|
|
|
Immunometabolism: a new dimension in immunotherapy resistance |
Chaoyue Xiao1, Wei Xiong2, Yiting Xu3, Ji’an Zou3, Yue Zeng1, Junqi Liu1, Yurong Peng1, Chunhong Hu1,4, Fang Wu1,4,5,6( ) |
1. Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China 2. NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China 3. Xiangya School of Medicine, Central South University, Changsha 410013, China 4. Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha 410011, China 5. Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha 410011, China 6. Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China |
|
|
|
|
Abstract Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
|
| Keywords
immune cell
immunometabolism
metabolic reprogramming
immunotherapy
resistance
tumor microenvironment
immune checkpoint inhibitor
|
|
Corresponding Author(s):
Fang Wu
|
|
Just Accepted Date: 14 July 2023
Online First Date: 11 September 2023
Issue Date: 12 October 2023
|
|
| 1 |
L Kraehenbuehl, CH Weng, S Eghbali, JD Wolchok, T Merghoub. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 2022; 19(1): 37–50
https://doi.org/10.1038/s41571-021-00552-7
|
| 2 |
DB Johnson, CA Nebhan, JJ Moslehi, JM Balko. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol 2022; 19(4): 254–267
https://doi.org/10.1038/s41571-022-00600-w
|
| 3 |
Y Yan, AB Kumar, H Finnes, SN Markovic, S Park, RS Dronca, H Dong. Combining immune checkpoint inhibitors with conventional cancer therapy. Front Immunol 2018; 9: 1739
https://doi.org/10.3389/fimmu.2018.01739
|
| 4 |
Y Wang, Y Wang, Y Ren, Q Zhang, P Yi, C Cheng. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86(Pt 3): 542–565
https://doi.org/10.1016/j.semcancer.2022.02.010
|
| 5 |
Z Jiang, JL Hsu, Y Li, GN Hortobagyi, MC Hung. Cancer cell metabolism bolsters immunotherapy resistance by promoting an immunosuppressive tumor microenvironment. Front Oncol 2020; 10: 1197
https://doi.org/10.3389/fonc.2020.01197
|
| 6 |
L Guerra, L Bonetti, D Brenner. Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep 2020; 32(1): 107848
https://doi.org/10.1016/j.celrep.2020.107848
|
| 7 |
JM Pitt, M Vétizou, R Daillère, MP Roberti, T Yamazaki, B Routy, P Lepage, IG Boneca, M Chamaillard, G Kroemer, L Zitvogel. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 2016; 44(6): 1255–1269
https://doi.org/10.1016/j.immuni.2016.06.001
|
| 8 |
C Guo, S Chen, W Liu, Y Ma, J Li, PB Fisher, X Fang, XY Wang. Immunometabolism: a new target for improving cancer immunotherapy. Adv Cancer Res 2019; 143: 195–253
https://doi.org/10.1016/bs.acr.2019.03.004
|
| 9 |
GO Rangel Rivera, HM Knochelmann, CJ Dwyer, AS Smith, MM Wyatt, AM Rivera-Reyes, JE Thaxton, CM Paulos. Fundamentals of T cell metabolism and strategies to enhance cancer immunotherapy. Front Immunol 2021; 12: 645242
https://doi.org/10.3389/fimmu.2021.645242
|
| 10 |
L Zhu, X Zhu, Y Wu. Effects of glucose metabolism, lipid metabolism, and glutamine metabolism on tumor microenvironment and clinical implications. Biomolecules 2022; 12(4): 580
https://doi.org/10.3390/biom12040580
|
| 11 |
H Aria, F Ghaedrahmati, M Ganjalikhani-Hakemi. Cutting edge: metabolic immune reprogramming, reactive oxygen species, and cancer. J Cell Physiol 2021; 236(9): 6168–6189
https://doi.org/10.1002/jcp.30303
|
| 12 |
N Mabrouk, B Lecoeur, A Bettaieb, C Paul, F Végran. Impact of lipid metabolism on antitumor immune response. Cancers (Basel) 2022; 14(7): 1850
https://doi.org/10.3390/cancers14071850
|
| 13 |
CY Weng, CX Kao, TS Chang, YH Huang. Immuno-metabolism: the role of cancer niche in immune checkpoint inhibitor resistance. Int J Mol Sci 2021; 22(3): 1258
https://doi.org/10.3390/ijms22031258
|
| 14 |
N Oberholtzer, KM Quinn, P Chakraborty, S Mehrotra. New developments in T cell immunometabolism and implications for cancer immunotherapy. Cells 2022; 11(4): 708
https://doi.org/10.3390/cells11040708
|
| 15 |
AR Lim, WK Rathmell, JC Rathmell. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. eLife 2020; 9: e55185
https://doi.org/10.7554/eLife.55185
|
| 16 |
L Xia, L Oyang, J Lin, S Tan, Y Han, N Wu, P Yi, L Tang, Q Pan, S Rao, J Liang, Y Tang, M Su, X Luo, Y Yang, Y Shi, H Wang, Y Zhou, Q Liao. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20(1): 28
https://doi.org/10.1186/s12943-021-01316-8
|
| 17 |
D Mathis, SE Shoelson. Immunometabolism: an emerging frontier. Nat Rev Immunol 2011; 11(2): 81–83
https://doi.org/10.1038/nri2922
|
| 18 |
LA O’Neill, RJ Kishton, J Rathmell. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016; 16(9): 553–565
https://doi.org/10.1038/nri.2016.70
|
| 19 |
JA Shyer, RA Flavell, W Bailis. Metabolic signaling in T cells. Cell Res 2020; 30(8): 649–659
https://doi.org/10.1038/s41422-020-0379-5
|
| 20 |
K DePeaux, GM Delgoffe. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol 2021; 21(12): 785–797
https://doi.org/10.1038/s41577-021-00541-y
|
| 21 |
RD Leone, JD Powell. Metabolism of immune cells in cancer. Nat Rev Cancer 2020; 20(9): 516–531
https://doi.org/10.1038/s41568-020-0273-y
|
| 22 |
G Ma, C Li, Z Zhang, Y Liang, Z Liang, Y Chen, L Wang, D Li, M Zeng, W Shan, H Niu. Targeted glucose or glutamine metabolic therapy combined with PD-1/PD-L1 checkpoint blockade immunotherapy for the treatment of tumors—mechanisms and strategies. Front Oncol 2021; 11: 697894
https://doi.org/10.3389/fonc.2021.697894
|
| 23 |
X Liu, Y Zhao, X Wu, Z Liu, X Liu. A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Front Oncol 2022; 12: 931104
https://doi.org/10.3389/fonc.2022.931104
|
| 24 |
YT Dabi, H Andualem, ST Degechisa, ST Gizaw. Targeting metabolic reprogramming of T-cells for enhanced anti-tumor response. Biologics 2022; 16: 35–45
|
| 25 |
RIK Geltink, RL Kyle, EL Pearce. Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol 2018; 36(1): 461–488
https://doi.org/10.1146/annurev-immunol-042617-053019
|
| 26 |
F Marchesi, D Vignali, B Manini, A Rigamonti, P Monti. Manipulation of glucose availability to boost cancer immunotherapies. Cancers (Basel) 2020; 12(10): 2940
https://doi.org/10.3390/cancers12102940
|
| 27 |
NM Chapman, MR Boothby, H Chi. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 2020; 20(1): 55–70
https://doi.org/10.1038/s41577-019-0203-y
|
| 28 |
PC Ho, JD Bihuniak, AN Macintyre, M Staron, X Liu, R Amezquita, YC Tsui, G Cui, G Micevic, JC Perales, SH Kleinstein, ED Abel, KL Insogna, S Feske, JW Locasale, MW Bosenberg, JC Rathmell, SM Kaech. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015; 162(6): 1217–1228
https://doi.org/10.1016/j.cell.2015.08.012
|
| 29 |
CH Chang, J Qiu, D O’Sullivan, MD Buck, T Noguchi, JD Curtis, Q Chen, M Gindin, MM Gubin, der Windt GJ van, E Tonc, RD Schreiber, EJ Pearce, EL Pearce. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229–1241
https://doi.org/10.1016/j.cell.2015.08.016
|
| 30 |
CM Cham, G Driessens, JP O’Keefe, TF Gajewski. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008; 38(9): 2438–2450
https://doi.org/10.1002/eji.200838289
|
| 31 |
JJ Lum, RJ DeBerardinis, CB Thompson. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005; 6(6): 439–448
https://doi.org/10.1038/nrm1660
|
| 32 |
L DeVorkin, N Pavey, G Carleton, A Comber, C Ho, J Lim, E McNamara, H Huang, P Kim, LG Zacharias, N Mizushima, T Saitoh, S Akira, W Beckham, A Lorzadeh, M Moksa, Q Cao, A Murthy, M Hirst, RJ DeBerardinis, JJ Lum. Autophagy regulation of metabolism is required for CD8+ T cell anti-tumor immunity. Cell Rep 2019; 27(2): 502–513.e5
https://doi.org/10.1016/j.celrep.2019.03.037
|
| 33 |
P Zhou, H Chi. AGK unleashes CD8+ T cell glycolysis to combat tumor growth. Cell Metab 2019; 30(2): 233–234
https://doi.org/10.1016/j.cmet.2019.07.008
|
| 34 |
NL Alves, IAM Derks, E Berk, R Spijker, RAW van Lier, E Eldering. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006; 24(6): 703–716
https://doi.org/10.1016/j.immuni.2006.03.018
|
| 35 |
Z Hu, G Qu, X Yu, H Jiang, XL Teng, L Ding, Q Hu, X Guo, Y Zhou, F Wang, HB Li, L Chen, J Jiang, B Su, J Liu, Q Zou. Acylglycerol kinase maintains metabolic state and immune responses of CD8+ T cells. Cell Metab 2019; 30(2): 290–302.e5
https://doi.org/10.1016/j.cmet.2019.05.016
|
| 36 |
Q Shao, L Wang, M Yuan, X Jin, Z Chen, C Wu. TIGIT induces (CD3+) T cell dysfunction in colorectal cancer by inhibiting glucose metabolism. Front Immunol 2021; 12: 688961
https://doi.org/10.3389/fimmu.2021.688961
|
| 37 |
K Renner, C Bruss, A Schnell, G Koehl, HM Becker, M Fante, AN Menevse, N Kauer, R Blazquez, L Hacker, SM Decking, T Bohn, S Faerber, K Evert, L Aigle, S Amslinger, M Landa, O Krijgsman, EA Rozeman, C Brummer, PJ Siska, K Singer, S Pektor, M Miederer, K Peter, E Gottfried, W Herr, I Marchiq, J Pouyssegur, WR Roush, S Ong, S Warren, T Pukrop, P Beckhove, SA Lang, T Bopp, CU Blank, JL Cleveland, PJ Oefner, K Dettmer, M Selby, M Kreutz. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep 2019; 29(1): 135–150.e9
