosus in pristane-induced lupus mice model. J Cell Physiol 2019; 234(6): 9778–9786
https://doi.org/10.1002/jcp.27663 pmid: 30370554
90 A Cuervo, A Hevia, P López, A Suárez, B Sánchez, A Margolles, S González. Association of polyphenols from oranges and apples with specific intestinal microorganisms in systemic lupus erythematosus patients. Nutrients 2015; 7(2): 1301–1317
https://doi.org/10.3390/nu7021301 pmid: 25690419
91 BM Johnson, MC Gaudreau, MM Al-Gadban, R Gudi, C Vasu. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin Exp Immunol 2015; 181(2): 323–337
https://doi.org/10.1111/cei.12609 pmid: 25703185
92 M Wolter, ET Grant, M Boudaud, A Steimle, GV Pereira, EC Martens, MS Desai. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol 2021; 18(12): 885–902
https://doi.org/10.1038/s41575-021-00512-7 pmid: 34580480
93 AL Schäfer, A Eichhorst, C Hentze, AN Kraemer, A Amend, DTL Sprenger, C Fluhr, S Finzel, C Daniel, U Salzer, M Rizzi, RE Voll, N Chevalier. Low dietary fiber intake links development of obesity and lupus pathogenesis. Front Immunol 2021; 12: 696810
https://doi.org/10.3389/fimmu.2021.696810 pmid: 34335609
94 V Mocanu, Z Zhang, EC Deehan, DH Kao, N Hotte, S Karmali, DW Birch, KK Samarasinghe, J Walter, KL Madsen. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat Med 2021; 27(7): 1272–1279
https://doi.org/10.1038/s41591-021-01399-2 pmid: 34226737
95 E Rinott, I Youngster, Meir A Yaskolka, G Tsaban, H Zelicha, A Kaplan, D Knights, K Tuohy, F Fava, MU Scholz, O Ziv, E Reuven, A Tirosh, A Rudich, M Blüher, M Stumvoll, U Ceglarek, K Clement, O Koren, DD Wang, FB Hu, MJ Stampfer, I Shai. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 2021; 160(1): 158–173.e10
https://doi.org/10.1053/j.gastro.2020.08.041 pmid: 32860791
96 PF de Groot, MN Frissen, NC de Clercq, M Nieuwdorp. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 2017; 8(3): 253–267
https://doi.org/10.1080/19490976.2017.1293224 pmid: 28609252
97 Y Ma, X Xu, M Li, J Cai, Q Wei, H Niu. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mol Med 2019; 25(1): 35
https://doi.org/10.1186/s10020-019-0102-5 pmid: 31370803
98 Y MaH Niu. In Gut Microbiota Can Promote the Inflammatory Response in The Pathogenesis of Systemic Lupus Erythematosus. Summary of the 13th National Conference on Immunology, 2018
99 Y Zhang, Q Liu, Y Yu, M Wang, C Wen, Z He. Early and short-term interventions in the gut microbiota affects lupus severity, progression, and treatment in MRL/lpr mice. Front Microbiol 2020; 11: 628
https://doi.org/10.3389/fmicb.2020.00628 pmid: 32346376
100 C Danne, N Rolhion, H Sokol. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 2021; 18(7): 503–513
https://doi.org/10.1038/s41575-021-00441-5 pmid: 33907321
101 Abbasi J. Are bacteria transplants the future of eczema therapy? JAMA 2018; 320(11): 1094–1095 doi:10.1001/jama.2018.12334
pmid: 30167663
102 T Nakatsuji, TR Hata, Y Tong, JY Cheng, F Shafiq, AM Butcher, SS Salem, SL Brinton, AK Rudman Spergel, K Johnson, B Jepson, A Calatroni, G David, M Ramirez-Gama, P Taylor, DYM Leung, RL Gallo. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med 2021; 27(4): 700–709
https://doi.org/10.1038/s41591-021-01256-2 pmid: 33619370
[1] Yingying Li, Shiyuan Wang, Mengmeng Lin, Chunying Hou, Chunyu Li, Guohui Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy[J]. Front. Med., 2022, 16(3): 307-321.
[2] Sisi Du, Xiaojing Wu, Binbin Li, Yimin Wang, Lianhan Shang, Xu Huang, Yudi Xia, Donghao Yu, Naicong Lu, Zhibo Liu, Chunlei Wang, Xinmeng Liu, Zhujia Xiong, Xiaohui Zou, Binghuai Lu, Yingmei Liu, Qingyuan Zhan, Bin Cao. Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia[J]. Front. Med., 2022, 16(3): 389-402.
[3] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[4] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[5] Xiaojiao Zheng, Shouli Wang, Wei Jia. Calorie restriction and its impact on gut microbial composition and global metabolism[J]. Front. Med., 2018, 12(6): 634-644.
[6] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed