|
|
|
Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart |
Miaomiao Zhu1,2,3, Huamin Liang1,2,3, Zhe Zhang1, Hao Jiang1,2,3, Jingwen Pu1,2,3, Xiaoyi Hang1,2,3, Qian Zhou1,2,3, Jiacheng Xiang1,2,3, Ximiao He1,2,3( ) |
1. Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2. Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 3. Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China |
|
|
|
|
Abstract A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM–fibroblast (FB) communications and one maintaining MNDCM status with least CM–FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell–cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
|
| Keywords
mononuclear diploid cardiomyocytes
cell–cell communication
cardiac fibroblast
single-cell RNA sequencing
cardiac regeneration
|
|
Corresponding Author(s):
Ximiao He
|
|
Just Accepted Date: 07 April 2023
Online First Date: 07 June 2023
Issue Date: 07 December 2023
|
|
| 1 |
CE Murry, H Reinecke, LM Pabon. Regeneration gaps. J Am Coll Cardiol 2006; 47(9): 1777–1785
https://doi.org/10.1016/j.jacc.2006.02.002
pmid: 16682301
|
| 2 |
RS Whelan, V Kaplinskiy, RN Kitsis. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72(1): 19–44
https://doi.org/10.1146/annurev.physiol.010908.163111
pmid: 20148665
|
| 3 |
Y Wang, F Yao, L Wang, Z Li, Z Ren, D Li, M Zhang, L Han, SQ Wang, B Zhou, L Wang. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat Commun 2020; 11(1): 2585
https://doi.org/10.1038/s41467-020-16204-w
pmid: 32444791
|
| 4 |
O Bergmann, RD Bhardwaj, S Bernard, S Zdunek, F Barnabé-Heider, S Walsh, J Zupicich, K Alkass, BA Buchholz, H Druid, S Jovinge, J Frisén. Evidence for cardiomyocyte renewal in humans. Science 2009; 324(5923): 98–102
https://doi.org/10.1126/science.1164680
pmid: 19342590
|
| 5 |
SE Senyo, ML Steinhauser, CL Pizzimenti, VK Yang, L Cai, M Wang, TD Wu, JL Guerquin-Kern, CP Lechene, RT Lee. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013; 493(7432): 433–436
https://doi.org/10.1038/nature11682
pmid: 23222518
|
| 6 |
AB Carvalho, AC de Carvalho. Heart regeneration: past, present and future. World J Cardiol 2010; 2(5): 107–111
https://doi.org/10.4330/wjc.v2.i5.107
pmid: 21160711
|
| 7 |
MA Laflamme, CE Murry. Heart regeneration. Nature 2011; 473(7347): 326–335
https://doi.org/10.1038/nature10147
pmid: 21593865
|
| 8 |
MH Soonpaa, KK Kim, L Pajak, M Franklin, LJ Field. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996; 271(5 Pt 2): H2183–H2189
pmid: 8945939
|
| 9 |
M Mollova, K Bersell, S Walsh, J Savla, LT Das, SY Park, LE Silberstein, Remedios CG Dos, D Graham, S Colan, B Kühn. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 2013; 110(4): 1446–1451
https://doi.org/10.1073/pnas.1214608110
pmid: 23302686
|
| 10 |
L Ye, L Qiu, H Zhang, H Chen, C Jiang, H Hong, J Liu. Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 2016; 6(1): 23188
https://doi.org/10.1038/srep23188
pmid: 26976548
|
| 11 |
ER Porrello, AI Mahmoud, E Simpson, JA Hill, JA Richardson, EN Olson, HA Sadek. Transient regenerative potential of the neonatal mouse heart. Science 2011; 331(6020): 1078–1080
https://doi.org/10.1126/science.1200708
pmid: 21350179
|
| 12 |
KD Poss, LG Wilson, MT Keating. Heart regeneration in zebrafish. Science 2002; 298(5601): 2188–2190
https://doi.org/10.1126/science.1077857
pmid: 12481136
|
| 13 |
JO Oberpriller, JC Oberpriller. Response of the adult newt ventricle to injury. J Exp Zool 1974; 187(2): 249–259
https://doi.org/10.1002/jez.1401870208
pmid: 4813417
|
| 14 |
SR Ali, S Hippenmeyer, LV Saadat, L Luo, IL Weissman, R Ardehali. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 2014; 111(24): 8850–8855
https://doi.org/10.1073/pnas.1408233111
pmid: 24876275
|
| 15 |
F Li, X Wang, JM Capasso, AM Gerdes. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996; 28(8): 1737–1746
https://doi.org/10.1006/jmcc.1996.0163
pmid: 8877783
|
| 16 |
M Patterson, L Barske, B Van Handel, CD Rau, P Gan, A Sharma, S Parikh, M Denholtz, Y Huang, Y Yamaguchi, H Shen, H Allayee, JG Crump, TI Force, CL Lien, T Makita, AJ Lusis, SR Kumar, HM Sucov. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49(9): 1346–1353
https://doi.org/10.1038/ng.3929
pmid: 28783163
|
| 17 |
R Xavier-Vidal, CA Mandarim-de-Lacerda. Cardiomyocyte proliferation and hypertrophy in the human fetus: quantitative study of the myocyte nuclei. Bull Assoc Anat (Nancy) 1995; 79(246): 27–31
pmid: 8541608
|
| 18 |
K Kikuchi, JE Holdway, AA Werdich, RM Anderson, Y Fang, GF Egnaczyk, T Evans, CA Macrae, DY Stainier, KD Poss. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 2010; 464(7288): 601–605
https://doi.org/10.1038/nature08804
pmid: 20336144
|
| 19 |
W Derks, O Bergmann. Polyploidy in cardiomyocytes: roadblock to heart regeneration?. Circ Res 2020; 126(4): 552–565
https://doi.org/10.1161/CIRCRESAHA.119.315408
pmid: 32078450
|
| 20 |
K Malliaras, Y Zhang, J Seinfeld, G Galang, E Tseliou, K Cheng, B Sun, M Aminzadeh, E Marbán. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 2013; 5(2): 191–209
https://doi.org/10.1002/emmm.201201737
pmid: 23255322
|
| 21 |
X Chen, RM Wilson, H Kubo, RM Berretta, DM Harris, X Zhang, N Jaleel, SM MacDonnell, C Bearzi, J Tillmanns, I Trofimova, T Hosoda, F Mosna, L Cribbs, A Leri, J Kajstura, P Anversa, SR Houser. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007; 100(4): 536–544
https://doi.org/10.1161/01.RES.0000259560.39234.99
pmid: 17272809
|
| 22 |
HS Liao, PM Kang, H Nagashima, N Yamasaki, A Usheva, B Ding, BH Lorell, S Izumo. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001; 88(4): 443–450
https://doi.org/10.1161/01.RES.88.4.443
pmid: 11230113
|
| 23 |
AI Mahmoud, F Kocabas, SA Muralidhar, W Kimura, AS Koura, S Thet, ER Porrello, HA Sadek. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 2013; 497(7448): 249–253
https://doi.org/10.1038/nature12054
pmid: 23594737
|
| 24 |
DT Paik, S Cho, L Tian, HY Chang, JC Wu. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020; 17(8): 457–473
https://doi.org/10.1038/s41569-020-0359-y
pmid: 32231331
|
| 25 |
G Jia, J Preussner, X Chen, S Guenther, X Yuan, M Yekelchyk, C Kuenne, M Looso, Y Zhou, S Teichmann, T Braun. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 2018; 9(1): 4877
https://doi.org/10.1038/s41467-018-07307-6
pmid: 30451828
|
| 26 |
DM DeLaughter, AG Bick, H Wakimoto, D McKean, JM Gorham, IS Kathiriya, JT Hinson, J Homsy, J Gray, W Pu, BG Bruneau, JG Seidman, CE Seidman. Single-cell resolution of temporal gene expression during heart development. Dev Cell 2016; 39(4): 480–490
https://doi.org/10.1016/j.devcel.2016.10.001
pmid: 27840107
|
| 27 |