https://doi.org/10.1016/j.celrep.2019.08.068
|
| 38 |
J Lei, Y Yang, Z Lu, H Pan, J Fang, B Jing, Y Chen, L Yin. Taming metabolic competition via glycolysis inhibition for safe and potent tumor immunotherapy. Biochem Pharmacol 2022; 202: 115153
https://doi.org/10.1016/j.bcp.2022.115153
|
| 39 |
NE Scharping, AV Menk, RD Whetstone, X Zeng, GM Delgoffe. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 2017; 5(1): 9–16
https://doi.org/10.1158/2326-6066.CIR-16-0103
|
| 40 |
I Elia, JH Rowe, S Johnson, S Joshi, G Notarangelo, K Kurmi, S Weiss, GJ Freeman, AH Sharpe, MC Haigis. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab 2022; 34(8): 1137–1150.e6
https://doi.org/10.1016/j.cmet.2022.06.008
|
| 41 |
DS Thommen, VH Koelzer, P Herzig, A Roller, M Trefny, S Dimeloe, A Kiialainen, J Hanhart, C Schill, C Hess, S Savic Prince, M Wiese, D Lardinois, PC Ho, C Klein, V Karanikas, KD Mertz, TN Schumacher, A Zippelius. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 2018; 24(7): 994–1004
https://doi.org/10.1038/s41591-018-0057-z
|
| 42 |
C Zhang, C Yue, A Herrmann, J Song, C Egelston, T Wang, Z Zhang, W Li, H Lee, M Aftabizadeh, YJ Li, PP Lee, S Forman, G Somlo, P Chu, L Kruper, J Mortimer, DSB Hoon, W Huang, S Priceman, H Yu. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab 2020; 31(1): 148–161.e5
https://doi.org/10.1016/j.cmet.2019.10.013
|
| 43 |
S Xu, O Chaudhary, P Rodríguez-Morales, X Sun, D Chen, R Zappasodi, Z Xu, AFM Pinto, A Williams, I Schulze, Y Farsakoglu, SK Varanasi, JS Low, W Tang, H Wang, B McDonald, V Tripple, M Downes, RM Evans, NA Abumrad, T Merghoub, JD Wolchok, MN Shokhirev, PC Ho, JL Witztum, B Emu, G Cui, SM Kaech. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 2021; 54(7): 1561–1577.e7
https://doi.org/10.1016/j.immuni.2021.05.003
|
| 44 |
X Ma, L Xiao, L Liu, L Ye, P Su, E Bi, Q Wang, M Yang, J Qian, Q Yi. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33(5): 1001–1012.e5
https://doi.org/10.1016/j.cmet.2021.02.015
|
| 45 |
X Ma, E Bi, Y Lu, P Su, C Huang, L Liu, Q Wang, M Yang, MF Kalady, J Qian, A Zhang, AA Gupte, DJ Hamilton, C Zheng, Q Yi. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab 2019; 30(1): 143–156.e5
https://doi.org/10.1016/j.cmet.2019.04.002
|
| 46 |
E Timosenko, AV Hadjinicolaou, V Cerundolo. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 2017; 9(1): 83–97
https://doi.org/10.2217/imt-2016-0118
|
| 47 |
R Geiger, JC Rieckmann, T Wolf, C Basso, Y Feng, T Fuhrer, M Kogadeeva, P Picotti, F Meissner, M Mann, N Zamboni, F Sallusto, A Lanzavecchia. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 2016; 167(3): 829–842.e13
https://doi.org/10.1016/j.cell.2016.09.031
|
| 48 |
DI Gabrilovich, S Nagaraj. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
https://doi.org/10.1038/nri2506
|
| 49 |
AP Lepique, KR Daghastanli, IM Cuccovia, LL Villa. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res 2009; 15(13): 4391–4400
https://doi.org/10.1158/1078-0432.CCR-09-0489
|
| 50 |
W Wang, W Zou. Amino acids and their transporters in T cell immunity and cancer therapy. Mol Cell 2020; 80(3): 384–395
https://doi.org/10.1016/j.molcel.2020.09.006
|
| 51 |
D Klysz, X Tai, PA Robert, M Craveiro, G Cretenet, L Oburoglu, C Mongellaz, S Floess, V Fritz, MI Matias, C Yong, N Surh, JC Marie, J Huehn, V Zimmermann, S Kinet, V Dardalhon, N Taylor. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 2015; 8(396): ra97
https://doi.org/10.1126/scisignal.aab2610
|
| 52 |
M Nakaya, Y Xiao, X Zhou, JH Chang, M Chang, X Cheng, M Blonska, X Lin, SC Sun. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 2014; 40(5): 692–705
https://doi.org/10.1016/j.immuni.2014.04.007
|
| 53 |
HC Hope, RJ Brownlie, CM Fife, L Steele, M Lorger, RJ Salmond. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight 2021; 6(9): e137761
https://doi.org/10.1172/jci.insight.137761
|
| 54 |
Y Bian, W Li, DM Kremer, P Sajjakulnukit, S Li, J Crespo, ZC Nwosu, L Zhang, A Czerwonka, A Pawłowska, H Xia, J Li, P Liao, J Yu, L Vatan, W Szeliga, S Wei, S Grove, JR Liu, K McLean, M Cieslik, AM Chinnaiyan, W Zgodziński, G Wallner, I Wertel, K Okła, I Kryczek, CA Lyssiotis, W Zou. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 2020; 585(7824): 277–282
https://doi.org/10.1038/s41586-020-2682-1
|
| 55 |
DG Roy, J Chen, V Mamane, EH Ma, BM Muhire, RD Sheldon, T Shorstova, R Koning, RM Johnson, E Esaulova, KS Williams, S Hayes, M Steadman, B Samborska, A Swain, A Daigneault, V Chubukov, TP Roddy, W Foulkes, JA Pospisilik, MC Bourgeois-Daigneault, MN Artyomov, M Witcher, CM Krawczyk, C Larochelle, RG Jones. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab 2020; 31(2): 250–266.e9
https://doi.org/10.1016/j.cmet.2020.01.006
|
| 56 |
HC Hope, RJ Salmond. The role of non-essential amino acids in t cell function and anti-tumour immunity. Arch Immunol Ther Exp (Warsz) 2021; 69(1): 29
https://doi.org/10.1007/s00005-021-00633-6
|
| 57 |
C Han, M Ge, PC Ho, L Zhang. Fueling T-cell antitumor immunity: amino acid metabolism revisited. Cancer Immunol Res 2021; 9(12): 1373–1382
https://doi.org/10.1158/2326-6066.CIR-21-0459
|
| 58 |
A Angelin, L Gil-de-Gómez, S Dahiya, J Jiao, L Guo, MH Levine, Z Wang, WJ 3rd Quinn, PK Kopinski, L Wang, T Akimova, Y Liu, TR Bhatti, R Han, BL Laskin, JA Baur, IA Blair, DC Wallace, WW Hancock, UH Beier. Foxp3 Reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 2017; 25(6): 1282–1293.e7
https://doi.org/10.1016/j.cmet.2016.12.018
|
| 59 |
MJ Watson, PDA Vignali, SJ Mullett, AE Overacre-Delgoffe, RM Peralta, S Grebinoski, AV Menk, NL Rittenhouse, K DePeaux, RD Whetstone, DAA Vignali, TW Hand, AC Poholek, BM Morrison, JD Rothstein, SG Wendell, GM Delgoffe. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021; 591(7851): 645–651
https://doi.org/10.1038/s41586-020-03045-2
|
| 60 |
RWM Kempkes, I Joosten, HJPM Koenen, X He. Metabolic pathways involved in regulatory T cell functionality. Front Immunol 2019; 10: 2839
https://doi.org/10.3389/fimmu.2019.02839
|
| 61 |
PA Savage, DEJ Klawon, CH Miller. Regulatory T cell development. Annu Rev Immunol 2020; 38(1): 421–453
https://doi.org/10.1146/annurev-immunol-100219-020937
|
| 62 |
SA Lim, J Wei, TM Nguyen, H Shi, W Su, G Palacios, Y Dhungana, NM Chapman, L Long, J Saravia, P Vogel, H Chi. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature 2021; 591(7849): 306–311
https://doi.org/10.1038/s41586-021-03235-6
|
| 63 |
A Bachem, C Makhlouf, KJ Binger, Souza DP de, D Tull, K Hochheiser, PG Whitney, D Fernandez-Ruiz, S Dähling, W Kastenmüller, J Jönsson, E Gressier, AM Lew, C Perdomo, A Kupz, W Figgett, F Mackay, M Oleshansky, BE Russ, IA Parish, A Kallies, MJ McConville, SJ Turner, T Gebhardt, S Bedoui. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 2019; 51(2): 285–297.e5
https://doi.org/10.1016/j.immuni.2019.06.002
|
| 64 |
CS Field, F Baixauli, RL Kyle, DJ Puleston, AM Cameron, DE Sanin, KL Hippen, M Loschi, G Thangavelu, M Corrado, J Edwards-Hicks, KM Grzes, EJ Pearce, BR Blazar, EL Pearce. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab 2020; 31(2): 422–437.e5
https://doi.org/10.1016/j.cmet.2019.11.021
|
| 65 |
SD Saibil, M St Paul, RC Laister, CR Garcia-Batres, K Israni-Winger, AR Elford, N Grimshaw, C Robert-Tissot, DG Roy, RG Jones, LT Nguyen, PS Ohashi. Activation of peroxisome proliferator-activated receptors α and δ synergizes with inflammatory signals to enhance adoptive cell therapy. Cancer Res 2019; 79(3): 445–451
https://doi.org/10.1158/0008-5472.CAN-17-3053
|
| 66 |
RM Loftus, N Assmann, N Kedia-Mehta, KL O’Brien, A Garcia, C Gillespie, JL Hukelmann, PJ Oefner, AI Lamond, CM Gardiner, K Dettmer, DA Cantrell, LV Sinclair, DK Finlay. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat Commun 2018; 9(1): 2341
https://doi.org/10.1038/s41467-018-04719-2
|
| 67 |
N Assmann, KL O’Brien, RP Donnelly, L Dyck, V Zaiatz-Bittencourt, RM Loftus, P Heinrich, PJ Oefner, L Lynch, CM Gardiner, K Dettmer, DK Finlay. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 2017; 18(11): 1197–1206
https://doi.org/10.1038/ni.3838
|
| 68 |
J Cong, X Wang, X Zheng, D Wang, B Fu, R Sun, Z Tian, H Wei. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab 2018; 28(2): 243–255.e5
https://doi.org/10.1016/j.cmet.2018.06.021
|
| 69 |
AM Chambers, J Wang, KB Lupo, H Yu, NM Atallah Lanman, S Matosevic. Adenosinergic signaling alters natural killer cell functional responses. Front Immunol 2018; 9: 2533
https://doi.org/10.3389/fimmu.2018.02533
|
| 70 |
