Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (4) : 585-616    https://doi.org/10.1007/s11684-023-1012-z
REVIEW
Immunometabolism: a new dimension in immunotherapy resistance
Chaoyue Xiao1, Wei Xiong2, Yiting Xu3, Ji’an Zou3, Yue Zeng1, Junqi Liu1, Yurong Peng1, Chunhong Hu1,4, Fang Wu1,4,5,6()
1. Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
2. NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
3. Xiangya School of Medicine, Central South University, Changsha 410013, China
4. Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha 410011, China
5. Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha 410011, China
6. Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
 Download: PDF(2270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.

Keywords immune cell      immunometabolism      metabolic reprogramming      immunotherapy      resistance      tumor microenvironment      immune checkpoint inhibitor     
Corresponding Author(s): Fang Wu   
Just Accepted Date: 14 July 2023   Online First Date: 11 September 2023    Issue Date: 12 October 2023
 Cite this article:   
Chaoyue Xiao,Wei Xiong,Yiting Xu, et al. Immunometabolism: a new dimension in immunotherapy resistance[J]. Front. Med., 2023, 17(4): 585-616.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1012-z
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I4/585
Fig.1  Overview of immune cell metabolism. Each type of immune cell and their resting or active state manifest completely divergent metabolic patterns. Abbreviation: Teff cell, effector T cell; Tm cell, memory T cell; Treg cell, regulatory T cell; NK cell, natural killer cell; DC, dendritic cell; TAM, tumor-associated macrophage; FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway.
Immunocyte Glucose metabolism Lipid metabolism Amino acid metabolism
T cell
Teff cell Insufficient glycolysis downregulates tumoricidal effector molecule expression and triggers T cell anergy or even apoptosis [30,34] CD8+ T cells with incremental lipid ingestion overexpress PD-1 and enhance FAO, which impedes their effector functionality [41,42] There is too meagre Arg for T cells to mediate antineoplastic immunity, which promotes tumor growth and resistance to immunotherapy [4649]
Tumor-derived lactate blunts anti-tumor immunity by varying pyruvate utilization and intercepting succinate signaling in CD8+ T cells [40] CD36 mediates FA ingestion by CD8+ TILs, which engages in lipid peroxidation and ferroptosis, culminating in adynamic tumoricidal capability [43,44] Trp deprivation represses T cell tumoricidal immunity, and Trp-associated metabolite accruement foments tumor evasion [50]
Underproductive PEP is inimical to T cell immunosurveillance [28] Cholesterol accumulation in the cytoplasm triggers the overexpression of inhibitory checkpoints and the functional exhaustion of CD8+ TILs [45] Due to the lack of Gln, Teff cells are irresponsive and Th1 and Th17 differentiation are repressed [29,51,52]. Dual lack of Asp and Gln spawns mass T cell death [53]
Met starvation embodies in meager Met and SAM, defective T cell function and survival [54,55]
Cys/Cys-Cys deprivation spawns T cell dysfunction and exhaustion by disrupting redox balance [56,57]
Treg cell Foxp3 lessens glycolysis in Treg cells, which allows them to be free from lactate limitation [58] Treg cells ingest exogenous FAs and elevate FAO to establish immunosuppression [42,60]
Treg cells exploit lactate within the TME to sustain immunosuppression [59] FAS mediated by FASN is conducive to the functional maturation of Treg cells [61]
SREBPs are overexpressed in Treg cells and participate in PD-1 overexpression [62]
Tm cell Tm cells depend upon intrinsic mobilization of FAs, utilize short- or medium-chain FAs, engage FAO to a greater extent [6365]
NK cell Deprived amino acids repress mTOR signaling and glycolysis in NK cells, blunting their effector function [66] The intracellular lipid droplet accumulation profoundly inhibits NK cell cytotoxicity and metabolic bioactivity [70] The expression of ARG1 in the TME exhausts the Arg available for the antineoplastic response of NK cells [13]
Accrued SREBP inhibitors in the TME and overexpressed FBP1 in NK cell attenuate glycolysis and then NK cell cytotoxicity [67,68]
Extracellular accumulation of ADO inhibits OXPHOS and glycolysis of NK cells, which suppresses their cytotoxicity [69]
DC Impaired glycolysis in DCs inhibits their antigen presentation, cytokine generation, T cell stimulation [71] Lipid droplets accrue in DCs owing to either de novo FAS or intake from plasma, blunting antigen presentation [76,77] The entwined pathway between IDO1 and ARG1 in DCs leads DCs toward a more immunosuppressive state [84]
T cells activated by DCs compete for glucose, which represses glycolytic activity of DCs [72,73] The accrued ROS in DCs oxidizes lipids and blunts presentation capability and thus T cell priming [78,79]
The low pH of TME accentuates mitochondrial respiration while attenuating glycolysis in DCs [74,75] Lipid peroxidation elicits the UPR and ER stress responses, hindering effector molecule trafficking and T cell priming [80]
FAs accumulation intensifies FAO in DCs, leading tumor toward a more immunotolerant state [81]
PGE2 yielded by tumor cells and intratumoral DCs impedes DC antigen presentation [82,83]
Macrophage
M1-like TAM In the onset inflammatory phase of tumor initiation, TAMs manifest a more glycolytic characteristic that drives TAMs toward M1-like TAMs [8587] FA intake and FAO are abated in M1-like TAMs, whereas FASN plays an indispensable role in the induction of M1-like TAMs [88,89]
M2-like TAM In the later phase of tumor progression, glucose depletion and lactate accruement skew the TAMs to underscore OXPHOS, boosting M2-like TAMs expansion [8587] FAO and mitochondrial biogenesis in M2-like TAMs are reinforced to fuel incremental OXPHOS essential for M2-like TMAs activation [8890] M2-like TAMs overexpress ARG1 that speedily catabolizes Arg and then stunts T cell activation, thereby contributing to immunosuppression [91]
The high expression and secretion of IDO in TAMs reinforce their M2-like polarization by yielding Kyn [92]
High levels of GLS are spotted in M2-like TAMs to maintain M2-like phenotype [93]
MDSC When MDSCs are confronted with tumor-derived factors, they upregulate glycolytic genes and ingest much glucose [9496] Enhanced exogenous lipids ingestion and FAO enhance the immunosuppressive functions of MDSCs [98] Arg is deprived by MDSCs expressing ARG1, iNOS and CAT2, which leads T cells to fail to recognize antigens [101]
The high glycolysis of MDSCs produces CIMs and nucleotides to sustain immunosuppression [97] MDSCs with lipid overload have greater immunosuppressive effect on CD8+ T cells [99] The antineoplastic effects of T cells are significantly subdued by sequestering Cys by MDSCs [102]
The cholesterol profile of MDSCs is reshaped to reinforce their immunosuppression [100] MDSCs overexpress IDO under the induction of inflammatory cytokines [103]
The incremental Gln ingestion in MDSCs is chiefly utilized in glutaminolysis, thus promoting MDSC recruitment in the myeloid lineage around the TME [104]
Tab.1  Immunometabolism of tumor-infiltrating immunocytes
Fig.2  Resistant mechanism of immunotherapy: glucose metabolic reprogramming of immune cells within the TME. In the TME, tumor cells interfere with immune cell function by forcing immune cells to reprogram glucose metabolism. Specifically, metabolically highly active tumor cells deplete large amounts of nutrients (e.g., glucose and amino acids), which represses glycolysis of CD8+ T cells, NK cells, and TAMs by limiting the availability of glucose to CD8+ T cells and TAMs and amino acids to NK cells, and generate immunosuppressive metabolites (e.g., lactate, ADO), which attenuates glycolysis of DCs while accentuating mitochondrial respiration by acidifying the TME, sustains immunosuppressive identity of Treg cell by exploiting lactate by various metabolic enzymes, skews M1-like toward the polarization of M2-like TAMs by underscoring OXPHOS, and inhibits OXPHOS and glycolysis of NK cells by activating A2AR by ADO. When MDSCs are confronted with tumor-derived factors, they upregulate glycolytic genes and thereby ingest glucose as the greatest capability as possible. The glucose metabolic reprogramming ultimately emasculates the effector function of CD8+ T cells, DCs, NK cells, M1-TAMs, while invigorating the immunosuppressive function of Treg cells, M2-TAMs, and MDSCs, which contributes to immunotherapy resistance. Abbreviations: TME, tumor microenvironment; PD-1, programmed cell death-1; Gzms-B/C, granzymes B and C; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α; TGF-β, transforming growth factor β; GSK3, glycogen synthase kinase 3; mTOR, mammalian target of rapamycin; PEP, phosphoenolpyruvate; MEs, metabolic enzymes; TCR, T cell receptor; TAM, tumor-associated macrophage; Treg cell, regulatory T cell; MDSC, myeloid-derived suppressor cell; DC, dendritic cell; NK cell, natural killer cell; ROS, reactive oxygen species; GLUT, glucose transporter; TIGIT, T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain; SREBP, sterol regulatory element binding protein; ATP, adenosine triphosphate; AMP, adenosine 3′-monophosphate; ADO, adenosine; A2AR, A2A receptor; 25-HC, 25-hydroxycholesterol; 27-HC, 27-hydroxycholesterol; HIF-1α, hypoxia-inducible factor 1α.
Fig.3  Resistant mechanism of immunotherapy: lipid metabolic reprogramming of immune cells within the TME. In the TME, tumor cells interfere with immune cell function by forcing immune cells to reprogram lipid metabolism. Specifically, metabolically highly active tumor cells cause a typical metabolic alteration called lipid accumulation within the TME by augmenting FAS, which has varying effects on immune cells. In CD8+ T cells, the growing CD36 mediates the ingestion of FAs, which engage in lipid peroxidation and ferroptosis, and cholesterol, which triggers the overexpression of PD-1, TIM-3, and LAG-3 in an ER stress-XBP1-dependent manner. Treg cells ingest FAs to elevate FAO, and overexpress SREBPs to further overexpress PD-1. NK cells upregulate CD36 and Scarb1 to possess lipid accumulation. The accrued ROS in DCs oxidizes bountiful lipids that accrue owing to either incremental FAS or intake from plasma. FA intake and FAO that accelerates M1-like TAMs polarization via activating NLRP3 are abated in M1-like TAMs, whereas FAO and mitochondrial biogenesis in M2-like TAMs are synchronously reinforced to fuel incremental OXPHOS essential for activation of M2-like TMAs. MDSCs enhance lipids ingestion by elevated CD36, MSR1, FATP to enhance FAO, and upregulate the LOX-1 by ROS, inflammatory cytokines and ox-LDL to induce ER stress. The lipid metabolic reprogramming ultimately emasculates the effector function of CD8+ T cells, DCs, NK cells, M1-TAMs, while invigorating the immunosuppressive function of Treg cells, M2-TAMs, and MDSCs, which contributes to immunotherapy resistance. Abbreviations: PD-1, programmed cell death-1; TIM-3, T cell immunoglobulin mucin-3; LAG-3, lymphocyte activation gene 3; XBP1, X-box binding protein 1; ER stress, endoplasmic reticulumstress; SREBP, sterol regulatory element binding protein; FAO, fatty acid oxidation; CPT1A, carnitine palmitoyltransferase 1A; TAM, tumor-associated macrophage; Treg cell, regulatory T cell; MDSC, myeloid-derived suppressor cell; DC, dendritic cell; NK cell, natural killer cell; FAS, fatty acid synthesis; ROS, reactive oxygen species; TCR, T cell receptor; PGE2, prostaglandin E2; IL-10, interleukin-10; FAs, fatty acids; OXPHOS, oxidative phosphorylation; Scarb1, scavenger receptor class B member 1; FATP, fatty acid transport protein; MSR1, macrophage scavenger receptor 1; Ox-LDL, oxidized low-density lipoprotein; LOX-1, lectin-type oxidized LDL receptor-1; TAG, triacylglycerol; NLRP3, NOD-like receptor thermal protein domain associated protein 3.