JM Churko, P Garg, B Treutlein, M Venkatasubramanian, H Wu, J Lee, QN Wessells, SY Chen, WY Chen, K Chetal, G Mantalas, N Neff, E Jabart, A Sharma, GP Nolan, N Salomonis, JC Wu. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018; 9(1): 4906
https://doi.org/10.1038/s41467-018-07333-4
pmid: 30464173
|
| 28 |
MM Gladka, B Molenaar, H de Ruiter, S van der Elst, H Tsui, D Versteeg, GPA Lacraz, MMH Huibers, A van Oudenaarden, E van Rooij. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 2018; 138(2): 166–180
https://doi.org/10.1161/CIRCULATIONAHA.117.030742
pmid: 29386203
|
| 29 |
L Wang, P Yu, B Zhou, J Song, Z Li, M Zhang, G Guo, Y Wang, X Chen, L Han, S Hu. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 2020; 22(1): 108–119
https://doi.org/10.1038/s41556-019-0446-7
pmid: 31915373
|
| 30 |
A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
https://doi.org/10.1093/bioinformatics/bts635
pmid: 23104886
|
| 31 |
A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
https://doi.org/10.1038/nbt.4096
pmid: 29608179
|
| 32 |
G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
https://doi.org/10.1089/omi.2011.0118
pmid: 22455463
|
| 33 |
C Trapnell, D Cacchiarelli, J Grimsby, P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak, TS Mikkelsen, JL Rinn. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386
https://doi.org/10.1038/nbt.2859
pmid: 24658644
|
| 34 |
S Jin, AL MacLean, T Peng, Q Nie. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 2018; 34(12): 2077–2086
https://doi.org/10.1093/bioinformatics/bty058
pmid: 29415263
|
| 35 |
I Tirosh, B Izar, SM Prakadan, MH 2nd Wadsworth, D Treacy, JJ Trombetta, A Rotem, C Rodman, C Lian, G Murphy, M Fallahi-Sichani, K Dutton-Regester, JR Lin, O Cohen, P Shah, D Lu, AS Genshaft, TK Hughes, CG Ziegler, SW Kazer, A Gaillard, KE Kolb, AC Villani, CM Johannessen, AY Andreev, Allen EM Van, M Bertagnolli, PK Sorger, RJ Sullivan, KT Flaherty, DT Frederick, J Jané-Valbuena, CH Yoon, O Rozenblatt-Rosen, AK Shalek, A Regev, LA Garraway. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352(6282): 189–196
https://doi.org/10.1126/science.aad0501
pmid: 27124452
|
| 36 |
CF Guerrero-Juarez, PH Dedhia, S Jin, R Ruiz-Vega, D Ma, Y Liu, K Yamaga, O Shestova, DL Gay, Z Yang, K Kessenbrock, Q Nie, WS Pear, G Cotsarelis, MV Plikus. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun 2019; 10(1): 650
https://doi.org/10.1038/s41467-018-08247-x
pmid: 30737373
|
| 37 |
S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
https://doi.org/10.1038/s41467-021-21246-9
pmid: 33597522
|
| 38 |
K Hirose, AY Payumo, S Cutie, A Hoang, H Zhang, R Guyot, D Lunn, RB Bigley, H Yu, J Wang, M Smith, E Gillett, SE Muroy, T Schmid, E Wilson, KA Field, DM Reeder, M Maden, MM Yartsev, MJ Wolfgang, F Grützner, TS Scanlan, LI Szweda, R Buffenstein, G Hu, F Flamant, JE Olgin, GN Huang. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 2019; 364(6436): 184–188
https://doi.org/10.1126/science.aar2038
pmid: 30846611
|
| 39 |
Z Zhang, M Zhu, Q Xie, RM Larkin, X Shi, B Zheng. CProtMEDIAS: clustering of amino acid sequences encoded by gene families by MErging and DIgitizing Aligned Sequences. Brief Bioinform 2022; 23(4): bbac276
https://doi.org/10.1093/bib/bbac276
pmid: 35834931
|
| 40 |
T Wu, Z Liang, Z Zhang, C Liu, L Zhang, Y Gu, KL Peterson, SM Evans, XD Fu, J Chen. PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation 2022; 145(8): 586–602
https://doi.org/10.1161/CIRCULATIONAHA.121.056666