X Michelet, L Dyck, A Hogan, RM Loftus, D Duquette, K Wei, S Beyaz, A Tavakkoli, C Foley, R Donnelly, C O’Farrelly, M Raverdeau, A Vernon, W Pettee, D O’Shea, BS Nikolajczyk, KHG Mills, MB Brenner, D Finlay, L Lynch. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 2018; 19(12): 1330–1340
https://doi.org/10.1038/s41590-018-0251-7
|
| 71 |
TA Patente, LR Pelgrom, B Everts. Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization. Curr Opin Immunol 2019; 58: 16–23
https://doi.org/10.1016/j.coi.2019.02.003
|
| 72 |
YL Chen, HW Lin, NY Sun, JC Yie, HC Hung, CA Chen, WZ Sun, WF Cheng. mTOR inhibitors can enhance the anti-tumor effects of DNA vaccines through modulating dendritic cell function in the tumor microenvironment. Cancers (Basel) 2019; 11(5): 617
https://doi.org/10.3390/cancers11050617
|
| 73 |
E Amiel, B Everts, D Fritz, S Beauchamp, B Ge, EL Pearce, EJ Pearce. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol 2014; 193(6): 2821–2830
https://doi.org/10.4049/jimmunol.1302498
|
| 74 |
Díaz F Erra, V Ochoa, A Merlotti, E Dantas, I Mazzitelli, Polo V Gonzalez, J Sabatté, S Amigorena, E Segura, J Geffner. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep 2020; 31(5): 107613
https://doi.org/10.1016/j.celrep.2020.107613
|
| 75 |
SJ Lawless, N Kedia-Mehta, JF Walls, R McGarrigle, O Convery, LV Sinclair, MN Navarro, J Murray, DK Finlay. Glucose represses dendritic cell-induced T cell responses. Nat Commun 2017; 8(1): 15620
https://doi.org/10.1038/ncomms15620
|
| 76 |
JK Gardner, CD Mamotte, P Patel, TL Yeoh, C Jackaman, DJ Nelson. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One 2015; 10(4): e0123563
https://doi.org/10.1371/journal.pone.0123563
|
| 77 |
B Hu, JZ Lin, XB Yang, XT Sang. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif 2020; 53(3): e12772
https://doi.org/10.1111/cpr.12772
|
| 78 |
DL Herber, W Cao, Y Nefedova, SV Novitskiy, S Nagaraj, VA Tyurin, A Corzo, HI Cho, E Celis, B Lennox, SC Knight, T Padhya, TV McCaffrey, JC McCaffrey, S Antonia, M Fishman, RL Ferris, VE Kagan, DI Gabrilovich. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 2010; 16(8): 880–886
https://doi.org/10.1038/nm.2172
|
| 79 |
F Veglia, VA Tyurin, D Mohammadyani, M Blasi, EK Duperret, L Donthireddy, A Hashimoto, A Kapralov, A Amoscato, R Angelini, S Patel, K Alicea-Torres, D Weiner, ME Murphy, J Klein-Seetharaman, E Celis, VE Kagan, DI Gabrilovich. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun 2017; 8(1): 2122
https://doi.org/10.1038/s41467-017-02186-9
|
| 80 |
F Osorio, SJ Tavernier, E Hoffmann, Y Saeys, L Martens, J Vetters, I Delrue, R De Rycke, E Parthoens, P Pouliot, T Iwawaki, S Janssens, BN Lambrecht. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat Immunol 2014; 15(3): 248–257
https://doi.org/10.1038/ni.2808
|
| 81 |
LA O’Neill, EJ Pearce. Immunometabolism governs dendritic cell and macrophage function. J Exp Med 2016; 213(1): 15–23
https://doi.org/10.1084/jem.20151570
|
| 82 |
S Zelenay, der Veen AG van, JP Böttcher, KJ Snelgrove, N Rogers, SE Acton, P Chakravarty, MR Girotti, R Marais, SA Quezada, E Sahai, e Sousa C Reis. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 2015; 162(6): 1257–1270
https://doi.org/10.1016/j.cell.2015.08.015
|
| 83 |
JP Böttcher, E Bonavita, P Chakravarty, H Blees, M Cabeza-Cabrerizo, S Sammicheli, NC Rogers, E Sahai, S Zelenay, e Sousa C Reis. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018; 172(5): 1022–1037.e14
https://doi.org/10.1016/j.cell.2018.01.004
|
| 84 |
G Mondanelli, R Bianchi, MT Pallotta, C Orabona, E Albini, A Iacono, ML Belladonna, C Vacca, F Fallarino, A Macchiarulo, S Ugel, V Bronte, F Gevi, L Zolla, A Verhaar, M Peppelenbosch, EMC Mazza, S Bicciato, Y Laouar, L Santambrogio, P Puccetti, C Volpi, U Grohmann. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity 2017; 46(2): 233–244
https://doi.org/10.1016/j.immuni.2017.01.005
|
| 85 |
OR Colegio, NQ Chu, AL Szabo, T Chu, AM Rhebergen, V Jairam, N Cyrus, CE Brokowski, SC Eisenbarth, GM Phillips, GW Cline, AJ Phillips, R Medzhitov. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559–563
https://doi.org/10.1038/nature13490
|
| 86 |
RA Franklin, W Liao, A Sarkar, MV Kim, MR Bivona, K Liu, EG Pamer, MO Li. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344(6186): 921–925
https://doi.org/10.1126/science.1252510
|
| 87 |
L Boscá, S González-Ramos, P Prieto, M Fernández-Velasco, M Mojena, P Martín-Sanz, S Alemany. Metabolic signatures linked to macrophage polarization: from glucose metabolism to oxidative phosphorylation. Biochem Soc Trans 2015; 43(4): 740–744
https://doi.org/10.1042/BST20150107
|
| 88 |
SC Huang, B Everts, Y Ivanova, D O’Sullivan, M Nascimento, AM Smith, W Beatty, L Love-Gregory, WY Lam, CM O’Neill, C Yan, H Du, NA Abumrad, JF Jr Urban, MN Artyomov, EL Pearce, EJ Pearce. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014; 15(9): 846–855
https://doi.org/10.1038/ni.2956
|
| 89 |
A Batista-Gonzalez, R Vidal, A Criollo, LJ Carreño. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol 2020; 10: 2993
https://doi.org/10.3389/fimmu.2019.02993
|
| 90 |
MN Hasan, O Capuk, SM Patel, D Sun. The role of metabolic plasticity of tumor-associated macrophages in shaping the tumor microenvironment immunity. Cancers (Basel) 2022; 14(14): 3331
https://doi.org/10.3390/cancers14143331
|
| 91 |
PC Rodriguez, DG Quiceno, J Zabaleta, B Ortiz, AH Zea, MB Piazuelo, A Delgado, P Correa, J Brayer, EM Sotomayor, S Antonia, JB Ochoa, AC Ochoa. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004; 64(16): 5839–5849
https://doi.org/10.1158/0008-5472.CAN-04-0465
|
| 92 |
PS Minhas, L Liu, PK Moon, AU Joshi, C Dove, S Mhatre, K Contrepois, Q Wang, BA Lee, M Coronado, D Bernstein, MP Snyder, M Migaud, R Majeti, D Mochly-Rosen, JD Rabinowitz, KI Andreasson. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat Immunol 2019; 20(1): 50–63
https://doi.org/10.1038/s41590-018-0255-3
|
| 93 |
PS Liu, H Wang, X Li, T Chao, T Teav, S Christen, G Di Conza, WC Cheng, CH Chou, M Vavakova, C Muret, K Debackere, M Mazzone, HD Huang, SM Fendt, J Ivanisevic, PC Ho. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017; 18(9): 985–994
https://doi.org/10.1038/ni.3796
|
| 94 |
SL Jian, WW Chen, YC Su, YW Su, TH Chuang, SC Hsu, LR Huang. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis 2017; 8(5): e2779
https://doi.org/10.1038/cddis.2017.192
|
| 95 |
BI Reinfeld, MZ Madden, MM Wolf, A Chytil, JE Bader, AR Patterson, A Sugiura, AS Cohen, A Ali, BT Do, A Muir, CA Lewis, RA Hongo, KL Young, RE Brown, VM Todd, T Huffstater, A Abraham, RT O’Neil, MH Wilson, F Xin, MN Tantawy, WD Merryman, RW Johnson, CS Williams, EF Mason, FM Mason, KE Beckermann, Heiden MG Vander, HC Manning, JC Rathmell, WK Rathmell. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 2021; 593(7858): 282–288
https://doi.org/10.1038/s41586-021-03442-1
|
| 96 |
Q Li, M Xiang. Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy. Acta Pharmacol Sin 2022; 43(6): 1337–1348
https://doi.org/10.1038/s41401-021-00776-4
|
| 97 |
G Goffaux, I Hammami, M Jolicoeur. A dynamic metabolic flux analysis of myeloid-derived suppressor cells confirms immunosuppression-related metabolic plasticity. Sci Rep 2017; 7(1): 9850
https://doi.org/10.1038/s41598-017-10464-1
|
| 98 |
F Hossain, AA Al-Khami, D Wyczechowska, C Hernandez, L Zheng, K Reiss, LD Valle, J Trillo-Tinoco, T Maj, W Zou, PC Rodriguez, AC Ochoa. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 2015; 3(11): 1236–1247
https://doi.org/10.1158/2326-6066.CIR-15-0036
|
| 99 |
W Cao, D Gabrilovich. Contribution of fatty acid accumulation to myeloid-derived suppressor cell function in cancer. Cancer Res 2011; 71(8_Supplement): 3649
https://doi.org/10.1158/1538-7445.AM2011-3649
|
| 100 |
T Condamine, GA Dominguez, JI Youn, AV Kossenkov, S Mony, K Alicea-Torres, E Tcyganov, A Hashimoto, Y Nefedova, C Lin, S Partlova, A Garfall, DT Vogl, X Xu, SC Knight, G Malietzis, GH Lee, E Eruslanov, SM Albelda, X Wang, JL Mehta, M Bewtra, A Rustgi, N Hockstein, R Witt, G Masters, B Nam, D Smirnov, MA Sepulveda, DI Gabrilovich. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016; 1(2): aaf8943
https://doi.org/10.1126/sciimmunol.aaf8943
|
| 101 |
WJ Won, JS Deshane, JW Leavenworth, CR Oliva, CE Griguer. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress 2019; 3(2): 47–65
https://doi.org/10.15698/cst2019.02.176
|
| 102 |
MK Srivastava, P Sinha, VK Clements, P Rodriguez, S Ostrand-Rosenberg. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70(1): 68–77
https://doi.org/10.1158/0008-5472.CAN-09-2587
|
| 103 |
M Platten, EAA Nollen, UF Röhrig, F Fallarino, CA Opitz. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019; 18(5): 379–401
https://doi.org/10.1038/s41573-019-0016-5
|
| 104 |
MH Oh, IH Sun, L Zhao, RD Leone, IM Sun, W Xu, SL Collins, AJ Tam, RL Blosser, CH Patel, JM Englert, ML Arwood, J Wen, Y Chan-Li, L Tenora, P Majer, R Rais, BS Slusher, MR Horton, JD Powell. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest 2020; 130(7): 3865–3884
https://doi.org/10.1172/JCI131859
|
| 105 |
L Long, M Chen, Y Yuan, AL Ming, W Guo, K Wu, H Chen. High expression of PKM2 synergizes with PD-L1 in tumor cells and immune cells to predict worse survival in human lung adenocarcinoma. J Cancer 2020; 11(15): 4442–4452
https://doi.org/10.7150/jca.42610
|
| 106 |
EM Palsson-McDermott, L Dyck, Z Zasłona, D Menon, AF McGettrick, KHG Mills, LA O’Neill. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 2017; 8: 1300
https://doi.org/10.3389/fimmu.2017.01300
|
| 107 |
PJ Siska, GJ van der Windt, RJ Kishton, S Cohen, W Eisner, NJ MacIver, AP Kater, JB Weinberg, JC Rathmell. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. J Immunol 2016; 197(6): 2532–2540
https://doi.org/10.4049/jimmunol.1502464
|
| 108 |
S Bose, A Le. Glucose metabolism in cancer. Adv Exp Med Biol 2018; 1063: 3–12
https://doi.org/10.1007/978-3-319-77736-8_1
|
| 109 |
A Taylor, JA Harker, K Chanthong, PG Stevenson, EI Zuniga, CE Rudd. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8+ cytolytic T cell responses. Immunity 2016; 44(2): 274–286
https://doi.org/10.1016/j.immuni.2016.01.018
|
| 110 |
A Taylor, CE Rudd. Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8+ cytotoxic T-cells: implications for anti-PD-1 immunotherapy. Front Immunol 2017; 8: 1653
https://doi.org/10.3389/fimmu.2017.01653
|
| 111 |
J Krueger, CE Rudd, A Taylor. Glycogen synthase 3 (GSK-3) regulation of PD-1 expression and and its therapeutic implications. Semin Immunol 2019; 42: 101295
https://doi.org/10.1016/j.smim.2019.101295
|
| 112 |
Z Yin, L Bai, W Li, T Zeng, H Tian, J Cui. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J Exp Clin Cancer Res 2019; 38(1): 403
https://doi.org/10.1186/s13046-019-1409-3
|
| 113 |
D Howie, SP Cobbold, E Adams, A Ten Bokum, AS Necula, W Zhang, H Huang, DJ Roberts, B Thomas, SS Hester, DJ Vaux, AG Betz, H Waldmann. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight 2017; 2(3): e89160
https://doi.org/10.1172/jci.insight.89160
|
| 114 |
A Tanaka, S Sakaguchi. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109–118
https://doi.org/10.1038/cr.2016.151
|
| 115 |
A Tanaka, S Sakaguchi. Targeting Treg cells in cancer immunotherapy. Eur J Immunol 2019; 49(8): 1140–1146
https://doi.org/10.1002/eji.201847659
|
| 116 |
S Daneshmandi, T Cassel, RM Higashi, TW Fan, P Seth. 6-Phosphogluconate dehydrogenase (6PGD), a key checkpoint in reprogramming of regulatory T cells metabolism and function. eLife 2021; 10: e67476
https://doi.org/10.7554/eLife.67476
|
| 117 |
MP Keppel, N Saucier, AY Mah, TP Vogel, MA Cooper. Activation-specific metabolic requirements for NK Cell IFN-γ production. J Immunol 2015; 194(4): 1954–1962
https://doi.org/10.4049/jimmunol.1402099
|
| 118 |
SE Keating, V Zaiatz-Bittencourt, RM Loftus, C Keane, K Brennan, DK Finlay, CM Gardiner. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J Immunol 2016; 196(6): 2552–2560
https://doi.org/10.4049/jimmunol.1501783
|
| 119 |
KL O’Brien, N Assmann, E O’Connor, C Keane, J Walls, C Choi, PJ Oefner, CM Gardiner, K Dettmer, DK Finlay. De novo polyamine synthesis supports metabolic and functional responses in activated murine NK cells. Eur J Immunol 2021; 51(1): 91–102
https://doi.org/10.1002/eji.202048784
|
| 120 |
C Choi, DK Finlay. Diverse immunoregulatory roles of oxysterols—the oxidized cholesterol metabolites. Metabolites 2020; 10(10): 384
https://doi.org/10.3390/metabo10100384
|
| 121 |
B Huang, BL Song, C Xu. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab 2020; 2(2): 132–141
https://doi.org/10.1038/s42255-020-0174-0
|
| 122 |
KL O’Brien, DK Finlay. Immunometabolism and natural killer cell responses. Nat Rev Immunol 2019; 19(5): 282–290
https://doi.org/10.1038/s41577-019-0139-2
|
| 123 |
D Li, W Long, R Huang, Y Chen, M Xia. 27-hydroxycholesterol inhibits sterol regulatory element-binding protein 1 activation and hepatic lipid accumulation in mice. Obesity (Silver Spring) 2018; 26(4): 713–722
https://doi.org/10.1002/oby.22130
|
| 124 |
ER Nelson, SE Wardell, JS Jasper, S Park, S Suchindran, MK Howe, NJ Carver, RV Pillai, PM Sullivan, V Sondhi, M Umetani, J Geradts, DP McDonnell. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013; 342(6162): 1094–1098
https://doi.org/10.1126/science.1241908
|
| 125 |
F Guo, W Hong, M Yang, D Xu, Q Bai, X Li, Z Chen. Upregulation of 24(R/S),25-epoxycholesterol and 27-hydroxycholesterol suppresses the proliferation and migration of gastric cancer cells. Biochem Biophys Res Commun 2018; 504(4): 892–898
https://doi.org/10.1016/j.bbrc.2018.09.058
|
| 126 |
D Rossin, IHK Dias, M Solej, I Milic, AR Pitt, N Iaia, L Scoppapietra, A Devitt, M Nano, M Degiuli, M Volante, C Caccia, V Leoni, HR Griffiths, CM Spickett, G Poli, F Biasi. Increased production of 27-hydroxycholesterol in human colorectal cancer advanced stage: Possible contribution to cancer cell survival and infiltration. Free Radic Biol Med 2019; 136: 35–44
https://doi.org/10.1016/j.freeradbiomed.2019.03.020
|
| 127 |
B Li, B Qiu, DS Lee, ZE Walton, JD Ochocki, LK Mathew, A Mancuso, TP Gade, B Keith, I Nissim, MC Simon. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255
https://doi.org/10.1038/nature13557
|
| 128 |
P Huangyang, MC Simon. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 2018; 11(8): dmm033365
https://doi.org/10.1242/dmm.033365
|
| 129 |
AM Chambers, KB Lupo, S Matosevic. Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells. Front Immunol 2018; 9: 2517
https://doi.org/10.3389/fimmu.2018.02517
|
| 130 |
J Stagg, U Divisekera, N McLaughlin, J Sharkey, S Pommey, D Denoyer, KM Dwyer, MJ Smyth. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 2010; 107(4): 1547–1552
https://doi.org/10.1073/pnas.0908801107
|
| 131 |
D Jin, J Fan, L Wang, LF Thompson, A Liu, BJ Daniel, T Shin, TJ Curiel, B Zhang. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 2010; 70(6): 2245–2255
https://doi.org/10.1158/0008-5472.CAN-09-3109
|
| 132 |
CM Hay, E Sult, Q Huang, K Mulgrew, SR Fuhrmann, KA McGlinchey, SA Hammond, R Rothstein, J Rios-Doria, E Poon, N Holoweckyj, NM Durham, CC Leow, G Diedrich, M Damschroder, R Herbst, RE Hollingsworth, KF Sachsenmeier. Targeting CD73 in the tumor microenvironment with MEDI9447. OncoImmunology 2016; 5(8): e1208875
https://doi.org/10.1080/2162402X.2016.1208875
|
| 133 |
Y Li, YY Wan, B Zhu. Immune cell metabolism in tumor microenvironment. Adv Exp Med Biol 2017; 1011: 163–196
https://doi.org/10.1007/978-94-024-1170-6_5
|
| 134 |
NC Williams, LAJ O’Neill. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol 2018; 9: 141
https://doi.org/10.3389/fimmu.2018.00141
|
| 135 |
A Viola, F Munari, R Sánchez-Rodríguez, T Scolaro, A Castegna. The metabolic signature of macrophage responses. Front Immunol 2019; 10: 1462
https://doi.org/10.3389/fimmu.2019.01462
|
| 136 |
I Vitale, G Manic, LM Coussens, G Kroemer, L Galluzzi. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36–50
https://doi.org/10.1016/j.cmet.2019.06.001
|
| 137 |
CM Rice, LC Davies, JJ Subleski, N Maio, M Gonzalez-Cotto, C Andrews, NL Patel, EM Palmieri, JM Weiss, JM Lee, CM Annunziata, TA Rouault, SK Durum, DW McVicar. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun 2018; 9(1): 5099
https://doi.org/10.1038/s41467-018-07505-2
|
| 138 |
CA Corzo, MJ Cotter, P Cheng, F Cheng, S Kusmartsev, E Sotomayor, T Padhya, TV McCaffrey, JC McCaffrey, DI Gabrilovich. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182(9): 5693–5701
https://doi.org/10.4049/jimmunol.0900092
|
| 139 |
K Ohl, A Fragoulis, P Klemm, J Baumeister, W Klock, E Verjans, S Böll, J Möllmann, M Lehrke, I Costa, B Denecke, A Schippers, J Roth, N Wagner, C Wruck, K Tenbrock. Nrf2 is a central regulator of metabolic reprogramming of myeloid-derived suppressor cells in steady state and sepsis. Front Immunol 2018; 9: 1552
https://doi.org/10.3389/fimmu.2018.01552
|
| 140 |
DW Beury, KA Carter, C Nelson, P Sinha, E Hanson, M Nyandjo, PJ Fitzgerald, A Majeed, N Wali, S Ostrand-Rosenberg. Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol 2016; 196(8): 3470–3478
https://doi.org/10.4049/jimmunol.1501785
|
| 141 |
T Wu, Y Zhao, H Wang, Y Li, L Shao, R Wang, J Lu, Z Yang, J Wang, Y Zhao. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep 2016; 6(1): 20250
https://doi.org/10.1038/srep20250
|
| 142 |