Fig.4  Resistant mechanism of immunotherapy: amino acid metabolic reprogramming of immune cells within the TME. In the TME, tumor cells interfere with immune cell function by forcing immune cells to reprogram amino acid metabolism. Specifically, metabolically highly active tumor cells deplete large amounts of amino acids (e.g., Arg, Gln, Asp, Trp, Met, Cys), which limiting the availability of amino acid to CD8+ T cells, NK cells and DCs, and generate immunosuppressive metabolites (e.g., Kyn), which can be directly transferred into CD8+ T cells to overexpress PD-1 and directly activate AHR to boost Treg differentiation while blunting DC function and Teff cell proliferation. The expression of IDO and ARG1 is upregulated in DCs, leading DCs toward a more immunosuppressive state by an entwined pathway between IDO1 and ARG1. M2-like TAMs overexpress ARG1 that speedily catabolizes Arg, IDO and GLS that reinforce M2-like polarization. MDSCs overexpress ARG1, iNOS, CAT2 to deprive Arg, and IDO to deprive Trp, and system Xc to deprive Cys/Cys-Cys. The incremental Gln ingestion in MDSCs is primarily utilized in glutaminolysis, thus promoting the recruitment of MDSCs. The amino acid metabolic reprogramming ultimately emasculates the effector function of CD8+ T cells, DCs, NK cells, M1-TAMs, while invigorating the immunosuppressive function of Treg cells, M2-TAMs, and MDSCs, which contributes to immunotherapy resistance. Abbreviation: PD-1, programmed cell death-1; IFN-γ, interferon-γ; TCR, T cell receptor; TAM, tumor-associated macrophage; Treg cell, regulatory T cell; MDSC, myeloid-derived suppressor cell; DC, dendritic cell; NK cell, natural killer cell; Arg, arginine; Kyn, kynurenine; Trp, tryptophan; Gln, glutamine; Asp, asparagine; Cys, cysteine; Cys-Cys, cystine; Met, methionine; ARG, arginase; IDO, indoleamine 2,3-dioxygenase; GLS, glutaminase; CAT2, cationic amino acid transporter 2; AHR, aryl hydrocarbon receptor; iNOS, inducible NO synthas.
1 L Kraehenbuehl, CH Weng, S Eghbali, JD Wolchok, T Merghoub. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 2022; 19(1): 37–50
https://doi.org/10.1038/s41571-021-00552-7
2 DB Johnson, CA Nebhan, JJ Moslehi, JM Balko. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol 2022; 19(4): 254–267
https://doi.org/10.1038/s41571-022-00600-w
3 Y Yan, AB Kumar, H Finnes, SN Markovic, S Park, RS Dronca, H Dong. Combining immune checkpoint inhibitors with conventional cancer therapy. Front Immunol 2018; 9: 1739
https://doi.org/10.3389/fimmu.2018.01739
4 Y Wang, Y Wang, Y Ren, Q Zhang, P Yi, C Cheng. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86(Pt 3): 542–565
https://doi.org/10.1016/j.semcancer.2022.02.010
5 Z Jiang, JL Hsu, Y Li, GN Hortobagyi, MC Hung. Cancer cell metabolism bolsters immunotherapy resistance by promoting an immunosuppressive tumor microenvironment. Front Oncol 2020; 10: 1197
https://doi.org/10.3389/fonc.2020.01197
6 L Guerra, L Bonetti, D Brenner. Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep 2020; 32(1): 107848
https://doi.org/10.1016/j.celrep.2020.107848
7 JM Pitt, M Vétizou, R Daillère, MP Roberti, T Yamazaki, B Routy, P Lepage, IG Boneca, M Chamaillard, G Kroemer, L Zitvogel. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 2016; 44(6): 1255–1269
https://doi.org/10.1016/j.immuni.2016.06.001
8 C Guo, S Chen, W Liu, Y Ma, J Li, PB Fisher, X Fang, XY Wang. Immunometabolism: a new target for improving cancer immunotherapy. Adv Cancer Res 2019; 143: 195–253
https://doi.org/10.1016/bs.acr.2019.03.004
9 GO Rangel Rivera, HM Knochelmann, CJ Dwyer, AS Smith, MM Wyatt, AM Rivera-Reyes, JE Thaxton, CM Paulos. Fundamentals of T cell metabolism and strategies to enhance cancer immunotherapy. Front Immunol 2021; 12: 645242
https://doi.org/10.3389/fimmu.2021.645242
10 L Zhu, X Zhu, Y Wu. Effects of glucose metabolism, lipid metabolism, and glutamine metabolism on tumor microenvironment and clinical implications. Biomolecules 2022; 12(4): 580
https://doi.org/10.3390/biom12040580
11 H Aria, F Ghaedrahmati, M Ganjalikhani-Hakemi. Cutting edge: metabolic immune reprogramming, reactive oxygen species, and cancer. J Cell Physiol 2021; 236(9): 6168–6189
https://doi.org/10.1002/jcp.30303
12 N Mabrouk, B Lecoeur, A Bettaieb, C Paul, F Végran. Impact of lipid metabolism on antitumor immune response. Cancers (Basel) 2022; 14(7): 1850
https://doi.org/10.3390/cancers14071850
13 CY Weng, CX Kao, TS Chang, YH Huang. Immuno-metabolism: the role of cancer niche in immune checkpoint inhibitor resistance. Int J Mol Sci 2021; 22(3): 1258
https://doi.org/10.3390/ijms22031258
14 N Oberholtzer, KM Quinn, P Chakraborty, S Mehrotra. New developments in T cell immunometabolism and implications for cancer immunotherapy. Cells 2022; 11(4): 708
https://doi.org/10.3390/cells11040708
15 AR Lim, WK Rathmell, JC Rathmell. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. eLife 2020; 9: e55185
https://doi.org/10.7554/eLife.55185
16 L Xia, L Oyang, J Lin, S Tan, Y Han, N Wu, P Yi, L Tang, Q Pan, S Rao, J Liang, Y Tang, M Su, X Luo, Y Yang, Y Shi, H Wang, Y Zhou, Q Liao. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20(1): 28
https://doi.org/10.1186/s12943-021-01316-8
17 D Mathis, SE Shoelson. Immunometabolism: an emerging frontier. Nat Rev Immunol 2011; 11(2): 81–83
https://doi.org/10.1038/nri2922
18 LA O’Neill, RJ Kishton, J Rathmell. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016; 16(9): 553–565
https://doi.org/10.1038/nri.2016.70
19 JA Shyer, RA Flavell, W Bailis. Metabolic signaling in T cells. Cell Res 2020; 30(8): 649–659
https://doi.org/10.1038/s41422-020-0379-5
20 K DePeaux, GM Delgoffe. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol 2021; 21(12): 785–797
https://doi.org/10.1038/s41577-021-00541-y
21 RD Leone, JD Powell. Metabolism of immune cells in cancer. Nat Rev Cancer 2020; 20(9): 516–531
https://doi.org/10.1038/s41568-020-0273-y
22 G Ma, C Li, Z Zhang, Y Liang, Z Liang, Y Chen, L Wang, D Li, M Zeng, W Shan, H Niu. Targeted glucose or glutamine metabolic therapy combined with PD-1/PD-L1 checkpoint blockade immunotherapy for the treatment of tumors—mechanisms and strategies. Front Oncol 2021; 11: 697894
https://doi.org/10.3389/fonc.2021.697894
23 X Liu, Y Zhao, X Wu, Z Liu, X Liu. A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Front Oncol 2022; 12: 931104
https://doi.org/10.3389/fonc.2022.931104
24 YT Dabi, H Andualem, ST Degechisa, ST Gizaw. Targeting metabolic reprogramming of T-cells for enhanced anti-tumor response. Biologics 2022; 16: 35–45
25 RIK Geltink, RL Kyle, EL Pearce. Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol 2018; 36(1): 461–488
https://doi.org/10.1146/annurev-immunol-042617-053019
26 F Marchesi, D Vignali, B Manini, A Rigamonti, P Monti. Manipulation of glucose availability to boost cancer immunotherapies. Cancers (Basel) 2020; 12(10): 2940
https://doi.org/10.3390/cancers12102940
27 NM Chapman, MR Boothby, H Chi. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 2020; 20(1): 55–70
https://doi.org/10.1038/s41577-019-0203-y
28 PC Ho, JD Bihuniak, AN Macintyre, M Staron, X Liu, R Amezquita, YC Tsui, G Cui, G Micevic, JC Perales, SH Kleinstein, ED Abel, KL Insogna, S Feske, JW Locasale, MW Bosenberg, JC Rathmell, SM Kaech. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015; 162(6): 1217–1228
https://doi.org/10.1016/j.cell.2015.08.012
29 CH Chang, J Qiu, D O’Sullivan, MD Buck, T Noguchi, JD Curtis, Q Chen, M Gindin, MM Gubin, der Windt GJ van, E Tonc, RD Schreiber, EJ Pearce, EL Pearce. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229–1241
https://doi.org/10.1016/j.cell.2015.08.016
30 CM Cham, G Driessens, JP O’Keefe, TF Gajewski. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008; 38(9): 2438–2450
https://doi.org/10.1002/eji.200838289
31 JJ Lum, RJ DeBerardinis, CB Thompson. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005; 6(6): 439–448
https://doi.org/10.1038/nrm1660
32 L DeVorkin, N Pavey, G Carleton, A Comber, C Ho, J Lim, E McNamara, H Huang, P Kim, LG Zacharias, N Mizushima, T Saitoh, S Akira, W Beckham, A Lorzadeh, M Moksa, Q Cao, A Murthy, M Hirst, RJ DeBerardinis, JJ Lum. Autophagy regulation of metabolism is required for CD8+ T cell anti-tumor immunity. Cell Rep 2019; 27(2): 502–513.e5
https://doi.org/10.1016/j.celrep.2019.03.037
33 P Zhou, H Chi. AGK unleashes CD8+ T cell glycolysis to combat tumor growth. Cell Metab 2019; 30(2): 233–234
https://doi.org/10.1016/j.cmet.2019.07.008
34 NL Alves, IAM Derks, E Berk, R Spijker, RAW van Lier, E Eldering. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006; 24(6): 703–716
https://doi.org/10.1016/j.immuni.2006.03.018
35 Z Hu, G Qu, X Yu, H Jiang, XL Teng, L Ding, Q Hu, X Guo, Y Zhou, F Wang, HB Li, L Chen, J Jiang, B Su, J Liu, Q Zou. Acylglycerol kinase maintains metabolic state and immune responses of CD8+ T cells. Cell Metab 2019; 30(2): 290–302.e5
https://doi.org/10.1016/j.cmet.2019.05.016
36 Q Shao, L Wang, M Yuan, X Jin, Z Chen, C Wu. TIGIT induces (CD3+) T cell dysfunction in colorectal cancer by inhibiting glucose metabolism. Front Immunol 2021; 12: 688961
https://doi.org/10.3389/fimmu.2021.688961
37 K Renner, C Bruss, A Schnell, G Koehl, HM Becker, M Fante, AN Menevse, N Kauer, R Blazquez, L Hacker, SM Decking, T Bohn, S Faerber, K Evert, L Aigle, S Amslinger, M Landa, O Krijgsman, EA Rozeman, C Brummer, PJ Siska, K Singer, S Pektor, M Miederer, K Peter, E Gottfried, W Herr, I Marchiq, J Pouyssegur, WR Roush, S Ong, S Warren, T Pukrop, P Beckhove, SA Lang, T Bopp, CU Blank, JL Cleveland, PJ Oefner, K Dettmer, M Selby, M Kreutz. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep 2019; 29(1): 135–150.e9
https://doi.org/10.1016/j.celrep.2019.08.068
38 J Lei, Y Yang, Z Lu, H Pan, J Fang, B Jing, Y Chen, L Yin. Taming metabolic competition via glycolysis inhibition for safe and potent tumor immunotherapy. Biochem Pharmacol 2022; 202: 115153
https://doi.org/10.1016/j.bcp.2022.115153
39 NE Scharping, AV Menk, RD Whetstone, X Zeng, GM Delgoffe. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 2017; 5(1): 9–16
https://doi.org/10.1158/2326-6066.CIR-16-0103
40 I Elia, JH Rowe, S Johnson, S Joshi, G Notarangelo, K Kurmi, S Weiss, GJ Freeman, AH Sharpe, MC Haigis. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab 2022; 34(8): 1137–1150.e6