pmid: 34915728
|
| 41 |
S Yamada, T Ko, S Hatsuse, S Nomura, B Zhang, Z Dai, S Inoue, M Kubota, K Sawami, T Yamada, T Sassa, M Katagiri, K Fujita, M Katoh, M Ito, M Harada, H Toko, N Takeda, H Morita, H Aburatani, I Komuro. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat Cardiovasc Res 2022; 1: 1072–1083
https://doi.org/10.1038/s44161-022-00140-7
|
| 42 |
M Cui, Z Wang, K Chen, AM Shah, W Tan, L Duan, E Sanchez-Ortiz, H Li, L Xu, N Liu, R Bassel-Duby, EN Olson. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell 2020; 53(1): 102–116.e8
https://doi.org/10.1016/j.devcel.2020.02.019
pmid: 32220304
|
| 43 |
A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
https://doi.org/10.1038/nbt.4096
pmid: 29608179
|
| 44 |
SG Zeitlin, RD Shelby, KF Sullivan. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 2001; 155(7): 1147–1157
https://doi.org/10.1083/jcb.200108125
pmid: 11756469
|
| 45 |
N Kunitoku, T Sasayama, T Marumoto, D Zhang, S Honda, O Kobayashi, K Hatakeyama, Y Ushio, H Saya, T Hirota. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 2003; 5(6): 853–864
https://doi.org/10.1016/S1534-5807(03)00364-2
pmid: 14667408
|
| 46 |
S Orthaus, C Biskup, B Hoffmann, C Hoischen, S Ohndorf, K Benndorf, S Diekmann. Assembly of the inner kinetochore proteins CENP-A and CENP-B in living human cells. ChemBioChem 2008; 9(1): 77–92
https://doi.org/10.1002/cbic.200700358
pmid: 18072184
|
| 47 |
AO Bailey, T Panchenko, KM Sathyan, JJ Petkowski, PJ Pai, DL Bai, DH Russell, IG Macara, J Shabanowitz, DF Hunt, BE Black, DR Foltz. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci USA 2013; 110(29): 11827–11832
https://doi.org/10.1073/pnas.1300325110
pmid: 23818633
|
| 48 |
Z Yu, X Zhou, W Wang, W Deng, J Fang, H Hu, Z Wang, S Li, L Cui, J Shen, L Zhai, S Peng, J Wong, S Dong, Z Yuan, G Ou, X Zhang, P Xu, J Lou, N Yang, P Chen, RM Xu, G Li. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 2015; 32(1): 68–81
https://doi.org/10.1016/j.devcel.2014.11.030
pmid: 25556658
|
| 49 |
Y Roulland, K Ouararhni, M Naidenov, L Ramos, M Shuaib, SH Syed, IN Lone, R Boopathi, E Fontaine, G Papai, H Tachiwana, T Gautier, D Skoufias, K Padmanabhan, J Bednar, H Kurumizaka, P Schultz, D Angelov, A Hamiche, S Dimitrov. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol Cell 2016; 63(4): 674–685
https://doi.org/10.1016/j.molcel.2016.06.023
pmid: 27499292
|
| 50 |
M Szibor, J Pöling, H Warnecke, T Kubin, T Braun. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci 2014; 71(10): 1907–1916
https://doi.org/10.1007/s00018-013-1535-6
pmid: 24322910
|
| 51 |
AE Teschendorff, T Enver. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat Commun 2017; 8(1): 15599
https://doi.org/10.1038/ncomms15599
pmid: 28569836
|
| 52 |
PM Ridker, BM Everett, T Thuren, JG MacFadyen, WH Chang, C Ballantyne, F Fonseca, J Nicolau, W Koenig, SD Anker, JJP Kastelein, JH Cornel, P Pais, D Pella, J Genest, R Cifkova, A Lorenzatti, T Forster, Z Kobalava, L Vida-Simiti, M Flather, H Shimokawa, H Ogawa, M Dellborg, PRF Rossi, RPT Troquay, P Libby, RJ; CANTOS Trial Group Glynn. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119–1131
https://doi.org/10.1056/NEJMoa1707914
pmid: 28845751
|
| 53 |
A Uygur, RT Lee. Mechanisms of cardiac regeneration. Dev Cell 2016; 36(4): 362–374
https://doi.org/10.1016/j.devcel.2016.01.018
pmid: 26906733
|
| 54 |
CJ Vivien, JE Hudson, ER Porrello. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 2016; 1(1): 16012
https://doi.org/10.1038/npjregenmed.2016.12
pmid: 29302337
|
| 55 |
M Dodson, V Darley-Usmar, J Zhang. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63: 207–221
https://doi.org/10.1016/j.freeradbiomed.2013.05.014
pmid: 23702245
|
| 56 |
H Honkoop, Bakker DE de, A Aharonov, F Kruse, A Shakked, PD Nguyen, Heus C de, L Garric, MJ Muraro, A Shoffner, F Tessadori, JC Peterson, W Noort, A Bertozzi, G Weidinger, G Posthuma, D Grün, der Laarse WJ van, J Klumperman, RT Jaspers, KD Poss, Oudenaarden A van, E Tzahor, J Bakkers. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 2019; 8: e50163
https://doi.org/10.7554/eLife.50163
pmid: 31868166
|
| 57 |
AM Galow, M Wolfien, P Müller, M Bartsch, RM Brunner, A Hoeflich, O Wolkenhauer, R David, T Goldammer. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice. Cells 2020; 9(5): 1144
https://doi.org/10.3390/cells9051144
pmid: 32384695
|
| 58 |
P Gan, M Patterson, HM Sucov. Cardiomyocyte polyploidy and implications for heart regeneration. Annu Rev Physiol 2020; 82: 45–61
https://doi.org/10.1146/annurev-physiol-021119-034618
pmid: 31585517
|
| 59 |
C Pellieux, A Foletti, G Peduto, JF Aubert, J Nussberger, F Beermann, HR Brunner, T Pedrazzini. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 2001; 108(12): 1843–1851
https://doi.org/10.1172/JCI13627
pmid: 11748268
|
| 60 |
M Dobaczewski, W Chen, NG Frangogiannis. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2011; 51(4): 600–606
https://doi.org/10.1016/j.yjmcc.2010.10.033
pmid: 21059352
|
| 61 |
S Demyanets, C Kaun, R Pentz, KA Krychtiuk, S Rauscher, S Pfaffenberger, A Zuckermann, A Aliabadi, M Gröger, G Maurer, K Huber, J Wojta. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013; 60: 16–26
https://doi.org/10.1016/j.yjmcc.2013.03.020
pmid: 23567618
|
| 62 |
S Sanada, D Hakuno, LJ Higgins, ER Schreiter, AN McKenzie, RT Lee. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117(6): 1538–1549
https://doi.org/10.1172/JCI30634
pmid: 17492053
|
| 63 |
N Xia, Y Lu, M Gu, N Li, M Liu, J Jiao, Z Zhu, J Li, D Li, T Tang, B Lv, S Nie, M Zhang, M Liao, Y Liao, X Yang, X Cheng. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 2020; 142(20): 1956–1973
https://doi.org/10.1161/CIRCULATIONAHA.120.046789
pmid: 32985264
|
| 64 |
AM Ambari, B Setianto, A Santoso, B Radi, B Dwiputra, E Susilowati, F Tulrahmi, PA Doevendans, MJ Cramer. Angiotensin converting enzyme inhibitors (ACEIs) decrease the progression of cardiac fibrosis in rheumatic heart disease through the inhibition of IL-33/sST2. Front Cardiovasc Med 2020; 7: 115
https://doi.org/10.3389/fcvm.2020.00115
pmid: 32850979
|
| 65 |
M Ieda, T Tsuchihashi, KN Ivey, RS Ross, TT Hong, RM Shaw, D Srivastava. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009; 16(2): 233–244
https://doi.org/10.1016/j.devcel.2008.12.007
pmid: 19217425
|
| 66 |
JW Godwin, AR Pinto, NA Rosenthal. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 2013; 110(23): 9415–9420
https://doi.org/10.1073/pnas.1300290110
pmid: 23690624
|
| 67 |
AB Aurora, ER Porrello, W Tan, AI Mahmoud, JA Hill, R Bassel-Duby, HA Sadek, EN Olson. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124(3): 1382–1392
https://doi.org/10.1172/JCI72181
pmid: 24569380
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|