C Fu, Z Fu, C Jiang, C Xia, Y Zhang, X Gu, K Zheng, D Zhou, S Tang, S Lyu, S Ma. CD205+ polymorphonuclear myeloid-derived suppressor cells suppress antitumor immunity by overexpressing GLUT3. Cancer Sci 2021; 112(3): 1011–1025
https://doi.org/10.1111/cas.14783
|
| 143 |
Y Deng, J Yang, F Luo, J Qian, R Liu, D Zhang, H Yu, Y Chu. mTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer Immunol Immunother 2018; 67(9): 1355–1364
https://doi.org/10.1007/s00262-018-2177-1
|
| 144 |
Y Tuo, Z Zhang, C Tian, Q Hu, R Xie, J Yang, H Zhou, L Lu, M Xiang. Anti-inflammatory and metabolic reprogramming effects of MENK produce antitumor response in CT26 tumor-bearing mice. J Leukoc Biol 2020; 108(1): 215–228
https://doi.org/10.1002/JLB.3MA0120-578R
|
| 145 |
DB Shackelford, RJ Shaw. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9(8): 563–575
https://doi.org/10.1038/nrc2676
|
| 146 |
T Uehara, S Eikawa, M Nishida, Y Kunisada, A Yoshida, T Fujiwara, T Kunisada, T Ozaki, H Udono. Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 2019; 31(4): 187–198
https://doi.org/10.1093/intimm/dxy079
|
| 147 |
SH Kim, M Li, S Trousil, Y Zhang, M Pasca di Magliano, KD Swanson, B Zheng. Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J Invest Dermatol 2017; 137(8): 1740–1748
https://doi.org/10.1016/j.jid.2017.03.033
|
| 148 |
Y Guri, TM Nordmann, J Roszik. mTOR at the transmitting and receiving ends in tumor immunity. Front Immunol 2018; 9: 578
https://doi.org/10.3389/fimmu.2018.00578
|
| 149 |
R Lin, H Zhang, Y Yuan, Q He, J Zhou, S Li, Y Sun, DY Li, HB Qiu, W Wang, Z Zhuang, B Chen, Y Huang, C Liu, Y Wang, S Cai, Z Ke, W He. Fatty acid oxidation controls CD8+ tissue-resident memory t-cell survival in gastric adenocarcinoma. Cancer Immunol Res 2020; 8(4): 479–492
https://doi.org/10.1158/2326-6066.CIR-19-0702
|
| 150 |
Y Xu, L He, Q Fu, J Hu. Metabolic reprogramming in the tumor microenvironment with immunocytes and immune checkpoints. Front Oncol 2021; 11: 759015
https://doi.org/10.3389/fonc.2021.759015
|
| 151 |
I Okoye, A Namdar, L Xu, N Crux, S Elahi. Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling. Oncotarget 2017; 8(58): 98215–98232
https://doi.org/10.18632/oncotarget.21003
|
| 152 |
W Yang, Y Bai, Y Xiong, J Zhang, S Chen, X Zheng, X Meng, L Li, J Wang, C Xu, C Yan, L Wang, CC Chang, TY Chang, T Zhang, P Zhou, BL Song, W Liu, SC Sun, X Liu, BL Li, C Xu. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016; 531(7596): 651–655
https://doi.org/10.1038/nature17412
|
| 153 |
T Kobayashi, PY Lam, H Jiang, K Bednarska, R Gloury, V Murigneux, J Tay, N Jacquelot, R Li, ZK Tuong, GR Leggatt, MK Gandhi, MM Hill, GT Belz, S Ngo, A Kallies, SR Mattarollo. Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood 2020; 136(26): 3004–3017
https://doi.org/10.1182/blood.2020005602
|
| 154 |
LM Tobin, M Mavinkurve, E Carolan, D Kinlen, EC O’Brien, MA Little, DK Finlay, D Cody, AE Hogan, D O’Shea. NK cells in childhood obesity are activated, metabolically stressed, and functionally deficient. JCI Insight 2017; 2(24): e94939
https://doi.org/10.1172/jci.insight.94939
|
| 155 |
SR Niavarani, C Lawson, O Bakos, M Boudaud, C Batenchuk, S Rouleau, LH Tai. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer 2019; 19(1): 823
https://doi.org/10.1186/s12885-019-6045-y
|
| 156 |
C Cheng, F Geng, X Cheng, D Guo. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38(1): 27
https://doi.org/10.1186/s40880-018-0301-4
|
| 157 |
D O’Sullivan, DE Sanin, EJ Pearce, EL Pearce. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19(5): 324–335
https://doi.org/10.1038/s41577-019-0140-9
|
| 158 |
A Ladanyi, A Mukherjee, HA Kenny, A Johnson, AK Mitra, S Sundaresan, KM Nieman, G Pascual, SA Benitah, A Montag, SD Yamada, NA Abumrad, E Lengyel. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 2018; 37(17): 2285–2301
https://doi.org/10.1038/s41388-017-0093-z
|
| 159 |
U Rozovski, DM Harris, P Li, Z Liu, P Jain, A Ferrajoli, J Burger, P Thompson, N Jain, W Wierda, MJ Keating, Z Estrov. STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells. Oncotarget 2018; 9(30): 21268–21280
https://doi.org/10.18632/oncotarget.25066
|
| 160 |
G Pascual, A Avgustinova, S Mejetta, M Martín, A Castellanos, CS Attolini, A Berenguer, N Prats, A Toll, JA Hueto, C Bescós, Croce L Di, SA Benitah. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017; 541(7635): 41–45
https://doi.org/10.1038/nature20791
|
| 161 |
F Gao, C Liu, J Guo, W Sun, L Xian, D Bai, H Liu, Y Cheng, B Li, J Cui, C Zhang, J Cai. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep 2015; 5(1): 9613
https://doi.org/10.1038/srep09613
|
| 162 |
CR Reczek, NS Chandel. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 2017; 1(1): 79–98
https://doi.org/10.1146/annurev-cancerbio-041916-065808
|
| 163 |
NN Iwakoshi, M Pypaert, LH Glimcher. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 2007; 204(10): 2267–2275
https://doi.org/10.1084/jem.20070525
|
| 164 |
JR Cubillos-Ruiz, PC Silberman, MR Rutkowski, S Chopra, A Perales-Puchalt, M Song, S Zhang, SE Bettigole, D Gupta, K Holcomb, LH Ellenson, T Caputo, AH Lee, JR Conejo-Garcia, LH Glimcher. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 2015; 161(7): 1527–1538
https://doi.org/10.1016/j.cell.2015.05.025
|
| 165 |
F Zhao, C Xiao, KS Evans, T Theivanthiran, N DeVito, A Holtzhausen, J Liu, X Liu, D Boczkowski, S Nair, JW Locasale, BA Hanks. Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity 2018; 48(1): 147–160.e7
https://doi.org/10.1016/j.immuni.2017.12.004
|
| 166 |
X Yin, W Zeng, B Wu, L Wang, Z Wang, H Tian, L Wang, Y Jiang, R Clay, X Wei, Y Qin, F Zhang, C Zhang, L Jin, W Liang. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep 2020; 33(3): 108278
https://doi.org/10.1016/j.celrep.2020.108278
|
| 167 |
VK Pandey, PJ Amin, BS Shankar. COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunol Lett 2017; 184: 23–33
https://doi.org/10.1016/j.imlet.2017.01.019
|
| 168 |
P Su, Q Wang, E Bi, X Ma, L Liu, M Yang, J Qian, Q Yi. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res 2020; 80(7): 1438–1450
https://doi.org/10.1158/0008-5472.CAN-19-2994
|
| 169 |
J Park, SE Lee, J Hur, EB Hong, JI Choi, JM Yang, JY Kim, YC Kim, HJ Cho, JM Peters, SB Ryoo, YT Kim, HS Kim. M-CSF from cancer cells induces fatty acid synthase and PPARβ/δ activation in tumor myeloid cells, leading to tumor progression. Cell Rep 2015; 10(9): 1614–1625
https://doi.org/10.1016/j.celrep.2015.02.024
|
| 170 |
D Namgaladze, B Brüne. Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization. Biochim Biophys Acta 2014; 1841(9): 1329–1335
https://doi.org/10.1016/j.bbalip.2014.06.007
|
| 171 |
JS Moon, K Nakahira, KP Chung, GM DeNicola, MJ Koo, MA Pabón, KT Rooney, JH Yoon, SW Ryter, H Stout-Delgado, AM Choi. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med 2016; 22(9): 1002–1012
https://doi.org/10.1038/nm.4153
|
| 172 |
J Van den Bossche, GJW van der Windt. Fatty acid oxidation in macrophages and t cells: time for reassessment?. Cell Metab 2018; 28(4): 538–540
https://doi.org/10.1016/j.cmet.2018.09.018
|
| 173 |
AG York, KJ Williams, JP Argus, QD Zhou, G Brar, L Vergnes, EE Gray, A Zhen, NC Wu, DH Yamada, CR Cunningham, EJ Tarling, MQ Wilks, D Casero, DH Gray, AK Yu, ES Wang, DG Brooks, R Sun, SG Kitchen, TT Wu, K Reue, DB Stetson, SJ Bensinger. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 2015; 163(7): 1716–1729
https://doi.org/10.1016/j.cell.2015.11.045
|
| 174 |
D Sag, C Cekic, R Wu, J Linden, CC Hedrick. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun 2015; 6(1): 6354
https://doi.org/10.1038/ncomms7354
|
| 175 |
F Veglia, VA Tyurin, M Blasi, A De Leo, AV Kossenkov, L Donthireddy, TKJ To, Z Schug, S Basu, F Wang, E Ricciotti, C DiRusso, ME Murphy, RH Vonderheide, PM Lieberman, C Mulligan, B Nam, N Hockstein, G Masters, M Guarino, C Lin, Y Nefedova, P Black, VE Kagan, DI Gabrilovich. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 2019; 569(7754): 73–78
https://doi.org/10.1038/s41586-019-1118-2
|
| 176 |
H Kuroda, S Mabuchi, E Yokoi, N Komura, K Kozasa, Y Matsumoto, M Kawano, R Takahashi, T Sasano, K Shimura, M Kodama, K Hashimoto, K Sawada, E Morii, T Kimura. Prostaglandin E2 produced by myeloid-derived suppressive cells induces cancer stem cells in uterine cervical cancer. Oncotarget 2018; 9(91): 36317–36330
https://doi.org/10.18632/oncotarget.26347
|
| 177 |
AA Al-Khami, L Zheng, L Del Valle, F Hossain, D Wyczechowska, J Zabaleta, MD Sanchez, MJ Dean, PC Rodriguez, AC Ochoa. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. OncoImmunology 2017; 6(10): e1344804
https://doi.org/10.1080/2162402X.2017.1344804
|
| 178 |