https://doi.org/10.1016/j.cmet.2022.06.008
41 DS Thommen, VH Koelzer, P Herzig, A Roller, M Trefny, S Dimeloe, A Kiialainen, J Hanhart, C Schill, C Hess, S Savic Prince, M Wiese, D Lardinois, PC Ho, C Klein, V Karanikas, KD Mertz, TN Schumacher, A Zippelius. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 2018; 24(7): 994–1004
https://doi.org/10.1038/s41591-018-0057-z
42 C Zhang, C Yue, A Herrmann, J Song, C Egelston, T Wang, Z Zhang, W Li, H Lee, M Aftabizadeh, YJ Li, PP Lee, S Forman, G Somlo, P Chu, L Kruper, J Mortimer, DSB Hoon, W Huang, S Priceman, H Yu. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab 2020; 31(1): 148–161.e5
https://doi.org/10.1016/j.cmet.2019.10.013
43 S Xu, O Chaudhary, P Rodríguez-Morales, X Sun, D Chen, R Zappasodi, Z Xu, AFM Pinto, A Williams, I Schulze, Y Farsakoglu, SK Varanasi, JS Low, W Tang, H Wang, B McDonald, V Tripple, M Downes, RM Evans, NA Abumrad, T Merghoub, JD Wolchok, MN Shokhirev, PC Ho, JL Witztum, B Emu, G Cui, SM Kaech. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 2021; 54(7): 1561–1577.e7
https://doi.org/10.1016/j.immuni.2021.05.003
44 X Ma, L Xiao, L Liu, L Ye, P Su, E Bi, Q Wang, M Yang, J Qian, Q Yi. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33(5): 1001–1012.e5
https://doi.org/10.1016/j.cmet.2021.02.015
45 X Ma, E Bi, Y Lu, P Su, C Huang, L Liu, Q Wang, M Yang, MF Kalady, J Qian, A Zhang, AA Gupte, DJ Hamilton, C Zheng, Q Yi. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab 2019; 30(1): 143–156.e5
https://doi.org/10.1016/j.cmet.2019.04.002
46 E Timosenko, AV Hadjinicolaou, V Cerundolo. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 2017; 9(1): 83–97
https://doi.org/10.2217/imt-2016-0118
47 R Geiger, JC Rieckmann, T Wolf, C Basso, Y Feng, T Fuhrer, M Kogadeeva, P Picotti, F Meissner, M Mann, N Zamboni, F Sallusto, A Lanzavecchia. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 2016; 167(3): 829–842.e13
https://doi.org/10.1016/j.cell.2016.09.031
48 DI Gabrilovich, S Nagaraj. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
https://doi.org/10.1038/nri2506
49 AP Lepique, KR Daghastanli, IM Cuccovia, LL Villa. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res 2009; 15(13): 4391–4400
https://doi.org/10.1158/1078-0432.CCR-09-0489
50 W Wang, W Zou. Amino acids and their transporters in T cell immunity and cancer therapy. Mol Cell 2020; 80(3): 384–395
https://doi.org/10.1016/j.molcel.2020.09.006
51 D Klysz, X Tai, PA Robert, M Craveiro, G Cretenet, L Oburoglu, C Mongellaz, S Floess, V Fritz, MI Matias, C Yong, N Surh, JC Marie, J Huehn, V Zimmermann, S Kinet, V Dardalhon, N Taylor. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 2015; 8(396): ra97
https://doi.org/10.1126/scisignal.aab2610
52 M Nakaya, Y Xiao, X Zhou, JH Chang, M Chang, X Cheng, M Blonska, X Lin, SC Sun. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 2014; 40(5): 692–705
https://doi.org/10.1016/j.immuni.2014.04.007
53 HC Hope, RJ Brownlie, CM Fife, L Steele, M Lorger, RJ Salmond. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight 2021; 6(9): e137761
https://doi.org/10.1172/jci.insight.137761
54 Y Bian, W Li, DM Kremer, P Sajjakulnukit, S Li, J Crespo, ZC Nwosu, L Zhang, A Czerwonka, A Pawłowska, H Xia, J Li, P Liao, J Yu, L Vatan, W Szeliga, S Wei, S Grove, JR Liu, K McLean, M Cieslik, AM Chinnaiyan, W Zgodziński, G Wallner, I Wertel, K Okła, I Kryczek, CA Lyssiotis, W Zou. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 2020; 585(7824): 277–282
https://doi.org/10.1038/s41586-020-2682-1
55 DG Roy, J Chen, V Mamane, EH Ma, BM Muhire, RD Sheldon, T Shorstova, R Koning, RM Johnson, E Esaulova, KS Williams, S Hayes, M Steadman, B Samborska, A Swain, A Daigneault, V Chubukov, TP Roddy, W Foulkes, JA Pospisilik, MC Bourgeois-Daigneault, MN Artyomov, M Witcher, CM Krawczyk, C Larochelle, RG Jones. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab 2020; 31(2): 250–266.e9
https://doi.org/10.1016/j.cmet.2020.01.006
56 HC Hope, RJ Salmond. The role of non-essential amino acids in t cell function and anti-tumour immunity. Arch Immunol Ther Exp (Warsz) 2021; 69(1): 29
https://doi.org/10.1007/s00005-021-00633-6
57 C Han, M Ge, PC Ho, L Zhang. Fueling T-cell antitumor immunity: amino acid metabolism revisited. Cancer Immunol Res 2021; 9(12): 1373–1382
https://doi.org/10.1158/2326-6066.CIR-21-0459
58 A Angelin, L Gil-de-Gómez, S Dahiya, J Jiao, L Guo, MH Levine, Z Wang, WJ 3rd Quinn, PK Kopinski, L Wang, T Akimova, Y Liu, TR Bhatti, R Han, BL Laskin, JA Baur, IA Blair, DC Wallace, WW Hancock, UH Beier. Foxp3 Reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 2017; 25(6): 1282–1293.e7
https://doi.org/10.1016/j.cmet.2016.12.018
59 MJ Watson, PDA Vignali, SJ Mullett, AE Overacre-Delgoffe, RM Peralta, S Grebinoski, AV Menk, NL Rittenhouse, K DePeaux, RD Whetstone, DAA Vignali, TW Hand, AC Poholek, BM Morrison, JD Rothstein, SG Wendell, GM Delgoffe. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021; 591(7851): 645–651
https://doi.org/10.1038/s41586-020-03045-2
60 RWM Kempkes, I Joosten, HJPM Koenen, X He. Metabolic pathways involved in regulatory T cell functionality. Front Immunol 2019; 10: 2839
https://doi.org/10.3389/fimmu.2019.02839
61 PA Savage, DEJ Klawon, CH Miller. Regulatory T cell development. Annu Rev Immunol 2020; 38(1): 421–453
https://doi.org/10.1146/annurev-immunol-100219-020937
62 SA Lim, J Wei, TM Nguyen, H Shi, W Su, G Palacios, Y Dhungana, NM Chapman, L Long, J Saravia, P Vogel, H Chi. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature 2021; 591(7849): 306–311
https://doi.org/10.1038/s41586-021-03235-6
63 A Bachem, C Makhlouf, KJ Binger, Souza DP de, D Tull, K Hochheiser, PG Whitney, D Fernandez-Ruiz, S Dähling, W Kastenmüller, J Jönsson, E Gressier, AM Lew, C Perdomo, A Kupz, W Figgett, F Mackay, M Oleshansky, BE Russ, IA Parish, A Kallies, MJ McConville, SJ Turner, T Gebhardt, S Bedoui. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 2019; 51(2): 285–297.e5
https://doi.org/10.1016/j.immuni.2019.06.002
64 CS Field, F Baixauli, RL Kyle, DJ Puleston, AM Cameron, DE Sanin, KL Hippen, M Loschi, G Thangavelu, M Corrado, J Edwards-Hicks, KM Grzes, EJ Pearce, BR Blazar, EL Pearce. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab 2020; 31(2): 422–437.e5
https://doi.org/10.1016/j.cmet.2019.11.021
65 SD Saibil, M St Paul, RC Laister, CR Garcia-Batres, K Israni-Winger, AR Elford, N Grimshaw, C Robert-Tissot, DG Roy, RG Jones, LT Nguyen, PS Ohashi. Activation of peroxisome proliferator-activated receptors α and δ synergizes with inflammatory signals to enhance adoptive cell therapy. Cancer Res 2019; 79(3): 445–451
https://doi.org/10.1158/0008-5472.CAN-17-3053
66 RM Loftus, N Assmann, N Kedia-Mehta, KL O’Brien, A Garcia, C Gillespie, JL Hukelmann, PJ Oefner, AI Lamond, CM Gardiner, K Dettmer, DA Cantrell, LV Sinclair, DK Finlay. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat Commun 2018; 9(1): 2341
https://doi.org/10.1038/s41467-018-04719-2
67 N Assmann, KL O’Brien, RP Donnelly, L Dyck, V Zaiatz-Bittencourt, RM Loftus, P Heinrich, PJ Oefner, L Lynch, CM Gardiner, K Dettmer, DK Finlay. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 2017; 18(11): 1197–1206
https://doi.org/10.1038/ni.3838
68 J Cong, X Wang, X Zheng, D Wang, B Fu, R Sun, Z Tian, H Wei. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab 2018; 28(2): 243–255.e5
https://doi.org/10.1016/j.cmet.2018.06.021
69 AM Chambers, J Wang, KB Lupo, H Yu, NM Atallah Lanman, S Matosevic. Adenosinergic signaling alters natural killer cell functional responses. Front Immunol 2018; 9: 2533
https://doi.org/10.3389/fimmu.2018.02533
70 X Michelet, L Dyck, A Hogan, RM Loftus, D Duquette, K Wei, S Beyaz, A Tavakkoli, C Foley, R Donnelly, C O’Farrelly, M Raverdeau, A Vernon, W Pettee, D O’Shea, BS Nikolajczyk, KHG Mills, MB Brenner, D Finlay, L Lynch. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 2018; 19(12): 1330–1340
https://doi.org/10.1038/s41590-018-0251-7
71 TA Patente, LR Pelgrom, B Everts. Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization. Curr Opin Immunol 2019; 58: 16–23
https://doi.org/10.1016/j.coi.2019.02.003
72 YL Chen, HW Lin, NY Sun, JC Yie, HC Hung, CA Chen, WZ Sun, WF Cheng. mTOR inhibitors can enhance the anti-tumor effects of DNA vaccines through modulating dendritic cell function in the tumor microenvironment. Cancers (Basel) 2019; 11(5): 617
https://doi.org/10.3390/cancers11050617
73 E Amiel, B Everts, D Fritz, S Beauchamp, B Ge, EL Pearce, EJ Pearce. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol 2014; 193(6): 2821–2830
https://doi.org/10.4049/jimmunol.1302498
74 Díaz F Erra, V Ochoa, A Merlotti, E Dantas, I Mazzitelli, Polo V Gonzalez, J Sabatté, S Amigorena, E Segura, J Geffner. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep 2020; 31(5): 107613
https://doi.org/10.1016/j.celrep.2020.107613
75 SJ Lawless, N Kedia-Mehta, JF Walls, R McGarrigle, O Convery, LV Sinclair, MN Navarro, J Murray, DK Finlay. Glucose represses dendritic cell-induced T cell responses. Nat Commun 2017; 8(1): 15620
https://doi.org/10.1038/ncomms15620
76 JK Gardner, CD Mamotte, P Patel, TL Yeoh, C Jackaman, DJ Nelson. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One 2015; 10(4): e0123563
https://doi.org/10.1371/journal.pone.0123563
77 B Hu, JZ Lin, XB Yang, XT Sang. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif 2020; 53(3): e12772
https://doi.org/10.1111/cpr.12772
78 DL Herber, W Cao, Y Nefedova, SV Novitskiy, S Nagaraj, VA Tyurin, A Corzo, HI Cho, E Celis, B Lennox, SC Knight, T Padhya, TV McCaffrey, JC McCaffrey, S Antonia, M Fishman, RL Ferris, VE Kagan, DI Gabrilovich. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 2010; 16(8): 880–886
https://doi.org/10.1038/nm.2172
79 F Veglia, VA Tyurin, D Mohammadyani, M Blasi, EK Duperret, L Donthireddy, A Hashimoto, A Kapralov, A Amoscato, R Angelini, S Patel, K Alicea-Torres, D Weiner, ME Murphy, J Klein-Seetharaman, E Celis, VE Kagan, DI Gabrilovich. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun 2017; 8(1): 2122
https://doi.org/10.1038/s41467-017-02186-9
80 F Osorio, SJ Tavernier, E Hoffmann, Y Saeys, L Martens, J Vetters, I Delrue, R De Rycke, E Parthoens, P Pouliot, T Iwawaki, S Janssens, BN Lambrecht. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat Immunol 2014; 15(3): 248–257
https://doi.org/10.1038/ni.2808
81 LA O’Neill, EJ Pearce. Immunometabolism governs dendritic cell and macrophage function. J Exp Med 2016; 213(1): 15–23
https://doi.org/10.1084/jem.20151570
82 S Zelenay, der Veen AG van, JP Böttcher, KJ Snelgrove, N Rogers, SE Acton, P Chakravarty, MR Girotti, R Marais, SA Quezada, E Sahai, e Sousa C Reis. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 2015; 162(6): 1257–1270
https://doi.org/10.1016/j.cell.2015.08.015
83 JP Böttcher, E Bonavita, P Chakravarty, H Blees, M Cabeza-Cabrerizo, S Sammicheli, NC Rogers, E Sahai, S Zelenay, e Sousa C Reis. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018; 172(5): 1022–1037.e14
https://doi.org/10.1016/j.cell.2018.01.004
84 G Mondanelli, R Bianchi, MT Pallotta, C Orabona, E Albini, A Iacono, ML Belladonna, C Vacca, F Fallarino, A Macchiarulo, S Ugel, V Bronte, F Gevi, L Zolla, A Verhaar, M Peppelenbosch, EMC Mazza, S Bicciato, Y Laouar, L Santambrogio, P Puccetti, C Volpi, U Grohmann. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity 2017; 46(2): 233–244
https://doi.org/10.1016/j.immuni.2017.01.005
85 OR Colegio, NQ Chu, AL Szabo, T Chu, AM Rhebergen, V Jairam, N Cyrus, CE Brokowski, SC Eisenbarth, GM Phillips, GW Cline, AJ Phillips, R Medzhitov. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559–563
https://doi.org/10.1038/nature13490
86 RA Franklin, W Liao, A Sarkar, MV Kim, MR Bivona, K Liu, EG Pamer, MO Li. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344(6186): 921–925
https://doi.org/10.1126/science.1252510
87 L Boscá, S González-Ramos, P Prieto, M Fernández-Velasco, M Mojena, P Martín-Sanz, S Alemany. Metabolic signatures linked to macrophage polarization: from glucose metabolism to oxidative phosphorylation. Biochem Soc Trans 2015; 43(4): 740–744
https://doi.org/10.1042/BST20150107
88 SC Huang, B Everts, Y Ivanova, D O’Sullivan, M Nascimento, AM Smith, W Beatty, L Love-Gregory, WY Lam, CM O’Neill, C Yan, H Du, NA Abumrad, JF Jr Urban, MN Artyomov, EL Pearce, EJ Pearce. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014; 15(9): 846–855
https://doi.org/10.1038/ni.2956
89 A Batista-Gonzalez, R Vidal, A Criollo, LJ Carreño. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol 2020; 10: 2993
https://doi.org/10.3389/fimmu.2019.02993
90 MN Hasan, O Capuk, SM Patel, D Sun. The role of metabolic plasticity of tumor-associated macrophages in shaping the tumor microenvironment immunity. Cancers (Basel) 2022; 14(14): 3331
https://doi.org/10.3390/cancers14143331
91 PC Rodriguez, DG Quiceno, J Zabaleta, B Ortiz, AH Zea, MB Piazuelo, A Delgado, P Correa, J Brayer, EM Sotomayor, S Antonia, JB Ochoa, AC Ochoa. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004; 64(16): 5839–5849
https://doi.org/10.1158/0008-5472.CAN-04-0465
92 PS Minhas, L Liu, PK Moon, AU Joshi, C Dove, S Mhatre, K Contrepois, Q Wang, BA Lee, M Coronado, D Bernstein, MP Snyder, M Migaud, R Majeti, D Mochly-Rosen, JD Rabinowitz, KI Andreasson. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat Immunol 2019; 20(1): 50–63
https://doi.org/10.1038/s41590-018-0255-3
93 PS Liu, H Wang, X Li, T Chao, T Teav, S Christen, G Di Conza, WC Cheng, CH Chou, M Vavakova, C Muret, K Debackere, M Mazzone, HD Huang, SM Fendt, J Ivanisevic, PC Ho. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017; 18(9): 985–994
https://doi.org/10.1038/ni.3796
94 SL Jian, WW Chen, YC Su, YW Su, TH Chuang, SC Hsu, LR Huang. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis 2017; 8(5): e2779
https://doi.org/10.1038/cddis.2017.192
95 BI Reinfeld, MZ Madden, MM Wolf, A Chytil, JE Bader, AR Patterson, A Sugiura, AS Cohen, A Ali, BT Do, A Muir, CA Lewis, RA Hongo, KL Young, RE Brown, VM Todd, T Huffstater, A Abraham, RT O’Neil, MH Wilson, F Xin, MN Tantawy, WD Merryman, RW Johnson, CS Williams, EF Mason, FM Mason, KE Beckermann, Heiden MG Vander, HC Manning, JC Rathmell, WK Rathmell. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 2021; 593(7858): 282–288
https://doi.org/10.1038/s41586-021-03442-1
96 Q Li, M Xiang. Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy. Acta Pharmacol Sin 2022; 43(6): 1337–1348
https://doi.org/10.1038/s41401-021-00776-4
97 G Goffaux, I Hammami, M Jolicoeur. A dynamic metabolic flux analysis of myeloid-derived suppressor cells confirms immunosuppression-related metabolic plasticity. Sci Rep 2017; 7(1): 9850
https://doi.org/10.1038/s41598-017-10464-1
98 F Hossain, AA Al-Khami, D Wyczechowska, C Hernandez, L Zheng, K Reiss, LD Valle, J Trillo-Tinoco, T Maj, W Zou, PC Rodriguez, AC Ochoa. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 2015; 3(11): 1236–1247
https://doi.org/10.1158/2326-6066.CIR-15-0036
99 W Cao, D Gabrilovich. Contribution of fatty acid accumulation to myeloid-derived suppressor cell function in cancer. Cancer Res 2011; 71(8_Supplement): 3649
https://doi.org/10.1158/1538-7445.AM2011-3649
100 T Condamine, GA Dominguez, JI Youn, AV Kossenkov, S Mony, K Alicea-Torres, E Tcyganov, A Hashimoto, Y Nefedova, C Lin, S Partlova, A Garfall, DT Vogl, X Xu, SC Knight, G Malietzis, GH Lee, E Eruslanov, SM Albelda, X Wang, JL Mehta, M Bewtra, A Rustgi, N Hockstein, R Witt, G Masters, B Nam, D Smirnov, MA Sepulveda, DI Gabrilovich. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016; 1(2): aaf8943
https://doi.org/10.1126/sciimmunol.aaf8943
101 WJ Won, JS Deshane, JW Leavenworth, CR Oliva, CE Griguer. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress 2019; 3(2): 47–65
https://doi.org/10.15698/cst2019.02.176
102 MK Srivastava, P Sinha, VK Clements, P Rodriguez, S Ostrand-Rosenberg. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70(1): 68–77
https://doi.org/10.1158/0008-5472.CAN-09-2587
103 M Platten, EAA Nollen, UF Röhrig, F Fallarino, CA Opitz. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019; 18(5): 379–401
https://doi.org/10.1038/s41573-019-0016-5
104 MH Oh, IH Sun, L Zhao, RD Leone, IM Sun, W Xu, SL Collins, AJ Tam, RL Blosser, CH Patel, JM Englert, ML Arwood, J Wen, Y Chan-Li, L Tenora, P Majer, R Rais, BS Slusher, MR Horton, JD Powell. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest 2020; 130(7): 3865–3884
https://doi.org/10.1172/JCI131859
105 L Long, M Chen, Y Yuan, AL Ming, W Guo, K Wu, H Chen. High expression of PKM2 synergizes with PD-L1 in tumor cells and immune cells to predict worse survival in human lung adenocarcinoma. J Cancer 2020; 11(15): 4442–4452
https://doi.org/10.7150/jca.42610
106 EM Palsson-McDermott, L Dyck, Z Zasłona, D Menon, AF McGettrick, KHG Mills, LA O’Neill. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 2017; 8: 1300
https://doi.org/10.3389/fimmu.2017.01300
107 PJ Siska, GJ van der Windt, RJ Kishton, S Cohen, W Eisner, NJ MacIver, AP Kater, JB Weinberg, JC Rathmell. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. J Immunol 2016; 197(6): 2532–2540
https://doi.org/10.4049/jimmunol.1502464
108 S Bose, A Le. Glucose metabolism in cancer. Adv Exp Med Biol 2018; 1063: 3–12
https://doi.org/10.1007/978-3-319-77736-8_1
109 A Taylor, JA Harker, K Chanthong, PG Stevenson, EI Zuniga, CE Rudd. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8+ cytolytic T cell responses. Immunity 2016; 44(2): 274–286
https://doi.org/10.1016/j.immuni.2016.01.018
110 A Taylor, CE Rudd. Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8+ cytotoxic T-cells: implications for anti-PD-1 immunotherapy. Front Immunol 2017; 8: 1653
https://doi.org/10.3389/fimmu.2017.01653
111 J Krueger, CE Rudd, A Taylor. Glycogen synthase 3 (GSK-3) regulation of PD-1 expression and and its therapeutic implications. Semin Immunol 2019; 42: 101295
https://doi.org/10.1016/j.smim.2019.101295
112 Z Yin, L Bai, W Li, T Zeng, H Tian, J Cui. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J Exp Clin Cancer Res 2019; 38(1): 403
https://doi.org/10.1186/s13046-019-1409-3
113 D Howie, SP Cobbold, E Adams, A Ten Bokum, AS Necula, W Zhang, H Huang, DJ Roberts, B Thomas, SS Hester, DJ Vaux, AG Betz, H Waldmann. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight 2017; 2(3): e89160
https://doi.org/10.1172/jci.insight.89160
114 A Tanaka, S Sakaguchi. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109–118
https://doi.org/10.1038/cr.2016.151
115 A Tanaka, S Sakaguchi. Targeting Treg cells in cancer immunotherapy. Eur J Immunol 2019; 49(8): 1140–1146
https://doi.org/10.1002/eji.201847659
116 S Daneshmandi, T Cassel, RM Higashi, TW Fan, P Seth. 6-Phosphogluconate dehydrogenase (6PGD), a key checkpoint in reprogramming of regulatory T cells metabolism and function. eLife 2021; 10: e67476
https://doi.org/10.7554/eLife.67476
117 MP Keppel, N Saucier, AY Mah, TP Vogel, MA Cooper. Activation-specific metabolic requirements for NK Cell IFN-γ production. J Immunol 2015; 194(4): 1954–1962
https://doi.org/10.4049/jimmunol.1402099
118 SE Keating, V Zaiatz-Bittencourt, RM Loftus, C Keane, K Brennan, DK Finlay, CM Gardiner. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J Immunol 2016; 196(6): 2552–2560
https://doi.org/10.4049/jimmunol.1501783
119 KL O’Brien, N Assmann, E O’Connor, C Keane, J Walls, C Choi, PJ Oefner, CM Gardiner, K Dettmer, DK Finlay. De novo polyamine synthesis supports metabolic and functional responses in activated murine NK cells. Eur J Immunol 2021; 51(1): 91–102
https://doi.org/10.1002/eji.202048784
120 C Choi, DK Finlay. Diverse immunoregulatory roles of oxysterols—the oxidized cholesterol metabolites. Metabolites 2020; 10(10): 384
https://doi.org/10.3390/metabo10100384
121 B Huang, BL Song, C Xu. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab 2020; 2(2): 132–141
https://doi.org/10.1038/s42255-020-0174-0
122 KL O’Brien, DK Finlay. Immunometabolism and natural killer cell responses. Nat Rev Immunol 2019; 19(5): 282–290
https://doi.org/10.1038/s41577-019-0139-2
123 D Li, W Long, R Huang, Y Chen, M Xia. 27-hydroxycholesterol inhibits sterol regulatory element-binding protein 1 activation and hepatic lipid accumulation in mice. Obesity (Silver Spring) 2018; 26(4): 713–722
https://doi.org/10.1002/oby.22130
124 ER Nelson, SE Wardell, JS Jasper, S Park, S Suchindran, MK Howe, NJ Carver, RV Pillai, PM Sullivan, V Sondhi, M Umetani, J Geradts, DP McDonnell. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013; 342(6162): 1094–1098
https://doi.org/10.1126/science.1241908
125 F Guo, W Hong, M Yang, D Xu, Q Bai, X Li, Z Chen. Upregulation of 24(R/S),25-epoxycholesterol and 27-hydroxycholesterol suppresses the proliferation and migration of gastric cancer cells. Biochem Biophys Res Commun 2018; 504(4): 892–898
https://doi.org/10.1016/j.bbrc.2018.09.058
126 D Rossin, IHK Dias, M Solej, I Milic, AR Pitt, N Iaia, L Scoppapietra, A Devitt, M Nano, M Degiuli, M Volante, C Caccia, V Leoni, HR Griffiths, CM Spickett, G Poli, F Biasi. Increased production of 27-hydroxycholesterol in human colorectal cancer advanced stage: Possible contribution to cancer cell survival and infiltration. Free Radic Biol Med 2019; 136: 35–44
https://doi.org/10.1016/j.freeradbiomed.2019.03.020
127 B Li, B Qiu, DS Lee, ZE Walton, JD Ochocki, LK Mathew, A Mancuso, TP Gade, B Keith, I Nissim, MC Simon. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255
https://doi.org/10.1038/nature13557
128 P Huangyang, MC Simon. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 2018; 11(8): dmm033365
https://doi.org/10.1242/dmm.033365
129 AM Chambers, KB Lupo, S Matosevic. Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells. Front Immunol 2018; 9: 2517
https://doi.org/10.3389/fimmu.2018.02517
130 J Stagg, U Divisekera, N McLaughlin, J Sharkey, S Pommey, D Denoyer, KM Dwyer, MJ Smyth. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 2010; 107(4): 1547–1552
https://doi.org/10.1073/pnas.0908801107
131 D Jin, J Fan, L Wang, LF Thompson, A Liu, BJ Daniel, T Shin, TJ Curiel, B Zhang. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 2010; 70(6): 2245–2255
https://doi.org/10.1158/0008-5472.CAN-09-3109
132 CM Hay, E Sult, Q Huang, K Mulgrew, SR Fuhrmann, KA McGlinchey, SA Hammond, R Rothstein, J Rios-Doria, E Poon, N Holoweckyj, NM Durham, CC Leow, G Diedrich, M Damschroder, R Herbst, RE Hollingsworth, KF Sachsenmeier. Targeting CD73 in the tumor microenvironment with MEDI9447. OncoImmunology 2016; 5(8): e1208875
https://doi.org/10.1080/2162402X.2016.1208875
133 Y Li, YY Wan, B Zhu. Immune cell metabolism in tumor microenvironment. Adv Exp Med Biol 2017; 1011: 163–196
https://doi.org/10.1007/978-94-024-1170-6_5
134 NC Williams, LAJ O’Neill. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol 2018; 9: 141
https://doi.org/10.3389/fimmu.2018.00141
135 A Viola, F Munari, R Sánchez-Rodríguez, T Scolaro, A Castegna. The metabolic signature of macrophage responses. Front Immunol 2019; 10: 1462
https://doi.org/10.3389/fimmu.2019.01462
136 I Vitale, G Manic, LM Coussens, G Kroemer, L Galluzzi. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36–50
https://doi.org/10.1016/j.cmet.2019.06.001
137 CM Rice, LC Davies, JJ Subleski, N Maio, M Gonzalez-Cotto, C Andrews, NL Patel, EM Palmieri, JM Weiss, JM Lee, CM Annunziata, TA Rouault, SK Durum, DW McVicar. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun 2018; 9(1): 5099
https://doi.org/10.1038/s41467-018-07505-2
138 CA Corzo, MJ Cotter, P Cheng, F Cheng, S Kusmartsev, E Sotomayor, T Padhya, TV McCaffrey, JC McCaffrey, DI Gabrilovich. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182(9): 5693–5701
https://doi.org/10.4049/jimmunol.0900092
139 K Ohl, A Fragoulis, P Klemm, J Baumeister, W Klock, E Verjans, S Böll, J Möllmann, M Lehrke, I Costa, B Denecke, A Schippers, J Roth, N Wagner, C Wruck, K Tenbrock. Nrf2 is a central regulator of metabolic reprogramming of myeloid-derived suppressor cells in steady state and sepsis. Front Immunol 2018; 9: 1552
https://doi.org/10.3389/fimmu.2018.01552
140 DW Beury, KA Carter, C Nelson, P Sinha, E Hanson, M Nyandjo, PJ Fitzgerald, A Majeed, N Wali, S Ostrand-Rosenberg. Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol 2016; 196(8): 3470–3478
https://doi.org/10.4049/jimmunol.1501785
141 T Wu, Y Zhao, H Wang, Y Li, L Shao, R Wang, J Lu, Z Yang, J Wang, Y Zhao. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep 2016; 6(1): 20250
https://doi.org/10.1038/srep20250
142 C Fu, Z Fu, C Jiang, C Xia, Y Zhang, X Gu, K Zheng, D Zhou, S Tang, S Lyu, S Ma. CD205+ polymorphonuclear myeloid-derived suppressor cells suppress antitumor immunity by overexpressing GLUT3. Cancer Sci 2021; 112(3): 1011–1025
https://doi.org/10.1111/cas.14783
143 Y Deng, J Yang, F Luo, J Qian, R Liu, D Zhang, H Yu, Y Chu. mTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer Immunol Immunother 2018; 67(9): 1355–1364
https://doi.org/10.1007/s00262-018-2177-1
144 Y Tuo, Z Zhang, C Tian, Q Hu, R Xie, J Yang, H Zhou, L Lu, M Xiang. Anti-inflammatory and metabolic reprogramming effects of MENK produce antitumor response in CT26 tumor-bearing mice. J Leukoc Biol 2020; 108(1): 215–228
https://doi.org/10.1002/JLB.3MA0120-578R
145 DB Shackelford, RJ Shaw. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9(8): 563–575
https://doi.org/10.1038/nrc2676
146 T Uehara, S Eikawa, M Nishida, Y Kunisada, A Yoshida, T Fujiwara, T Kunisada, T Ozaki, H Udono. Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 2019; 31(4): 187–198
https://doi.org/10.1093/intimm/dxy079
147 SH Kim, M Li, S Trousil, Y Zhang, M Pasca di Magliano, KD Swanson, B Zheng. Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J Invest Dermatol 2017; 137(8): 1740–1748
https://doi.org/10.1016/j.jid.2017.03.033
148 Y Guri, TM Nordmann, J Roszik. mTOR at the transmitting and receiving ends in tumor immunity. Front Immunol 2018; 9: 578
https://doi.org/10.3389/fimmu.2018.00578
149 R Lin, H Zhang, Y Yuan, Q He, J Zhou, S Li, Y Sun, DY Li, HB Qiu, W Wang, Z Zhuang, B Chen, Y Huang, C Liu, Y Wang, S Cai, Z Ke, W He. Fatty acid oxidation controls CD8+ tissue-resident memory t-cell survival in gastric adenocarcinoma. Cancer Immunol Res 2020; 8(4): 479–492
https://doi.org/10.1158/2326-6066.CIR-19-0702
150 Y Xu, L He, Q Fu, J Hu. Metabolic reprogramming in the tumor microenvironment with immunocytes and immune checkpoints. Front Oncol 2021; 11: 759015
https://doi.org/10.3389/fonc.2021.759015
151 I Okoye, A Namdar, L Xu, N Crux, S Elahi. Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling. Oncotarget 2017; 8(58): 98215–98232
https://doi.org/10.18632/oncotarget.21003
152 W Yang, Y Bai, Y Xiong, J Zhang, S Chen, X Zheng, X Meng, L Li, J Wang, C Xu, C Yan, L Wang, CC Chang, TY Chang, T Zhang, P Zhou, BL Song, W Liu, SC Sun, X Liu, BL Li, C Xu. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016; 531(7596): 651–655
https://doi.org/10.1038/nature17412
153 T Kobayashi, PY Lam, H Jiang, K Bednarska, R Gloury, V Murigneux, J Tay, N Jacquelot, R Li, ZK Tuong, GR Leggatt, MK Gandhi, MM Hill, GT Belz, S Ngo, A Kallies, SR Mattarollo. Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood 2020; 136(26): 3004–3017
https://doi.org/10.1182/blood.2020005602
154 LM Tobin, M Mavinkurve, E Carolan, D Kinlen, EC O’Brien, MA Little, DK Finlay, D Cody, AE Hogan, D O’Shea. NK cells in childhood obesity are activated, metabolically stressed, and functionally deficient. JCI Insight 2017; 2(24): e94939
https://doi.org/10.1172/jci.insight.94939
155 SR Niavarani, C Lawson, O Bakos, M Boudaud, C Batenchuk, S Rouleau, LH Tai. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer 2019; 19(1): 823
https://doi.org/10.1186/s12885-019-6045-y
156 C Cheng, F Geng, X Cheng, D Guo. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38(1): 27
https://doi.org/10.1186/s40880-018-0301-4
157 D O’Sullivan, DE Sanin, EJ Pearce, EL Pearce. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19(5): 324–335
https://doi.org/10.1038/s41577-019-0140-9
158 A Ladanyi, A Mukherjee, HA Kenny, A Johnson, AK Mitra, S Sundaresan, KM Nieman, G Pascual, SA Benitah, A Montag, SD Yamada, NA Abumrad, E Lengyel. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 2018; 37(17): 2285–2301
https://doi.org/10.1038/s41388-017-0093-z
159 U Rozovski, DM Harris, P Li, Z Liu, P Jain, A Ferrajoli, J Burger, P Thompson, N Jain, W Wierda, MJ Keating, Z Estrov. STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells. Oncotarget 2018; 9(30): 21268–21280
https://doi.org/10.18632/oncotarget.25066
160 G Pascual, A Avgustinova, S Mejetta, M Martín, A Castellanos, CS Attolini, A Berenguer, N Prats, A Toll, JA Hueto, C Bescós, Croce L Di, SA Benitah. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017; 541(7635): 41–45
https://doi.org/10.1038/nature20791
161 F Gao, C Liu, J Guo, W Sun, L Xian, D Bai, H Liu, Y Cheng, B Li, J Cui, C Zhang, J Cai. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep 2015; 5(1): 9613
https://doi.org/10.1038/srep09613
162 CR Reczek, NS Chandel. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 2017; 1(1): 79–98
https://doi.org/10.1146/annurev-cancerbio-041916-065808
163 NN Iwakoshi, M Pypaert, LH Glimcher. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 2007; 204(10): 2267–2275
https://doi.org/10.1084/jem.20070525
164 JR Cubillos-Ruiz, PC Silberman, MR Rutkowski, S Chopra, A Perales-Puchalt, M Song, S Zhang, SE Bettigole, D Gupta, K Holcomb, LH Ellenson, T Caputo, AH Lee, JR Conejo-Garcia, LH Glimcher. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 2015; 161(7): 1527–1538
https://doi.org/10.1016/j.cell.2015.05.025
165 F Zhao, C Xiao, KS Evans, T Theivanthiran, N DeVito, A Holtzhausen, J Liu, X Liu, D Boczkowski, S Nair, JW Locasale, BA Hanks. Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity 2018; 48(1): 147–160.e7
https://doi.org/10.1016/j.immuni.2017.12.004
166 X Yin, W Zeng, B Wu, L Wang, Z Wang, H Tian, L Wang, Y Jiang, R Clay, X Wei, Y Qin, F Zhang, C Zhang, L Jin, W Liang. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep 2020; 33(3): 108278
https://doi.org/10.1016/j.celrep.2020.108278
167 VK Pandey, PJ Amin, BS Shankar. COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunol Lett 2017; 184: 23–33
https://doi.org/10.1016/j.imlet.2017.01.019
168 P Su, Q Wang, E Bi, X Ma, L Liu, M Yang, J Qian, Q Yi. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res 2020; 80(7): 1438–1450
https://doi.org/10.1158/0008-5472.CAN-19-2994