F VegliaV TyurinV KaganD Gabrilovich. Oxidized lipids contribute to the suppression function of myeloid derived suppressor cells in cancer. Cancer Res 2015; 75(15 Supplement): 467 doi:10.1158/1538–7445.AM1538–7445
|
| 179 |
AO Adeshakin, W Liu, FO Adeshakin, LO Afolabi, M Zhang, G Zhang, L Wang, Z Li, L Lin, Q Cao, D Yan, X Wan. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol 2021; 362: 104286
https://doi.org/10.1016/j.cellimm.2021.104286
|
| 180 |
A Ugolini, VA Tyurin, YY Tyurina, EN Tcyganov, L Donthireddy, VE Kagan, DI Gabrilovich, F Veglia. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insight 2020; 5(15): e138581
https://doi.org/10.1172/jci.insight.138581
|
| 181 |
KC Hicks, YY Tyurina, VE Kagan, DI Gabrilovich. Myeloid cell-derived oxidized lipids and regulation of the tumor microenvironment. Cancer Res 2022; 82(2): 187–194
https://doi.org/10.1158/0008-5472.CAN-21-3054
|
| 182 |
MF Tavazoie, I Pollack, R Tanqueco, BN Ostendorf, BS Reis, FC Gonsalves, I Kurth, C Andreu-Agullo, ML Derbyshire, J Posada, S Takeda, KN Tafreshian, E Rowinsky, M Szarek, RJ Waltzman, EA Mcmillan, C Zhao, M Mita, A Mita, B Chmielowski, MA Postow, A Ribas, D Mucida, SF Tavazoie. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 2018; 172(4): 825–840.e18
https://doi.org/10.1016/j.cell.2017.12.026
|
| 183 |
authors listed No. LXR agonism depletes MDSCs to promote antitumor immunity. Cancer Discov 2018; 8(3): 263
https://doi.org/10.1158/2159-8290.CD-RW2018-010
|
| 184 |
NT Crump, AV Hadjinicolaou, M Xia, J Walsby-Tickle, U Gileadi, JL Chen, M Setshedi, LR Olsen, IJ Lau, L Godfrey, L Quek, Z Yu, E Ballabio, MB Barnkob, G Napolitani, M Salio, H Koohy, BM Kessler, S Taylor, P Vyas, JSO McCullagh, TA Milne, V Cerundolo. Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation. Cell Rep 2021; 35(6): 109101
https://doi.org/10.1016/j.celrep.2021.109101
|
| 185 |
SM Steggerda, MK Bennett, J Chen, E Emberley, T Huang, JR Janes, W Li, AL MacKinnon, A Makkouk, G Marguier, PJ Murray, S Neou, A Pan, F Parlati, MLM Rodriguez, LA Van de Velde, T Wang, M Works, J Zhang, W Zhang, MI Gross. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer 2017; 5(1): 101
https://doi.org/10.1186/s40425-017-0308-4
|
| 186 |
i Líndez AA Martí, I Dunand-Sauthier, M Conti, F Gobet, N Núñez, JT Hannich, H Riezman, R Geiger, A Piersigilli, K Hahn, S Lemeille, B Becher, Smedt T De, S Hugues, W Reith. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 2019; 4(24): e132975
https://doi.org/10.1172/jci.insight.132975
|
| 187 |
X He, H Lin, L Yuan, B Li. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther 2017; 18(2): 94–100
https://doi.org/10.1080/15384047.2016.1276136
|
| 188 |
L Fultang, S Booth, O Yogev, B Martins da Costa, V Tubb, S Panetti, V Stavrou, U Scarpa, A Jankevics, G Lloyd, A Southam, SP Lee, WB Dunn, L Chesler, F Mussai, C De Santo. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 2020; 136(10): 1155–1160
https://doi.org/10.1182/blood.2019004500
|
| 189 |
CM Ensor, FW Holtsberg, JS Bomalaski, MA Clark. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 2002; 62(19): 5443–5450
|
| 190 |
X Hou, S Chen, P Zhang, D Guo, B Wang. Targeted arginine metabolism therapy: a dilemma in glioma treatment. Front Oncol 2022; 12: 938847
https://doi.org/10.3389/fonc.2022.938847
|
| 191 |
F Miraki-Moud, E Ghazaly, L Ariza-McNaughton, KA Hodby, A Clear, F Anjos-Afonso, K Liapis, M Grantham, F Sohrabi, J Cavenagh, JS Bomalaski, JG Gribben, PW Szlosarek, D Bonnet, DC Taussig. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015; 125(26): 4060–4068
https://doi.org/10.1182/blood-2014-10-608133
|
| 192 |
E Brin, K Wu, HT Lu, Y He, Z Dai, W He. PEGylated arginine deiminase can modulate tumor immune microenvironment by affecting immune checkpoint expression, decreasing regulatory T cell accumulation and inducing tumor T cell infiltration. Oncotarget 2017; 8(35): 58948–58963
https://doi.org/10.18632/oncotarget.19564
|
| 193 |
PW Szlosarek, JP Steele, L Nolan, D Gilligan, P Taylor, J Spicer, M Lind, S Mitra, J Shamash, MM Phillips, P Luong, S Payne, P Hillman, S Ellis, T Szyszko, G Dancey, L Butcher, S Beck, NE Avril, J Thomson, A Johnston, M Tomsa, C Lawrence, P Schmid, T Crook, BW Wu, JS Bomalaski, N Lemoine, MT Sheaff, RM Rudd, D Fennell, A Hackshaw. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol 2017; 3(1): 58–66
https://doi.org/10.1001/jamaoncol.2016.3049
|
| 194 |
GK Abou-Alfa, S Qin, BY Ryoo, SN Lu, CJ Yen, YH Feng, HY Lim, F Izzo, M Colombo, D Sarker, L Bolondi, G Vaccaro, WP Harris, Z Chen, RA Hubner, T Meyer, W Sun, JJ Harding, EM Hollywood, J Ma, PJ Wan, M Ly, J Bomalaski, A Johnston, CC Lin, Y Chao, LT Chen. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 2018; 29(6): 1402–1408
https://doi.org/10.1093/annonc/mdy101
|
| 195 |
H Liu, Z Shen, Z Wang, X Wang, H Zhang, J Qin, X Qin, J Xu, Y Sun. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci Rep 2016; 6(1): 21319
https://doi.org/10.1038/srep21319
|
| 196 |
JC Mbongue, DA Nicholas, TW Torrez, NS Kim, AF Firek, WH Langridge. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines (Basel) 2015; 3(3): 703–729
https://doi.org/10.3390/vaccines3030703
|
| 197 |
LV Sinclair, D Neyens, G Ramsay, PM Taylor, DA Cantrell. Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat Commun 2018; 9(1): 1981
https://doi.org/10.1038/s41467-018-04366-7
|
| 198 |
Y Liu, X Liang, W Dong, Y Fang, J Lv, T Zhang, R Fiskesund, J Xie, J Liu, X Yin, X Jin, D Chen, K Tang, J Ma, H Zhang, J Yu, J Yan, H Liang, S Mo, F Cheng, Y Zhou, H Zhang, J Wang, J Li, Y Chen, B Cui, ZW Hu, X Cao, F Xiao-Feng Qin, B Huang. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 2018; 33(3): 480–494.e7
https://doi.org/10.1016/j.ccell.2018.02.005
|
| 199 |
JD Mezrich, JH Fechner, X Zhang, BP Johnson, WJ Burlingham, CA Bradfield. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010; 185(6): 3190–3198
https://doi.org/10.4049/jimmunol.0903670
|
| 200 |
NT Nguyen, A Kimura, T Nakahama, I Chinen, K Masuda, K Nohara, Y Fujii-Kuriyama, T Kishimoto. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 2010; 107(46): 19961–19966
https://doi.org/10.1073/pnas.1014465107
|
| 201 |
MC Takenaka, G Gabriely, V Rothhammer, ID Mascanfroni, MA Wheeler, CC Chao, C Gutiérrez-Vázquez, J Kenison, EC Tjon, A Barroso, T Vandeventer, Lima KA de, S Rothweiler, L Mayo, S Ghannam, S Zandee, L Healy, D Sherr, MF Farez, A Prat, J Antel, DA Reardon, H Zhang, SC Robson, G Getz, HL Weiner, FJ Quintana. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci 2019; 22(5): 729–740
https://doi.org/10.1038/s41593-019-0370-y
|
| 202 |
JE Cheong, L Sun. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy—challenges and opportunities. Trends Pharmacol Sci 2018; 39(3): 307–325
https://doi.org/10.1016/j.tips.2017.11.007
|
| 203 |
M Cully. Metabolic disorders: IDO inhibitors could change tack to treat metabolic disorders. Nat Rev Drug Discov 2018; 17(8): 544
https://doi.org/10.1038/nrd.2018.124
|
| 204 |
AJ Muller, MG Manfredi, Y Zakharia, GC Prendergast. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol 2019; 41(1): 41–48
https://doi.org/10.1007/s00281-018-0702-0
|
| 205 |
J Joseph, M Gonzalezlopez, C Galang, C Garcia, H Lemar, L Jing. Abstract 4719: Small-molecule antagonists of the Aryl Hydrocarbon Receptor (AhR) promote activation of human PBMCs in vitro and demonstrate significant impact on tumor growth and immune modulation in vivo. Cancer Res 2018; 78(13 Supplement): 4719
https://doi.org/10.1158/1538-7445.AM2018-4719
|
| 206 |
TA Triplett, KC Garrison, N Marshall, M Donkor, J Blazeck, C Lamb, A Qerqez, JD Dekker, Y Tanno, WC Lu, CS Karamitros, K Ford, B Tan, XM Zhang, K McGovern, S Coma, Y Kumada, MS Yamany, E Sentandreu, G Fromm, S Tiziani, TH Schreiber, M Manfredi, LIR Ehrlich, E Stone, G Georgiou. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat Biotechnol 2018; 36(8): 758–764
https://doi.org/10.1038/nbt.4180
|
| 207 |
KA WestA FisherL DanA SokolovskaJM Lora. Abstract 2920: Metabolic modulation of the tumor microenvironment using synthetic biotic medicines. Cancer Res 2018; 78(13 Supplement): 2920 doi:10.1158/1538–7445.AM1538–7445
|
| 208 |
RD Leone, L Zhao, JM Englert, IM Sun, MH Oh, IH Sun, ML Arwood, IA Bettencourt, CH Patel, J Wen, A Tam, RL Blosser, E Prchalova, J Alt, R Rais, BS Slusher, JD Powell. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 2019; 366(6468): 1013–1021
https://doi.org/10.1126/science.aav2588
|
| 209 |
EL Carr, A Kelman, GS Wu, R Gopaul, E Senkevitch, A Aghvanyan, AM Turay, KA Frauwirth. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010; 185(2): 1037–1044
https://doi.org/10.4049/jimmunol.0903586
|
| 210 |
KM Lemberg, JJ Vornov, R Rais, BS Slusher. We’re Not “DON” Yet: optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther 2018; 17(9): 1824–1832
https://doi.org/10.1158/1535-7163.MCT-17-1148
|
| 211 |
J Jiang, NN Pavlova, J Zhang. Asparagine, a critical limiting metabolite during glutamine starvation. Mol Cell Oncol 2018; 5(3): e1441633
https://doi.org/10.1080/23723556.2018.1441633
|
| 212 |
NN Pavlova, S Hui, JM Ghergurovich, J Fan, AM Intlekofer, RM White, JD Rabinowitz, CB Thompson, J Zhang. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab 2018; 27(2): 428–438.e5
https://doi.org/10.1016/j.cmet.2017.12.006
|
| 213 |
M Chiu, G Taurino, MG Bianchi, MS Kilberg, O Bussolati. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front Oncol 2020; 9: 1480
https://doi.org/10.3389/fonc.2019.01480
|
| 214 |
A Jaccard, N Gachard, B Marin, S Rogez, M Audrain, F Suarez, H Tilly, F Morschhauser, C Thieblemont, L Ysebaert, A Devidas, B Petit, Leval L de, P Gaulard, J Feuillard, D Bordessoule, O; GELA Hermine, Intergroup GOELAMS. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 2011; 117(6): 1834–1839
https://doi.org/10.1182/blood-2010-09-307454
|
| 215 |
AS Krall, PJ Mullen, F Surjono, M Momcilovic, EW Schmid, CJ Halbrook, A Thambundit, SD Mittelman, CA Lyssiotis, DB Shackelford, SRV Knott, HR Christofk. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab 2021; 33(5): 1013–1026.e6
https://doi.org/10.1016/j.cmet.2021.02.001
|
| 216 |
J Wu, G Li, L Li, D Li, Z Dong, P Jiang. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat Cell Biol 2021; 23(1): 75–86
https://doi.org/10.1038/s41556-020-00615-4
|
| 217 |
KE Pauken, MA Sammons, PM Odorizzi, S Manne, J Godec, O Khan, AM Drake, Z Chen, DR Sen, M Kurachi, RA Barnitz, C Bartman, B Bengsch, AC Huang, JM Schenkel, G Vahedi, WN Haining, SL Berger, EJ Wherry. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016; 354(6316): 1160–1165
https://doi.org/10.1126/science.aaf2807
|
| 218 |
SM Sanderson, X Gao, Z Dai, JW Locasale. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019; 19(11): 625–637
https://doi.org/10.1038/s41568-019-0187-8
|
| 219 |
SJ Mentch, M Mehrmohamadi, L Huang, X Liu, D Gupta, D Mattocks, Padilla P Gómez, G Ables, MM Bamman, AE Thalacker-Mercer, SN Nichenametla, JW Locasale. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 2015; 22(5): 861–873
https://doi.org/10.1016/j.cmet.2015.08.024
|
| 220 |
A Mehdi, M Attias, N Mahmood, A Arakelian, C Mihalcioiu, CA Piccirillo, M Szyf, SA Rabbani. Enhanced anticancer effect of a combination of S-adenosylmethionine (SAM) and immune checkpoint inhibitor (ICPi) in a syngeneic mouse model of advanced melanoma. Front Oncol 2020; 10: 1361
https://doi.org/10.3389/fonc.2020.01361
|
| 221 |
K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F Cheng, W Jiang, J Wang, H Pei, PJ Chiao, Z Cai, Y Chen, M Liu, X Pang. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 2020; 130(4): 1752–1766
https://doi.org/10.1172/JCI124049
|
| 222 |
MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CEM Firl, AR Decker, SA Sastra, CF Palermo, LR Andrade, P Sajjakulnukit, L Zhang, ZP Tolstyka, T Hirschhorn, C Lamb, T Liu, W Gu, ES Seeley, E Stone, G Georgiou, U Manor, A Iuga, GM Wahl, BR Stockwell, CA Lyssiotis, KP Olive. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020; 368(6486): 85–89
https://doi.org/10.1126/science.aaw9872
|
| 223 |
L Jiang, N Kon, T Li, SJ Wang, T Su, H Hibshoosh, R Baer, W Gu. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520(7545): 57–62
https://doi.org/10.1038/nature14344
|
| 224 |
Z Wang, LY Yip, JHJ Lee, Z Wu, HY Chew, PKW Chong, CC Teo, HY Ang, KLE Peh, J Yuan, S Ma, LSK Choo, N Basri, X Jiang, Q Yu, AM Hillmer, WT Lim, TKH Lim, A Takano, EH Tan, DSW Tan, YS Ho, B Lim, WL Tam. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 2019; 25(5): 825–837
https://doi.org/10.1038/s41591-019-0423-5
|
| 225 |
SA Vardhana, MA Hwee, M Berisa, DK Wells, KE Yost, B King, M Smith, PS Herrera, HY Chang, AT Satpathy, MRM van den Brink, JR Cross, CB Thompson. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol 2020; 21(9): 1022–1033
https://doi.org/10.1038/s41590-020-0725-2
|
| 226 |
K Pilipow, E Scamardella, S Puccio, S Gautam, F De Paoli, EM Mazza, G De Simone, S Polletti, M Buccilli, V Zanon, P Di Lucia, M Iannacone, L Gattinoni, E Lugli. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 2018; 3(18): e122299
https://doi.org/10.1172/jci.insight.122299
|
| 227 |
N Ron-Harel, D Santos, JM Ghergurovich, PT Sage, A Reddy, SB Lovitch, N Dephoure, FK Satterstrom, M Sheffer, JB Spinelli, S Gygi, JD Rabinowitz, AH Sharpe, MC Haigis. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab 2016; 24(1): 104–117
https://doi.org/10.1016/j.cmet.2016.06.007
|
| 228 |
SL Cramer, A Saha, J Liu, S Tadi, S Tiziani, W Yan, K Triplett, C Lamb, SE Alters, S Rowlinson, YJ Zhang, MJ Keating, P Huang, J DiGiovanni, G Georgiou, E Stone. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 2017; 23(1): 120–127
https://doi.org/10.1038/nm.4232
|
| 229 |
W Wang, M Green, JE Choi, M Gijón, PD Kennedy, JK Johnson, P Liao, X Lang, I Kryczek, A Sell, H Xia, J Zhou, G Li, J Li, W Li, S Wei, L Vatan, H Zhang, W Szeliga, W Gu, R Liu, TS Lawrence, C Lamb, Y Tanno, M Cieslik, E Stone, G Georgiou, TA Chan, A Chinnaiyan, W Zou. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019; 569(7755): 270–274
https://doi.org/10.1038/s41586-019-1170-y
|
| 230 |
RJ Salmond, A Filby, I Qureshi, S Caserta, R Zamoyska. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228(1): 9–22
https://doi.org/10.1111/j.1600-065X.2008.00745.x
|
| 231 |
V Bronte, T Kasic, G Gri, K Gallana, G Borsellino, I Marigo, L Battistini, M Iafrate, T Prayer-Galetti, F Pagano, A Viola. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 2005; 201(8): 1257–1268
https://doi.org/10.1084/jem.20042028
|
| 232 |
B Lamas, J Vergnaud-Gauduchon, N Goncalves-Mendes, O Perche, A Rossary, MP Vasson, MC Farges. Altered functions of natural killer cells in response to L-Arginine availability. Cell Immunol 2012; 280(2): 182–190
https://doi.org/10.1016/j.cellimm.2012.11.018
|
| 233 |
SK Wculek, FJ Cueto, AM Mujal, I Melero, MF Krummel, D Sancho. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2020; 20(1): 7–24
https://doi.org/10.1038/s41577-019-0210-z
|
| 234 |
P Giovanelli, TA Sandoval, JR Cubillos-Ruiz. Dendritic cell metabolism and function in tumors. Trends Immunol 2019; 40(8): 699–718
https://doi.org/10.1016/j.it.2019.06.004
|
| 235 |
M Gargaro, C Vacca, S Massari, G Scalisi, G Manni, G Mondanelli, EMC Mazza, S Bicciato, MT Pallotta, C Orabona, ML Belladonna, C Volpi, R Bianchi, D Matino, A Iacono, E Panfili, E Proietti, IM Iamandii, V Cecchetti, P Puccetti, O Tabarrini, F Fallarino, U Grohmann. Engagement of nuclear coactivator 7 by 3-hydroxyanthranilic acid enhances activation of aryl hydrocarbon receptor in immunoregulatory dendritic cells. Front Immunol 2019; 10: 1973
https://doi.org/10.3389/fimmu.2019.01973
|
| 236 |
F Li, R Zhang, S Li, J Liu. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol 2017; 47: 70–77
https://doi.org/10.1016/j.intimp.2017.03.024
|
| 237 |
N Kedia-Mehta, DK Finlay. Competition for nutrients and its role in controlling immune responses. Nat Commun 2019; 10(1): 2123
https://doi.org/10.1038/s41467-019-10015-4
|
| 238 |
F Basit, T Mathan, D Sancho, IJM de Vries. Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front Immunol 2018; 9: 2489
https://doi.org/10.3389/fimmu.2018.02489
|
| 239 |
G Mondanelli, A Iacono, A Carvalho, C Orabona, C Volpi, MT Pallotta, D Matino, S Esposito, U Grohmann. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun Rev 2019; 18(4): 334–348
https://doi.org/10.1016/j.autrev.2019.02.004
|
| 240 |
RB Holmgaard, D Zamarin, DH Munn, JD Wolchok, JP Allison. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 2013; 210(7): 1389–1402
https://doi.org/10.1084/jem.20130066
|
| 241 |
X Zheng, J Koropatnick, D Chen, T Velenosi, H Ling, X Zhang, N Jiang, B Navarro, TE Ichim, B Urquhart, W Min. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int J Cancer 2013; 132(4): 967–977
https://doi.org/10.1002/ijc.27710
|
| 242 |
J Le Naour, L Galluzzi, L Zitvogel, G Kroemer, E Vacchelli. Trial watch: IDO inhibitors in cancer therapy. OncoImmunology 2020; 9(1): 1777625
https://doi.org/10.1080/2162402X.2020.1777625
|
| 243 |
CL Chu, YP Lee, CY Pang, HR Lin, CS Chen, RI You. Tyrosine kinase inhibitors modulate dendritic cell activity via confining c-Kit signaling and tryptophan metabolism. Int Immunopharmacol 2020; 82: 106357
https://doi.org/10.1016/j.intimp.2020.106357
|
| 244 |
D Davar, N Bahary. Modulating tumor immunology by inhibiting indoleamine 2,3-dioxygenase (IDO): recent developments and first clinical experiences. Target Oncol 2018; 13(2): 125–140
https://doi.org/10.1007/s11523-017-0547-9
|
| 245 |
T Bohn, S Rapp, N Luther, M Klein, TJ Bruehl, N Kojima, P Aranda Lopez, J Hahlbrock, S Muth, S Endo, S Pektor, A Brand, K Renner, V Popp, K Gerlach, D Vogel, C Lueckel, D Arnold-Schild, J Pouyssegur, M Kreutz, M Huber, J Koenig, B Weigmann, HC Probst, E von Stebut, C Becker, H Schild, E Schmitt, T Bopp. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol 2018; 19(12): 1319–1329
https://doi.org/10.1038/s41590-018-0226-8
|
| 246 |
C Carmona-Fontaine, M Deforet, L Akkari, CB Thompson, JA Joyce, JB Xavier. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci USA 2017; 114(11): 2934–2939
https://doi.org/10.1073/pnas.1700600114
|
| 247 |
M Platten, N von Knebel Doeberitz, I Oezen, W Wick, K Ochs. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol 2015; 5: 673
https://doi.org/10.3389/fimmu.2014.00673
|
| 248 |
J Choi, B Stradmann-Bellinghausen, E Yakubov, NE Savaskan, A Régnier-Vigouroux. Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol Ther 2015; 16(8): 1205–1213
https://doi.org/10.1080/15384047.2015.1056406
|
| 249 |
EM Palmieri, A Menga, R Martín-Pérez, A Quinto, C Riera-Domingo, Tullio G De, DC Hooper, WH Lamers, B Ghesquière, DW McVicar, A Guarini, M Mazzone, A Castegna. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 2017; 20(7): 1654–1666
https://doi.org/10.1016/j.celrep.2017.07.054
|
| 250 |
AK Jha, SC Huang, A Sergushichev, V Lampropoulou, Y Ivanova, E Loginicheva, K Chmielewski, KM Stewart, J Ashall, B Everts, EJ Pearce, EM Driggers, MN Artyomov. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015; 42(3): 419–430
https://doi.org/10.1016/j.immuni.2015.02.005
|
| 251 |
PS Liu, YT Chen, X Li, PC Hsueh, SF Tzeng, H Chen, PZ Shi, X Xie, S Parik, M Planque, SM Fendt, PC Ho. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol 2023; 24(3): 452–462
https://doi.org/10.1038/s41590-023-01430-3
|
| 252 |
J Szefel, A Danielak, WJ Kruszewski. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci 2019; 64(1): 104–110
https://doi.org/10.1016/j.advms.2018.08.018
|
| 253 |
C Cimen Bozkus, BD Elzey, SA Crist, LG Ellies, TL Ratliff. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. J Immunol 2015; 195(11): 5237–5250
https://doi.org/10.4049/jimmunol.1500959
|
| 254 |
E Principi, L Raffaghello. The role of the P2X7 receptor in myeloid-derived suppressor cells and immunosuppression. Curr Opin Pharmacol 2019; 47: 82–89
https://doi.org/10.1016/j.coph.2019.02.010
|
| 255 |
A Sica, L Strauss, FM Consonni, C Travelli, A Genazzani, C Porta. Metabolic regulation of suppressive myeloid cells in cancer. Cytokine Growth Factor Rev 2017; 35: 27–35
https://doi.org/10.1016/j.cytogfr.2017.05.002
|
| 256 |
DH Munn, AL Mellor. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013; 34(3): 137–143
https://doi.org/10.1016/j.it.2012.10.001
|
| 257 |
U Grohmann, P Puccetti. The coevolution of IDO1 and AhR in the emergence of regulatory T-cells in mammals. Front Immunol 2015; 6: 58
https://doi.org/10.3389/fimmu.2015.00058
|
| 258 |
EH Ma, G Bantug, T Griss, S Condotta, RM Johnson, B Samborska, N Mainolfi, V Suri, H Guak, ML Balmer, MJ Verway, TC Raissi, H Tsui, G Boukhaled, S Henriques da Costa, C Frezza, CM Krawczyk, A Friedman, M Manfredi, MJ Richer, C Hess, RG Jones. Serine is an essential metabolite for effector T cell expansion. Cell Metab 2017; 25(2): 345–357
https://doi.org/10.1016/j.cmet.2016.12.011
|
| 259 |
N Ron-Harel, G Notarangelo, JM Ghergurovich, JA Paulo, PT Sage, D Santos, FK Satterstrom, SP Gygi, JD Rabinowitz, AH Sharpe, MC Haigis. Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice. Proc Natl Acad Sci USA 2018; 115(52): 13347–13352
https://doi.org/10.1073/pnas.1804149115
|
| 260 |
S Kumar, M Dikshit. Metabolic insight of neutrophils in health and disease. Front Immunol 2019; 10: 2099
https://doi.org/10.3389/fimmu.2019.02099
|
| 261 |
AM Starzer, M Preusser, AS Berghoff. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Ther Adv Med Oncol 2022; 14: 17588359221096219
https://doi.org/10.1177/17588359221096219
|
| 262 |
A Largeot, G Pagano, S Gonder, E Moussay, J Paggetti. The B-side of cancer immunity: the underrated tune. Cells 2019; 8(5): 449
https://doi.org/10.3390/cells8050449
|
| 263 |
SM Downs-Canner, J Meier, BG Vincent, JS Serody. B cell function in the tumor microenvironment. Annu Rev Immunol 2022; 40(1): 169–193
https://doi.org/10.1146/annurev-immunol-101220-015603
|
| 264 |
CA Doughty, BF Bleiman, DJ Wagner, FJ Dufort, JM Mataraza, MF Roberts, TC Chiles. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 2006; 107(11): 4458–4465
https://doi.org/10.1182/blood-2005-12-4788
|
| 265 |
DG Franchina, M Grusdat, D Brenner. B-cell metabolic remodeling and cancer. Trends Cancer 2018; 4(2): 138–150
https://doi.org/10.1016/j.trecan.2017.12.006
|
| 266 |
B Zhang, A Vogelzang, M Miyajima, Y Sugiura, Y Wu, K Chamoto, R Nakano, R Hatae, RJ Menzies, K Sonomura, N Hojo, T Ogawa, W Kobayashi, Y Tsutsui, S Yamamoto, M Maruya, S Narushima, K Suzuki, H Sugiya, K Murakami, M Hashimoto, H Ueno, T Kobayashi, K Ito, T Hirano, K Shiroguchi, F Matsuda, M Suematsu, T Honjo, S Fagarasan. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 2021; 599(7885): 471–476
https://doi.org/10.1038/s41586-021-04082-1
|
| 267 |
Y Fu, L Wang, B Yu, D Xu, Y Chu. Immunometabolism shapes B cell fate and functions. Immunology 2022; 166(4): 444–457
https://doi.org/10.1111/imm.13499
|
| 268 |
YK Kim, SC Chae, HJ Yang, DE An, S Lee, MG Yeo, KJ Lee. Cereblon deletion ameliorates lipopolysaccharide-induced proinflammatory cytokines through 5′-adenosine monophosphate-activated protein kinase/heme oxygenase-1 activation in ARPE-19 cells. Immune Netw 2020; 20(3): e26
https://doi.org/10.4110/in.2020.20.e26
|
| 269 |
A Salminen, A Kauppinen, K Kaarniranta. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med (Berl) 2019; 97(8): 1049–1064
https://doi.org/10.1007/s00109-019-01795-9
|
| 270 |
S Mafi, B Mansoori, S Taeb, H Sadeghi, R Abbasi, WC Cho, D Rostamzadeh. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front Immunol 2022; 12: 774103
https://doi.org/10.3389/fimmu.2021.774103
|
| 271 |
K Masui, M Harachi, WK Cavenee, PS Mischel, N Shibata. mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett 2020; 478: 1–7
https://doi.org/10.1016/j.canlet.2020.03.001
|
| 272 |
D Vijayan, A Young, MWL Teng, MJ Smyth. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 2017; 17(12): 709–724
https://doi.org/10.1038/nrc.2017.86
|
| 273 |
X Zhi, Y Wang, X Zhou, J Yu, R Jian, S Tang, L Yin, P Zhou. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci 2010; 101(12): 2561–2569
https://doi.org/10.1111/j.1349-7006.2010.01733.x
|
| 274 |
L Li, L Huang, H Ye, SP Song, A Bajwa, SJ Lee, EK Moser, K Jaworska, GR Kinsey, YJ Day, J Linden, PI Lobo, DL Rosin, MD Okusa. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest 2012; 122(11): 3931–3942
https://doi.org/10.1172/JCI63170
|
| 275 |
C Sorrentino, L Miele, A Porta, A Pinto, S Morello. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015; 6(29): 27478–27489
https://doi.org/10.18632/oncotarget.4393
|
| 276 |
YP Zhu, JR Brown, D Sag, L Zhang, J Suttles. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol 2015; 194(2): 584–594
https://doi.org/10.4049/jimmunol.1401024
|
| 277 |
B Csóka, Z Selmeczy, B Koscsó, ZH Németh, P Pacher, PJ Murray, D Kepka-Lenhart, SM Jr Morris, WC Gause, SJ Leibovich, G Haskó. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 2012; 26(1): 376–386
https://doi.org/10.1096/fj.11-190934
|
| 278 |
JH Chen, CJ Perry, YC Tsui, MM Staron, IA Parish, CX Dominguez, DW Rosenberg, SM Kaech. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med 2015; 21(4): 327–334
https://doi.org/10.1038/nm.3831
|
| 279 |
DA Drew, Y Cao, AT Chan. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer 2016; 16(3): 173–186
https://doi.org/10.1038/nrc.2016.4
|
| 280 |
Y Li, M Fang, J Zhang, J Wang, Y Song, J Shi, W Li, G Wu, J Ren, Z Wang, W Zou, L Wang. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. OncoImmunology 2016; 5(2): e1074374
https://doi.org/10.1080/2162402X.2015.1074374
|
| 281 |
K Voss, HS Hong, JE Bader, A Sugiura, CA Lyssiotis, JC Rathmell. A guide to interrogating immunometabolism. Nat Rev Immunol 2021; 21(10): 637–652
https://doi.org/10.1038/s41577-021-00529-8
|
| 282 |
MN Artyomov, J Van den Bossche. Immunometabolism in the single-cell era. Cell Metab 2020; 32(5): 710–725
https://doi.org/10.1016/j.cmet.2020.09.013
|
| 283 |
V Purohit, A Wagner, N Yosef, VK Kuchroo. Systems-based approaches to study immunometabolism. Cell Mol Immunol 2022; 19(3): 409–420
https://doi.org/10.1038/s41423-021-00783-9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|