169 J Park, SE Lee, J Hur, EB Hong, JI Choi, JM Yang, JY Kim, YC Kim, HJ Cho, JM Peters, SB Ryoo, YT Kim, HS Kim. M-CSF from cancer cells induces fatty acid synthase and PPARβ/δ activation in tumor myeloid cells, leading to tumor progression. Cell Rep 2015; 10(9): 1614–1625
https://doi.org/10.1016/j.celrep.2015.02.024
170 D Namgaladze, B Brüne. Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization. Biochim Biophys Acta 2014; 1841(9): 1329–1335
https://doi.org/10.1016/j.bbalip.2014.06.007
171 JS Moon, K Nakahira, KP Chung, GM DeNicola, MJ Koo, MA Pabón, KT Rooney, JH Yoon, SW Ryter, H Stout-Delgado, AM Choi. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med 2016; 22(9): 1002–1012
https://doi.org/10.1038/nm.4153
172 J Van den Bossche, GJW van der Windt. Fatty acid oxidation in macrophages and t cells: time for reassessment?. Cell Metab 2018; 28(4): 538–540
https://doi.org/10.1016/j.cmet.2018.09.018
173 AG York, KJ Williams, JP Argus, QD Zhou, G Brar, L Vergnes, EE Gray, A Zhen, NC Wu, DH Yamada, CR Cunningham, EJ Tarling, MQ Wilks, D Casero, DH Gray, AK Yu, ES Wang, DG Brooks, R Sun, SG Kitchen, TT Wu, K Reue, DB Stetson, SJ Bensinger. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 2015; 163(7): 1716–1729
https://doi.org/10.1016/j.cell.2015.11.045
174 D Sag, C Cekic, R Wu, J Linden, CC Hedrick. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun 2015; 6(1): 6354
https://doi.org/10.1038/ncomms7354
175 F Veglia, VA Tyurin, M Blasi, A De Leo, AV Kossenkov, L Donthireddy, TKJ To, Z Schug, S Basu, F Wang, E Ricciotti, C DiRusso, ME Murphy, RH Vonderheide, PM Lieberman, C Mulligan, B Nam, N Hockstein, G Masters, M Guarino, C Lin, Y Nefedova, P Black, VE Kagan, DI Gabrilovich. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 2019; 569(7754): 73–78
https://doi.org/10.1038/s41586-019-1118-2
176 H Kuroda, S Mabuchi, E Yokoi, N Komura, K Kozasa, Y Matsumoto, M Kawano, R Takahashi, T Sasano, K Shimura, M Kodama, K Hashimoto, K Sawada, E Morii, T Kimura. Prostaglandin E2 produced by myeloid-derived suppressive cells induces cancer stem cells in uterine cervical cancer. Oncotarget 2018; 9(91): 36317–36330
https://doi.org/10.18632/oncotarget.26347
177 AA Al-Khami, L Zheng, L Del Valle, F Hossain, D Wyczechowska, J Zabaleta, MD Sanchez, MJ Dean, PC Rodriguez, AC Ochoa. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. OncoImmunology 2017; 6(10): e1344804
https://doi.org/10.1080/2162402X.2017.1344804
178 F VegliaV TyurinV KaganD Gabrilovich. Oxidized lipids contribute to the suppression function of myeloid derived suppressor cells in cancer. Cancer Res 2015; 75(15 Supplement): 467 doi:10.1158/1538–7445.AM1538–7445
179 AO Adeshakin, W Liu, FO Adeshakin, LO Afolabi, M Zhang, G Zhang, L Wang, Z Li, L Lin, Q Cao, D Yan, X Wan. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol 2021; 362: 104286
https://doi.org/10.1016/j.cellimm.2021.104286
180 A Ugolini, VA Tyurin, YY Tyurina, EN Tcyganov, L Donthireddy, VE Kagan, DI Gabrilovich, F Veglia. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insight 2020; 5(15): e138581
https://doi.org/10.1172/jci.insight.138581
181 KC Hicks, YY Tyurina, VE Kagan, DI Gabrilovich. Myeloid cell-derived oxidized lipids and regulation of the tumor microenvironment. Cancer Res 2022; 82(2): 187–194
https://doi.org/10.1158/0008-5472.CAN-21-3054
182 MF Tavazoie, I Pollack, R Tanqueco, BN Ostendorf, BS Reis, FC Gonsalves, I Kurth, C Andreu-Agullo, ML Derbyshire, J Posada, S Takeda, KN Tafreshian, E Rowinsky, M Szarek, RJ Waltzman, EA Mcmillan, C Zhao, M Mita, A Mita, B Chmielowski, MA Postow, A Ribas, D Mucida, SF Tavazoie. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 2018; 172(4): 825–840.e18
https://doi.org/10.1016/j.cell.2017.12.026
183 authors listed No. LXR agonism depletes MDSCs to promote antitumor immunity. Cancer Discov 2018; 8(3): 263
https://doi.org/10.1158/2159-8290.CD-RW2018-010
184 NT Crump, AV Hadjinicolaou, M Xia, J Walsby-Tickle, U Gileadi, JL Chen, M Setshedi, LR Olsen, IJ Lau, L Godfrey, L Quek, Z Yu, E Ballabio, MB Barnkob, G Napolitani, M Salio, H Koohy, BM Kessler, S Taylor, P Vyas, JSO McCullagh, TA Milne, V Cerundolo. Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation. Cell Rep 2021; 35(6): 109101
https://doi.org/10.1016/j.celrep.2021.109101
185 SM Steggerda, MK Bennett, J Chen, E Emberley, T Huang, JR Janes, W Li, AL MacKinnon, A Makkouk, G Marguier, PJ Murray, S Neou, A Pan, F Parlati, MLM Rodriguez, LA Van de Velde, T Wang, M Works, J Zhang, W Zhang, MI Gross. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer 2017; 5(1): 101
https://doi.org/10.1186/s40425-017-0308-4
186 i Líndez AA Martí, I Dunand-Sauthier, M Conti, F Gobet, N Núñez, JT Hannich, H Riezman, R Geiger, A Piersigilli, K Hahn, S Lemeille, B Becher, Smedt T De, S Hugues, W Reith. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 2019; 4(24): e132975
https://doi.org/10.1172/jci.insight.132975
187 X He, H Lin, L Yuan, B Li. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther 2017; 18(2): 94–100
https://doi.org/10.1080/15384047.2016.1276136
188 L Fultang, S Booth, O Yogev, B Martins da Costa, V Tubb, S Panetti, V Stavrou, U Scarpa, A Jankevics, G Lloyd, A Southam, SP Lee, WB Dunn, L Chesler, F Mussai, C De Santo. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 2020; 136(10): 1155–1160
https://doi.org/10.1182/blood.2019004500
189 CM Ensor, FW Holtsberg, JS Bomalaski, MA Clark. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 2002; 62(19): 5443–5450
190 X Hou, S Chen, P Zhang, D Guo, B Wang. Targeted arginine metabolism therapy: a dilemma in glioma treatment. Front Oncol 2022; 12: 938847
https://doi.org/10.3389/fonc.2022.938847
191 F Miraki-Moud, E Ghazaly, L Ariza-McNaughton, KA Hodby, A Clear, F Anjos-Afonso, K Liapis, M Grantham, F Sohrabi, J Cavenagh, JS Bomalaski, JG Gribben, PW Szlosarek, D Bonnet, DC Taussig. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015; 125(26): 4060–4068
https://doi.org/10.1182/blood-2014-10-608133
192 E Brin, K Wu, HT Lu, Y He, Z Dai, W He. PEGylated arginine deiminase can modulate tumor immune microenvironment by affecting immune checkpoint expression, decreasing regulatory T cell accumulation and inducing tumor T cell infiltration. Oncotarget 2017; 8(35): 58948–58963
https://doi.org/10.18632/oncotarget.19564
193 PW Szlosarek, JP Steele, L Nolan, D Gilligan, P Taylor, J Spicer, M Lind, S Mitra, J Shamash, MM Phillips, P Luong, S Payne, P Hillman, S Ellis, T Szyszko, G Dancey, L Butcher, S Beck, NE Avril, J Thomson, A Johnston, M Tomsa, C Lawrence, P Schmid, T Crook, BW Wu, JS Bomalaski, N Lemoine, MT Sheaff, RM Rudd, D Fennell, A Hackshaw. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol 2017; 3(1): 58–66
https://doi.org/10.1001/jamaoncol.2016.3049
194 GK Abou-Alfa, S Qin, BY Ryoo, SN Lu, CJ Yen, YH Feng, HY Lim, F Izzo, M Colombo, D Sarker, L Bolondi, G Vaccaro, WP Harris, Z Chen, RA Hubner, T Meyer, W Sun, JJ Harding, EM Hollywood, J Ma, PJ Wan, M Ly, J Bomalaski, A Johnston, CC Lin, Y Chao, LT Chen. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 2018; 29(6): 1402–1408
https://doi.org/10.1093/annonc/mdy101
195 H Liu, Z Shen, Z Wang, X Wang, H Zhang, J Qin, X Qin, J Xu, Y Sun. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci Rep 2016; 6(1): 21319
https://doi.org/10.1038/srep21319
196 JC Mbongue, DA Nicholas, TW Torrez, NS Kim, AF Firek, WH Langridge. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines (Basel) 2015; 3(3): 703–729
https://doi.org/10.3390/vaccines3030703
197 LV Sinclair, D Neyens, G Ramsay, PM Taylor, DA Cantrell. Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat Commun 2018; 9(1): 1981
https://doi.org/10.1038/s41467-018-04366-7
198 Y Liu, X Liang, W Dong, Y Fang, J Lv, T Zhang, R Fiskesund, J Xie, J Liu, X Yin, X Jin, D Chen, K Tang, J Ma, H Zhang, J Yu, J Yan, H Liang, S Mo, F Cheng, Y Zhou, H Zhang, J Wang, J Li, Y Chen, B Cui, ZW Hu, X Cao, F Xiao-Feng Qin, B Huang. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 2018; 33(3): 480–494.e7
https://doi.org/10.1016/j.ccell.2018.02.005
199 JD Mezrich, JH Fechner, X Zhang, BP Johnson, WJ Burlingham, CA Bradfield. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010; 185(6): 3190–3198
https://doi.org/10.4049/jimmunol.0903670
200 NT Nguyen, A Kimura, T Nakahama, I Chinen, K Masuda, K Nohara, Y Fujii-Kuriyama, T Kishimoto. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 2010; 107(46): 19961–19966
https://doi.org/10.1073/pnas.1014465107
201 MC Takenaka, G Gabriely, V Rothhammer, ID Mascanfroni, MA Wheeler, CC Chao, C Gutiérrez-Vázquez, J Kenison, EC Tjon, A Barroso, T Vandeventer, Lima KA de, S Rothweiler, L Mayo, S Ghannam, S Zandee, L Healy, D Sherr, MF Farez, A Prat, J Antel, DA Reardon, H Zhang, SC Robson, G Getz, HL Weiner, FJ Quintana. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci 2019; 22(5): 729–740
https://doi.org/10.1038/s41593-019-0370-y
202 JE Cheong, L Sun. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy—challenges and opportunities. Trends Pharmacol Sci 2018; 39(3): 307–325
https://doi.org/10.1016/j.tips.2017.11.007
203 M Cully. Metabolic disorders: IDO inhibitors could change tack to treat metabolic disorders. Nat Rev Drug Discov 2018; 17(8): 544
https://doi.org/10.1038/nrd.2018.124
204 AJ Muller, MG Manfredi, Y Zakharia, GC Prendergast. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol 2019; 41(1): 41–48
https://doi.org/10.1007/s00281-018-0702-0
205 J Joseph, M Gonzalezlopez, C Galang, C Garcia, H Lemar, L Jing. Abstract 4719: Small-molecule antagonists of the Aryl Hydrocarbon Receptor (AhR) promote activation of human PBMCs in vitro and demonstrate significant impact on tumor growth and immune modulation in vivo. Cancer Res 2018; 78(13 Supplement): 4719
https://doi.org/10.1158/1538-7445.AM2018-4719
206 TA Triplett, KC Garrison, N Marshall, M Donkor, J Blazeck, C Lamb, A Qerqez, JD Dekker, Y Tanno, WC Lu, CS Karamitros, K Ford, B Tan, XM Zhang, K McGovern, S Coma, Y Kumada, MS Yamany, E Sentandreu, G Fromm, S Tiziani, TH Schreiber, M Manfredi, LIR Ehrlich, E Stone, G Georgiou. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat Biotechnol 2018; 36(8): 758–764
https://doi.org/10.1038/nbt.4180
207 KA WestA FisherL DanA SokolovskaJM Lora. Abstract 2920: Metabolic modulation of the tumor microenvironment using synthetic biotic medicines. Cancer Res 2018; 78(13 Supplement): 2920 doi:10.1158/1538–7445.AM1538–7445
208 RD Leone, L Zhao, JM Englert, IM Sun, MH Oh, IH Sun, ML Arwood, IA Bettencourt, CH Patel, J Wen, A Tam, RL Blosser, E Prchalova, J Alt, R Rais, BS Slusher, JD Powell. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 2019; 366(6468): 1013–1021
https://doi.org/10.1126/science.aav2588
209 EL Carr, A Kelman, GS Wu, R Gopaul, E Senkevitch, A Aghvanyan, AM Turay, KA Frauwirth. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010; 185(2): 1037–1044
https://doi.org/10.4049/jimmunol.0903586
210 KM Lemberg, JJ Vornov, R Rais, BS Slusher. We’re Not “DON” Yet: optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther 2018; 17(9): 1824–1832
https://doi.org/10.1158/1535-7163.MCT-17-1148
211 J Jiang, NN Pavlova, J Zhang. Asparagine, a critical limiting metabolite during glutamine starvation. Mol Cell Oncol 2018; 5(3): e1441633
https://doi.org/10.1080/23723556.2018.1441633
212 NN Pavlova, S Hui, JM Ghergurovich, J Fan, AM Intlekofer, RM White, JD Rabinowitz, CB Thompson, J Zhang. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab 2018; 27(2): 428–438.e5
https://doi.org/10.1016/j.cmet.2017.12.006
213 M Chiu, G Taurino, MG Bianchi, MS Kilberg, O Bussolati. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front Oncol 2020; 9: 1480
https://doi.org/10.3389/fonc.2019.01480
214 A Jaccard, N Gachard, B Marin, S Rogez, M Audrain, F Suarez, H Tilly, F Morschhauser, C Thieblemont, L Ysebaert, A Devidas, B Petit, Leval L de, P Gaulard, J Feuillard, D Bordessoule, O; GELA Hermine, Intergroup GOELAMS. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 2011; 117(6): 1834–1839
https://doi.org/10.1182/blood-2010-09-307454
215 AS Krall, PJ Mullen, F Surjono, M Momcilovic, EW Schmid, CJ Halbrook, A Thambundit, SD Mittelman, CA Lyssiotis, DB Shackelford, SRV Knott, HR Christofk. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab 2021; 33(5): 1013–1026.e6
https://doi.org/10.1016/j.cmet.2021.02.001
216 J Wu, G Li, L Li, D Li, Z Dong, P Jiang. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat Cell Biol 2021; 23(1): 75–86
https://doi.org/10.1038/s41556-020-00615-4
217 KE Pauken, MA Sammons, PM Odorizzi, S Manne, J Godec, O Khan, AM Drake, Z Chen, DR Sen, M Kurachi, RA Barnitz, C Bartman, B Bengsch, AC Huang, JM Schenkel, G Vahedi, WN Haining, SL Berger, EJ Wherry. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016; 354(6316): 1160–1165
https://doi.org/10.1126/science.aaf2807
218 SM Sanderson, X Gao, Z Dai, JW Locasale. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019; 19(11): 625–637
https://doi.org/10.1038/s41568-019-0187-8
219 SJ Mentch, M Mehrmohamadi, L Huang, X Liu, D Gupta, D Mattocks, Padilla P Gómez, G Ables, MM Bamman, AE Thalacker-Mercer, SN Nichenametla, JW Locasale. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 2015; 22(5): 861–873
https://doi.org/10.1016/j.cmet.2015.08.024
220 A Mehdi, M Attias, N Mahmood, A Arakelian, C Mihalcioiu, CA Piccirillo, M Szyf, SA Rabbani. Enhanced anticancer effect of a combination of S-adenosylmethionine (SAM) and immune checkpoint inhibitor (ICPi) in a syngeneic mouse model of advanced melanoma. Front Oncol 2020; 10: 1361
https://doi.org/10.3389/fonc.2020.01361
221 K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F Cheng, W Jiang, J Wang, H Pei, PJ Chiao, Z Cai, Y Chen, M Liu, X Pang. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 2020; 130(4): 1752–1766
https://doi.org/10.1172/JCI124049
222 MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CEM Firl, AR Decker, SA Sastra, CF Palermo, LR Andrade, P Sajjakulnukit, L Zhang, ZP Tolstyka, T Hirschhorn, C Lamb, T Liu, W Gu, ES Seeley, E Stone, G Georgiou, U Manor, A Iuga, GM Wahl, BR Stockwell, CA Lyssiotis, KP Olive. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020; 368(6486): 85–89
https://doi.org/10.1126/science.aaw9872
223 L Jiang, N Kon, T Li, SJ Wang, T Su, H Hibshoosh, R Baer, W Gu. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520(7545): 57–62
https://doi.org/10.1038/nature14344
224 Z Wang, LY Yip, JHJ Lee, Z Wu, HY Chew, PKW Chong, CC Teo, HY Ang, KLE Peh, J Yuan, S Ma, LSK Choo, N Basri, X Jiang, Q Yu, AM Hillmer, WT Lim, TKH Lim, A Takano, EH Tan, DSW Tan, YS Ho, B Lim, WL Tam. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 2019; 25(5): 825–837
https://doi.org/10.1038/s41591-019-0423-5
225 SA Vardhana, MA Hwee, M Berisa, DK Wells, KE Yost, B King, M Smith, PS Herrera, HY Chang, AT Satpathy, MRM van den Brink, JR Cross, CB Thompson. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol 2020; 21(9): 1022–1033
https://doi.org/10.1038/s41590-020-0725-2
226 K Pilipow, E Scamardella, S Puccio, S Gautam, F De Paoli, EM Mazza, G De Simone, S Polletti, M Buccilli, V Zanon, P Di Lucia, M Iannacone, L Gattinoni, E Lugli. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 2018; 3(18): e122299
https://doi.org/10.1172/jci.insight.122299
227 N Ron-Harel, D Santos, JM Ghergurovich, PT Sage, A Reddy, SB Lovitch, N Dephoure, FK Satterstrom, M Sheffer, JB Spinelli, S Gygi, JD Rabinowitz, AH Sharpe, MC Haigis. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab 2016; 24(1): 104–117
https://doi.org/10.1016/j.cmet.2016.06.007
228 SL Cramer, A Saha, J Liu, S Tadi, S Tiziani, W Yan, K Triplett, C Lamb, SE Alters, S Rowlinson, YJ Zhang, MJ Keating, P Huang, J DiGiovanni, G Georgiou, E Stone. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 2017; 23(1): 120–127
https://doi.org/10.1038/nm.4232
229 W Wang, M Green, JE Choi, M Gijón, PD Kennedy, JK Johnson, P Liao, X Lang, I Kryczek, A Sell, H Xia, J Zhou, G Li, J Li, W Li, S Wei, L Vatan, H Zhang, W Szeliga, W Gu, R Liu, TS Lawrence, C Lamb, Y Tanno, M Cieslik, E Stone, G Georgiou, TA Chan, A Chinnaiyan, W Zou. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019; 569(7755): 270–274
https://doi.org/10.1038/s41586-019-1170-y
230 RJ Salmond, A Filby, I Qureshi, S Caserta, R Zamoyska. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228(1): 9–22
https://doi.org/10.1111/j.1600-065X.2008.00745.x
231 V Bronte, T Kasic, G Gri, K Gallana, G Borsellino, I Marigo, L Battistini, M Iafrate, T Prayer-Galetti, F Pagano, A Viola. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 2005; 201(8): 1257–1268
https://doi.org/10.1084/jem.20042028
232 B Lamas, J Vergnaud-Gauduchon, N Goncalves-Mendes, O Perche, A Rossary, MP Vasson, MC Farges. Altered functions of natural killer cells in response to L-Arginine availability. Cell Immunol 2012; 280(2): 182–190
https://doi.org/10.1016/j.cellimm.2012.11.018
233 SK Wculek, FJ Cueto, AM Mujal, I Melero, MF Krummel, D Sancho. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2020; 20(1): 7–24
https://doi.org/10.1038/s41577-019-0210-z
234 P Giovanelli, TA Sandoval, JR Cubillos-Ruiz. Dendritic cell metabolism and function in tumors. Trends Immunol 2019; 40(8): 699–718
https://doi.org/10.1016/j.it.2019.06.004
235 M Gargaro, C Vacca, S Massari, G Scalisi, G Manni, G Mondanelli, EMC Mazza, S Bicciato, MT Pallotta, C Orabona, ML Belladonna, C Volpi, R Bianchi, D Matino, A Iacono, E Panfili, E Proietti, IM Iamandii, V Cecchetti, P Puccetti, O Tabarrini, F Fallarino, U Grohmann. Engagement of nuclear coactivator 7 by 3-hydroxyanthranilic acid enhances activation of aryl hydrocarbon receptor in immunoregulatory dendritic cells. Front Immunol 2019; 10: 1973
https://doi.org/10.3389/fimmu.2019.01973
236 F Li, R Zhang, S Li, J Liu. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol 2017; 47: 70–77
https://doi.org/10.1016/j.intimp.2017.03.024
237 N Kedia-Mehta, DK Finlay. Competition for nutrients and its role in controlling immune responses. Nat Commun 2019; 10(1): 2123
https://doi.org/10.1038/s41467-019-10015-4
238 F Basit, T Mathan, D Sancho, IJM de Vries. Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front Immunol 2018; 9: 2489
https://doi.org/10.3389/fimmu.2018.02489
239 G Mondanelli, A Iacono, A Carvalho, C Orabona, C Volpi, MT Pallotta, D Matino, S Esposito, U Grohmann. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun Rev 2019; 18(4): 334–348
https://doi.org/10.1016/j.autrev.2019.02.004
240 RB Holmgaard, D Zamarin, DH Munn, JD Wolchok, JP Allison. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 2013; 210(7): 1389–1402
https://doi.org/10.1084/jem.20130066
241 X Zheng, J Koropatnick, D Chen, T Velenosi, H Ling, X Zhang, N Jiang, B Navarro, TE Ichim, B Urquhart, W Min. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int J Cancer 2013; 132(4): 967–977
https://doi.org/10.1002/ijc.27710
242 J Le Naour, L Galluzzi, L Zitvogel, G Kroemer, E Vacchelli. Trial watch: IDO inhibitors in cancer therapy. OncoImmunology 2020; 9(1): 1777625
https://doi.org/10.1080/2162402X.2020.1777625
243 CL Chu, YP Lee, CY Pang, HR Lin, CS Chen, RI You. Tyrosine kinase inhibitors modulate dendritic cell activity via confining c-Kit signaling and tryptophan metabolism. Int Immunopharmacol 2020; 82: 106357
https://doi.org/10.1016/j.intimp.2020.106357
244 D Davar, N Bahary. Modulating tumor immunology by inhibiting indoleamine 2,3-dioxygenase (IDO): recent developments and first clinical experiences. Target Oncol 2018; 13(2): 125–140
https://doi.org/10.1007/s11523-017-0547-9
245 T Bohn, S Rapp, N Luther, M Klein, TJ Bruehl, N Kojima, P Aranda Lopez, J Hahlbrock, S Muth, S Endo, S Pektor, A Brand, K Renner, V Popp, K Gerlach, D Vogel, C Lueckel, D Arnold-Schild, J Pouyssegur, M Kreutz, M Huber, J Koenig, B Weigmann, HC Probst, E von Stebut, C Becker, H Schild, E Schmitt, T Bopp. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol 2018; 19(12): 1319–1329
https://doi.org/10.1038/s41590-018-0226-8
246 C Carmona-Fontaine, M Deforet, L Akkari, CB Thompson, JA Joyce, JB Xavier. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci USA 2017; 114(11): 2934–2939
https://doi.org/10.1073/pnas.1700600114
247 M Platten, N von Knebel Doeberitz, I Oezen, W Wick, K Ochs. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol 2015; 5: 673
https://doi.org/10.3389/fimmu.2014.00673
248 J Choi, B Stradmann-Bellinghausen, E Yakubov, NE Savaskan, A Régnier-Vigouroux. Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol Ther 2015; 16(8): 1205–1213
https://doi.org/10.1080/15384047.2015.1056406
249 EM Palmieri, A Menga, R Martín-Pérez, A Quinto, C Riera-Domingo, Tullio G De, DC Hooper, WH Lamers, B Ghesquière, DW McVicar, A Guarini, M Mazzone, A Castegna. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 2017; 20(7): 1654–1666
https://doi.org/10.1016/j.celrep.2017.07.054
250 AK Jha, SC Huang, A Sergushichev, V Lampropoulou, Y Ivanova, E Loginicheva, K Chmielewski, KM Stewart, J Ashall, B Everts, EJ Pearce, EM Driggers, MN Artyomov. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015; 42(3): 419–430
https://doi.org/10.1016/j.immuni.2015.02.005
251 PS Liu, YT Chen, X Li, PC Hsueh, SF Tzeng, H Chen, PZ Shi, X Xie, S Parik, M Planque, SM Fendt, PC Ho. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol 2023; 24(3): 452–462
https://doi.org/10.1038/s41590-023-01430-3
252 J Szefel, A Danielak, WJ Kruszewski. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci 2019; 64(1): 104–110
https://doi.org/10.1016/j.advms.2018.08.018
253 C Cimen Bozkus, BD Elzey, SA Crist, LG Ellies, TL Ratliff. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. J Immunol 2015; 195(11): 5237–5250
https://doi.org/10.4049/jimmunol.1500959
254 E Principi, L Raffaghello. The role of the P2X7 receptor in myeloid-derived suppressor cells and immunosuppression. Curr Opin Pharmacol 2019; 47: 82–89
https://doi.org/10.1016/j.coph.2019.02.010
255 A Sica, L Strauss, FM Consonni, C Travelli, A Genazzani, C Porta. Metabolic regulation of suppressive myeloid cells in cancer. Cytokine Growth Factor Rev 2017; 35: 27–35
https://doi.org/10.1016/j.cytogfr.2017.05.002
256 DH Munn, AL Mellor. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013; 34(3): 137–143
https://doi.org/10.1016/j.it.2012.10.001
257 U Grohmann, P Puccetti. The coevolution of IDO1 and AhR in the emergence of regulatory T-cells in mammals. Front Immunol 2015; 6: 58
https://doi.org/10.3389/fimmu.2015.00058
258 EH Ma, G Bantug, T Griss, S Condotta, RM Johnson, B Samborska, N Mainolfi, V Suri, H Guak, ML Balmer, MJ Verway, TC Raissi, H Tsui, G Boukhaled, S Henriques da Costa, C Frezza, CM Krawczyk, A Friedman, M Manfredi, MJ Richer, C Hess, RG Jones. Serine is an essential metabolite for effector T cell expansion. Cell Metab 2017; 25(2): 345–357
https://doi.org/10.1016/j.cmet.2016.12.011
259 N Ron-Harel, G Notarangelo, JM Ghergurovich, JA Paulo, PT Sage, D Santos, FK Satterstrom, SP Gygi, JD Rabinowitz, AH Sharpe, MC Haigis. Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice. Proc Natl Acad Sci USA 2018; 115(52): 13347–13352
https://doi.org/10.1073/pnas.1804149115
260 S Kumar, M Dikshit. Metabolic insight of neutrophils in health and disease. Front Immunol 2019; 10: 2099
https://doi.org/10.3389/fimmu.2019.02099
261 AM Starzer, M Preusser, AS Berghoff. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Ther Adv Med Oncol 2022; 14: 17588359221096219
https://doi.org/10.1177/17588359221096219
262 A Largeot, G Pagano, S Gonder, E Moussay, J Paggetti. The B-side of cancer immunity: the underrated tune. Cells 2019; 8(5): 449
https://doi.org/10.3390/cells8050449
263 SM Downs-Canner, J Meier, BG Vincent, JS Serody. B cell function in the tumor microenvironment. Annu Rev Immunol 2022; 40(1): 169–193
https://doi.org/10.1146/annurev-immunol-101220-015603
264 CA Doughty, BF Bleiman, DJ Wagner, FJ Dufort, JM Mataraza, MF Roberts, TC Chiles. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 2006; 107(11): 4458–4465
https://doi.org/10.1182/blood-2005-12-4788
265 DG Franchina, M Grusdat, D Brenner. B-cell metabolic remodeling and cancer. Trends Cancer 2018; 4(2): 138–150
https://doi.org/10.1016/j.trecan.2017.12.006
266 B Zhang, A Vogelzang, M Miyajima, Y Sugiura, Y Wu, K Chamoto, R Nakano, R Hatae, RJ Menzies, K Sonomura, N Hojo, T Ogawa, W Kobayashi, Y Tsutsui, S Yamamoto, M Maruya, S Narushima, K Suzuki, H Sugiya, K Murakami, M Hashimoto, H Ueno, T Kobayashi, K Ito, T Hirano, K Shiroguchi, F Matsuda, M Suematsu, T Honjo, S Fagarasan. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 2021; 599(7885): 471–476
https://doi.org/10.1038/s41586-021-04082-1
267 Y Fu, L Wang, B Yu, D Xu, Y Chu. Immunometabolism shapes B cell fate and functions. Immunology 2022; 166(4): 444–457
https://doi.org/10.1111/imm.13499
268 YK Kim, SC Chae, HJ Yang, DE An, S Lee, MG Yeo, KJ Lee. Cereblon deletion ameliorates lipopolysaccharide-induced proinflammatory cytokines through 5′-adenosine monophosphate-activated protein kinase/heme oxygenase-1 activation in ARPE-19 cells. Immune Netw 2020; 20(3): e26
https://doi.org/10.4110/in.2020.20.e26
269 A Salminen, A Kauppinen, K Kaarniranta. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med (Berl) 2019; 97(8): 1049–1064
https://doi.org/10.1007/s00109-019-01795-9
270 S Mafi, B Mansoori, S Taeb, H Sadeghi, R Abbasi, WC Cho, D Rostamzadeh. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front Immunol 2022; 12: 774103
https://doi.org/10.3389/fimmu.2021.774103
271 K Masui, M Harachi, WK Cavenee, PS Mischel, N Shibata. mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett 2020; 478: 1–7
https://doi.org/10.1016/j.canlet.2020.03.001
272 D Vijayan, A Young, MWL Teng, MJ Smyth. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 2017; 17(12): 709–724
https://doi.org/10.1038/nrc.2017.86
273 X Zhi, Y Wang, X Zhou, J Yu, R Jian, S Tang, L Yin, P Zhou. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci 2010; 101(12): 2561–2569
https://doi.org/10.1111/j.1349-7006.2010.01733.x
274 L Li, L Huang, H Ye, SP Song, A Bajwa, SJ Lee, EK Moser, K Jaworska, GR Kinsey, YJ Day, J Linden, PI Lobo, DL Rosin, MD Okusa. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest 2012; 122(11): 3931–3942
https://doi.org/10.1172/JCI63170
275 C Sorrentino, L Miele, A Porta, A Pinto, S Morello. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015; 6(29): 27478–27489
https://doi.org/10.18632/oncotarget.4393
276 YP Zhu, JR Brown, D Sag, L Zhang, J Suttles. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol 2015; 194(2): 584–594
https://doi.org/10.4049/jimmunol.1401024
277 B Csóka, Z Selmeczy, B Koscsó, ZH Németh, P Pacher, PJ Murray, D Kepka-Lenhart, SM Jr Morris, WC Gause, SJ Leibovich, G Haskó. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 2012; 26(1): 376–386
https://doi.org/10.1096/fj.11-190934
278 JH Chen, CJ Perry, YC Tsui, MM Staron, IA Parish, CX Dominguez, DW Rosenberg, SM Kaech. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med 2015; 21(4): 327–334
https://doi.org/10.1038/nm.3831
279 DA Drew, Y Cao, AT Chan. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer 2016; 16(3): 173–186
https://doi.org/10.1038/nrc.2016.4
280 Y Li, M Fang, J Zhang, J Wang, Y Song, J Shi, W Li, G Wu, J Ren, Z Wang, W Zou, L Wang. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. OncoImmunology 2016; 5(2): e1074374
https://doi.org/10.1080/2162402X.2015.1074374
281 K Voss, HS Hong, JE Bader, A Sugiura, CA Lyssiotis, JC Rathmell. A guide to interrogating immunometabolism. Nat Rev Immunol 2021; 21(10): 637–652
https://doi.org/10.1038/s41577-021-00529-8
282 MN Artyomov, J Van den Bossche. Immunometabolism in the single-cell era. Cell Metab 2020; 32(5): 710–725
https://doi.org/10.1016/j.cmet.2020.09.013
283 V Purohit, A Wagner, N Yosef, VK Kuchroo. Systems-based approaches to study immunometabolism. Cell Mol Immunol 2022; 19(3): 409–420
https://doi.org/10.1038/s41423-021-00783-9
[1] Xueqing Hu, Ujjwol Khatri, Tao Shen, Jie Wu. Progress and challenges in RET-targeted cancer therapy[J]. Front. Med., 2023, 17(2): 207-219.
[2] Yingxi Du, Yarui Ma, Qing Zhu, Yong Fu, Yutong Li, Ying Zhang, Mo Li, Feiyue Feng, Peng Yuan, Xiaobing Wang. GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma[J]. Front. Med., 2023, 17(1): 119-131.
[3] Hongyi Wang, Zhuochao Liu, Jun Wang, Fangqiong Hu, Qi Zhou, Li Wei, Qiyuan Bao, Jizhuang Wang, Jing Liang, Zhihong Liu, Weibin Zhang. Superenhancers activate the autophagy-related genes Beclin1 and LC3B to drive metastasis and drug resistance in osteosarcoma[J]. Front. Med., 2022, 16(6): 883-895.
[4] Shi-Yong Sun. Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors[J]. Front. Med., 2022, 16(5): 701-713.
[5] Suning Chen, Weili Zhao, Jianyong Li, Depei Wu, on behalf of Lymphoid Disease Group, Chinese Society of Hematology, Chinese Medical Association. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition)[J]. Front. Med., 2022, 16(5): 815-826.
[6] Liang Dai, Jingjuan Xu, Baocheng Liu, Yanqi Dang, Ruirui Wang, Lijie Zhuang, Dong Li, Lulu Jiao, Jianying Wang, Lei Zhang, Linda L.D. Zhong, Wenjun Zhou, Guang Ji. Lingguizhugan Decoction, a Chinese herbal formula, improves insulin resistance in overweight/obese subjects with non-alcoholic fatty liver disease: a translational approach[J]. Front. Med., 2022, 16(5): 745-759.
[7] Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, Chunmei Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors[J]. Front. Med., 2022, 16(5): 773-783.
[8] Chao Gao, Shenghao Wang, Weiqing Shao, Yu Zhang, Lu Lu, Huliang Jia, Kejin Zhu, Jinhong Chen, Qiongzhu Dong, Ming Lu, Wenwei Zhu, Lunxiu Qin. Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma[J]. Front. Med., 2022, 16(3): 467-482.
[9] Pooria Safarzadeh Kozani, Pouya Safarzadeh Kozani, Fatemeh Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?[J]. Front. Med., 2022, 16(3): 322-338.
[10] Yingying Li, Shiyuan Wang, Mengmeng Lin, Chunying Hou, Chunyu Li, Guohui Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy[J]. Front. Med., 2022, 16(3): 307-321.
[11] Fang Huang, Yanwen Cui, He Yan, Hui Liu, Xiangrui Guo, Guangze Wang, Shuisen Zhou, Zhigui Xia. Prevalence of antifolate drug resistance markers in Plasmodium vivax in China[J]. Front. Med., 2022, 16(1): 83-92.
[12] Hongyun Zhao, Fan Luo, Jinhui Xue, Su Li, Rui-Hua Xu. Emerging immunological strategies: recent advances and future directions[J]. Front. Med., 2021, 15(6): 805-828.
[13] Ronghui Yang, Guoguang Ying, Binghui Li. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming[J]. Front. Med., 2021, 15(5): 679-692.
[14] Awanish Kumar, Anil Kumar. Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance[J]. Front. Med., 2021, 15(5): 693-703.
[15] Shi-Yong Sun. mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?[J]. Front. Med., 2021, 15(2): 221-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed