Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (2) : 205-236    https://doi.org/10.1007/s11684-023-1033-7
Unraveling the complex roles of macrophages in obese adipose tissue: an overview
Chang Peng2,3, Jun Chen4, Rui Wu1, Haowen Jiang2(), Jia Li1,2()
1. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
2. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
 Download: PDF(3232 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.

Keywords obesity      inflammation      adipose tissue macrophages      adipose tissue homeostasis     
Corresponding Author(s): Haowen Jiang,Jia Li   
Just Accepted Date: 04 December 2023   Online First Date: 02 January 2024    Issue Date: 27 May 2024
 Cite this article:   
Chang Peng,Jun Chen,Rui Wu, et al. Unraveling the complex roles of macrophages in obese adipose tissue: an overview[J]. Front. Med., 2024, 18(2): 205-236.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1033-7
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I2/205
Fig.1  The mechanisms of macrophage activation in obese adipose tissue. Multiple factors mediate the pro-inflammatory activation of macrophages in obese adipose tissue. On the one hand, obesity creates a pro-inflammatory microenvironment containing various pro-inflammatory external factors, including intestine-derived LPS, excessive FFA, hypoxia resulting from adipocyte hypertrophy, and obesity-induced hyperinsulinemia and hyperglycemia, to activate macrophages into the pro-inflammatory phenotype. On the other hand, numerous internal adaptions, such as increased ER stress and ROS levels, reduced mitochondrial function, different signals as well as TLR4, changed histone modification, swift protein posttranslational modification, and the regulation of transcriptional activities, orchestrate the pro-inflammatory activation of macrophages in obese adipose tissue. LPS, lipopolysaccharides; FFA, free fatty acids.
Fig.2  Mechanisms underlying the regulation of thermogenesis by macrophages. Macrophages regulate the thermogenic activity of the adipose tissue mainly through the release of cytokines. On the one hand, macrophage-derived cytokines or molecules, such as IL-1β, TNF-α, catecholamines, and slit3, regulate thermogenesis through the sympathetic nervous system–catecholamine–adipocytes axis, on the other hand, cholinergic adipose macrophages-derived acetylcholine is another regulator that mediates the thermogenic activity of beige adipocytes.
Fig.3  Transfer of mitochondria from adipocytes to macrophages maintains homeostasis in the adipose tissue. Communication between adipocytes and macrophages through the transfer of mitochondria is an important mechanism in maintaining tissue homeostasis. In the white adipose tissue, the transfer of mitochondria from adipocytes to macrophages depends on the expression of heparan sulfates in macrophages, and obesity can impair this transfer. In the brown adipose tissue, the thermogenic activity leads to mitochondrial damage and these damaged mitochondria can be released through extracellular vesicles. Macrophages are the main cell population involved in clearing these extracellular vesicles containing damaged mitochondria; if not cleared, extracellular vesicles containing damaged mitochondria can exert negative action on thermogenesis.
Fig.4  Macrophages are the main regulator of fibrosis in the adipose tissue in an obese state. Activated macrophages are the primary regulatory cells involved in the induction of fibrosis. Pro-inflammatory or senescent macrophages induce the formation of fibrosis through oversecreted cytokines, such as TGFβ1, PEPD, and osteopontin. Moreover, endogenous obesity-related ligands activate the mincle pathway to induce the formation of crown-like structures and fibrosis. Furthermore, obesity-induced pro-inflammatory activation of macrophages may impair the ability to clear collagen. TGFβ1, transforming growth factor beta 1; PEPD, peptidase D.
Fig.5  Adipose tissue macrophage modulates insulin sensitivity through exosomes. In the lean state, M2 macrophage in adipose tissue secrete exosomes containing miR-690, which is important in the maintenance of insulin sensitivity in metabolic tissue. Obesity causes a significant remodel in the content of micro-RNA. In the obese state, the exosomes containing miR-690 from the M1 macrophage decrease, and exosomes containing miR-155 increase, resulting in damaged insulin sensitivity in metabolic tissue.
Fig.6  The mechanisms that macrophage activate T cells in obese adipose tissue. Macrophages activate T cells to aggregate inflammation in obese adipose tissue in two ways. First, macrophages can process and present major histocompatibility complex (MHC) class II-restricted antigens to promote the activation of antigen-specific T cells. Then, macrophages can also activate T cells by secreting factors such as IL-1β.
Fig.7  The functions of macrophages in the maintenance of obese adipose tissue homeostasis. Macrophages play pivotal roles in the regulation of homeostasis in the adipose tissue. Most importantly, obesity increases the oxygen demand, and the activation of macrophages can promote angiogenesis through cytokines. Moreover, macrophages can clear the dead adipocytes that are induced by obesity to maintain a steady-state in the adipose tissue.
Fig.8  The heterogeneity of macrophages in obese adipose tissue. The heterogeneity of macrophages is mainly reflected in the difference in composition and response to obesity. There exist many types of macrophages expressing different marker genes identified by single-cell technologies. Moreover, even though obesity causes an increase in the total number of macrophages, different macrophages have diverse tendency respond to obesity.
1 BB Lowell, BM Spiegelman. Towards a molecular understanding of adaptive thermogenesis. Nature 2000; 404(6778): 652–660
https://doi.org/10.1038/35007527
2 S Lin, A Zhang, L Yuan, Y Wang, C Zhang, J Jiang, H Xu, H Yuan, H Yao, Q Zhang, Y Zhang, M Lou, P Wang, ZN Zhang, B Luan. Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure in mice. Nat Commun 2022; 13(1): 3301
https://doi.org/10.1038/s41467-022-30757-y
3 M Blüher. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15(5): 288–298
https://doi.org/10.1038/s41574-019-0176-8
4 SM Grundy. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 2004; 89(6): 2595–2600
https://doi.org/10.1210/jc.2004-0372
5 DP Guh, W Zhang, N Bansback, Z Amarsi, CL Birmingham, AH Anis. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 2009; 9(1): 88
https://doi.org/10.1186/1471-2458-9-88
6 S Klein, A Gastaldelli, H Yki-Järvinen, PE Scherer. Why does obesity cause diabetes?. Cell Metab 2022; 34(1): 11–20
https://doi.org/10.1016/j.cmet.2021.12.012
7 TD Kanneganti, VD Dixit. Immunological complications of obesity. Nat Immunol 2012; 13(8): 707–712
https://doi.org/10.1038/ni.2343
8 H Wang, CA Liddell, MM Coates, MD Mooney, CE Levitz, AE Schumacher, H Apfel, M Iannarone, B Phillips, KT Lofgren, L Sandar, RE Dorrington, I Rakovac, TA Jacobs, X Liang, M Zhou, J Zhu, G Yang, Y Wang, S Liu, Y Li, AA Ozgoren, SF Abera, I Abubakar, T Achoki, A Adelekan, Z Ademi, ZA Alemu, PJ Allen, MA AlMazroa, E Alvarez, AA Amankwaa, AT Amare, W Ammar, P Anwari, SA Cunningham, MM Asad, R Assadi, A Banerjee, S Basu, N Bedi, T Bekele, ML Bell, Z Bhutta, JD Blore, BB Basara, S Boufous, N Breitborde, NG Bruce, LN Bui, JR Carapetis, R Cárdenas, DO Carpenter, V Caso, RE Castro, F Catalá-Lopéz, A Cavlin, X Che, PP Chiang, R Chowdhury, CA Christophi, TW Chuang, M Cirillo, Costa Leite I da, KJ Courville, L Dandona, R Dandona, A Davis, A Dayama, K Deribe, SD Dharmaratne, MK Dherani, U Dilmen, EL Ding, KM Edmond, SP Ermakov, F Farzadfar, SM Fereshtehnejad, DO Fijabi, N Foigt, MH Forouzanfar, AC Garcia, JM Geleijnse, BD Gessner, K Goginashvili, P Gona, A Goto, HN Gouda, MA Green, KF Greenwell, HC Gugnani, R Gupta, RR Hamadeh, M Hammami, HL Harb, S Hay, MT Hedayati, HD Hosgood, DG Hoy, BT Idrisov, F Islami, S Ismayilova, V Jha, G Jiang, JB Jonas, K Juel, EK Kabagambe, DS Kazi, AP Kengne, M Kereselidze, YS Khader, SE Khalifa, YH Khang, D Kim, Y Kinfu, JM Kinge, Y Kokubo, S Kosen, BK Defo, GA Kumar, K Kumar, RB Kumar, T Lai, Q Lan, A Larsson, JT Lee, M Leinsalu, SS Lim, SE Lipshultz, G Logroscino, PA Lotufo, R Lunevicius, RA Lyons, S Ma, AA Mahdi, MB Marzan, MT Mashal, TT Mazorodze, JJ McGrath, ZA Memish, W Mendoza, GA Mensah, A Meretoja, TR Miller, EJ Mills, KA Mohammad, AH Mokdad, L Monasta, M Montico, AR Moore, J Moschandreas, WT Msemburi, UO Mueller, MM Muszynska, M Naghavi, KS Naidoo, KM Narayan, C Nejjari, M Ng, Dieu Ngirabega J de, MJ Nieuwenhuijsen, L Nyakarahuka, T Ohkubo, SB Omer, AJ Caicedo, Wyk V Pillay-van, D Pope, F Pourmalek, D Prabhakaran, SU Rahman, SM Rana, RQ Reilly, D Rojas-Rueda, L Ronfani, L Rushton, MY Saeedi, JA Salomon, U Sampson, IS Santos, M Sawhney, JC Schmidt, M Shakh-Nazarova, J She, S Sheikhbahaei, K Shibuya, HH Shin, K Shishani, I Shiue, ID Sigfusdottir, JA Singh, V Skirbekk, K Sliwa, SS Soshnikov, LA Sposato, VK Stathopoulou, K Stroumpoulis, KM Tabb, RT Talongwa, CM Teixeira, AS Terkawi, AJ Thomson, AL Thorne-Lyman, H Toyoshima, ZT Dimbuene, P Uwaliraye, SB Uzun, TJ Vasankari, AM Vasconcelos, VV Vlassov, SE Vollset, S Waller, X Wan, S Weichenthal, E Weiderpass, RG Weintraub, R Westerman, JD Wilkinson, HC Williams, YC Yang, GK Yentur, P Yip, N Yonemoto, M Younis, C Yu, KY Jin, Sayed Zaki M El, S Zhu, T Vos, AD Lopez, CJ Murray. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384(9947): 957–979
https://doi.org/10.1016/S0140-6736(14)60497-9
9 S Cinti. Obesity, Type 2 Diabetes and the Adipose Organ: A Pictorial Atlas from Research to Clinical Applications 1st ed. Springer, 2017
10 P Cohen, S Kajimura. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22(6): 393–409
https://doi.org/10.1038/s41580-021-00350-0
11 A Abdullahi, MG Jeschke. Taming the flames: targeting white adipose tissue browning in hypermetabolic conditions. Endocr Rev 2017; 38(6): 538–549
https://doi.org/10.1210/er.2017-00163
12 B Cannon, J Nedergaard. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84(1): 277–359
https://doi.org/10.1152/physrev.00015.2003
13 AD Hildreth, F Ma, YY Wong, R Sun, M Pellegrini, TE O’Sullivan. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol 2021; 22(5): 639–653
https://doi.org/10.1038/s41590-021-00922-4
14 ED Rosen, BM Spiegelman. What we talk about when we talk about fat. Cell 2014; 156(1–2): 20–44
https://doi.org/10.1016/j.cell.2013.12.012
15 HS Schipper, B Prakken, E Kalkhoven, M Boes. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab 2012; 23(8): 407–415
https://doi.org/10.1016/j.tem.2012.05.011
16 I Kojta, M Chacińska, A Błachnio-Zabielska. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12(5): 1305
https://doi.org/10.3390/nu12051305
17 CN Lumeng, AR Saltiel. Inflammatory links between obesity and metabolic disease. J Clin Invest 2011; 121(6): 2111–2117
https://doi.org/10.1172/JCI57132
18 J Hirosumi, G Tuncman, L Chang, CZ Görgün, KT Uysal, K Maeda, M Karin, GS Hotamisligil. A central role for JNK in obesity and insulin resistance. Nature 2002; 420(6913): 333–336
https://doi.org/10.1038/nature01137
19 SE Shoelson, J Lee, AB Goldfine. Inflammation and insulin resistance. J Clin Invest 2006; 116(7): 1793–1801
https://doi.org/10.1172/JCI29069
20 JI Odegaard, RR Ricardo-Gonzalez, MH Goforth, CR Morel, V Subramanian, L Mukundan, A Eagle, D Vats, F Brombacher, AW Ferrante, A Chawla. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447(7148): 1116–1120
https://doi.org/10.1038/nature05894
21 S Fujisaka, I Usui, A Bukhari, M Ikutani, T Oya, Y Kanatani, K Tsuneyama, Y Nagai, K Takatsu, M Urakaze, M Kobayashi, K Tobe. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009; 58(11): 2574–2582
https://doi.org/10.2337/db08-1475
22 G Cildir, SC Akıncılar, V Tergaonkar. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med 2013; 19(8): 487–500
https://doi.org/10.1016/j.molmed.2013.05.001
23 S Chakarov, C Blériot, F Ginhoux. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219(7): e20211948
https://doi.org/10.1084/jem.20211948
24 X Lu, X Kong, H Wu, J Hao, S Li, Z Gu, X Zeng, Y Shen, S Wang, J Chen, X Fei, Y Sun, X Li, L Jiang, F Yang, J Wang, Z Cai. UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders. Cell Metab 2023; 35(8): 1390–1405.e8
https://doi.org/10.1016/j.cmet.2023.05.011
25 E Dalmas, A Toubal, F Alzaid, K Blazek, HL Eames, K Lebozec, M Pini, I Hainault, E Montastier, RG Denis, P Ancel, A Lacombe, Y Ling, O Allatif, C Cruciani-Guglielmacci, S André, N Viguerie, C Poitou, V Stich, A Torcivia, F Foufelle, S Luquet, J Aron-Wisnewsky, D Langin, K Clément, IA Udalova, N Venteclef. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat Med 2015; 21(6): 610–618
https://doi.org/10.1038/nm.3829
26 L Boutens, R Stienstra. Adipose tissue macrophages: going off track during obesity. Diabetologia 2016; 59(5): 879–894
https://doi.org/10.1007/s00125-016-3904-9
27 EM Quigley. Gut bacteria in health and disease. Gastroenterol Hepatol (N Y) 2013; 9(9): 560–569
28 J Wang, WD Chen, YD Wang. The relationship between gut microbiota and inflammatory diseases: the role of macrophages. Front Microbiol 2020; 11: 1065
https://doi.org/10.3389/fmicb.2020.01065
29 PD Cani, R Bibiloni, C Knauf, A Waget, AM Neyrinck, NM Delzenne, R Burcelin. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57(6): 1470–1481
https://doi.org/10.2337/db07-1403
30 KA Kim, W Gu, IA Lee, EH Joh, DH Kim. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 2012; 7(10): e47713
https://doi.org/10.1371/journal.pone.0047713
31 SP Weisberg, D McCann, M Desai, M Rosenbaum, RL Leibel, AW Jr Ferrante. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796–1808
https://doi.org/10.1172/JCI200319246
32 BS Park, DH Song, HM Kim, BS Choi, H Lee, JO Lee. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009; 458(7242): 1191–1195
https://doi.org/10.1038/nature07830
33 KA Harford, CM Reynolds, FC McGillicuddy, HM Roche. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue. Proc Nutr Soc 2011; 70(4): 408–417
https://doi.org/10.1017/S0029665111000565
34 B Jayashree, YS Bibin, D Prabhu, CS Shanthirani, K Gokulakrishnan, BS Lakshmi, V Mohan, M Balasubramanyam. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 2014; 388(1–2): 203–210
https://doi.org/10.1007/s11010-013-1911-4
35 D Khanna, S Khanna, P Khanna, P Kahar, BM Patel. Obesity: a chronic low-grade inflammation and its markers. Cureus 2022; 14(2): e22711
https://doi.org/10.7759/cureus.22711
36 T Suganami, J Nishida, Y Ogawa. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25(10): 2062–2068
https://doi.org/10.1161/01.ATV.0000183883.72263.13
37 O Osborn, JM Olefsky. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 2012; 18(3): 363–374
https://doi.org/10.1038/nm.2627
38 GI Lancaster, KG Langley, NA Berglund, HL Kammoun, S Reibe, E Estevez, J Weir, NA Mellett, G Pernes, JRW Conway, MKS Lee, P Timpson, AJ Murphy, SL Masters, S Gerondakis, N Bartonicek, DC Kaczorowski, ME Dinger, PJ Meikle, PJ Bond, MA Febbraio. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 2018; 27(5): 1096–1110.e5
https://doi.org/10.1016/j.cmet.2018.03.014
39 S Galic, MD Fullerton, JD Schertzer, S Sikkema, K Marcinko, CR Walkley, D Izon, J Honeyman, ZP Chen, BJ van Denderen, BE Kemp, GR Steinberg. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 2011; 121(12): 4903–4915
https://doi.org/10.1172/JCI58577
40 N Wang, HY Tan, S Li, D Wang, Y Xu, C Zhang, W Xia, CM Che, Y Feng. SBP2 deficiency in adipose tissue macrophages drives insulin resistance in obesity. Sci Adv 2019; 5(8): eaav0198
https://doi.org/10.1126/sciadv.aav0198
41 YS Lee, JW Kim, O Osborne, DY Oh, R Sasik, S Schenk, A Chen, H Chung, A Murphy, SM Watkins, O Quehenberger, RS Johnson, JM Olefsky. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 2014; 157(6): 1339–1352
https://doi.org/10.1016/j.cell.2014.05.012
42 A Engin. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv Exp Med Biol 2017; 960: 305–326
https://doi.org/10.1007/978-3-319-48382-5_13
43 N Hosogai, A Fukuhara, K Oshima, Y Miyata, S Tanaka, K Segawa, S Furukawa, Y Tochino, R Komuro, M Matsuda, I Shimomura. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007; 56(4): 901–911
https://doi.org/10.2337/db06-0911
44 J Ye, Z Gao, J Yin, Q He. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293(4): E1118–E1128
https://doi.org/10.1152/ajpendo.00435.2007
45 M Pasarica, OR Sereda, LM Redman, DC Albarado, DT Hymel, LE Roan, JC Rood, DH Burk, SR Smith. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 2009; 58(3): 718–725
https://doi.org/10.2337/db08-1098
46 K Sun, N Halberg, M Khan, UJ Magalang, PE Scherer. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol Cell Biol 2013; 33(5): 904–917
https://doi.org/10.1128/MCB.00951-12
47 JB Seo, M Riopel, P Cabrales, JY Huh, GK Bandyopadhyay, AY Andreyev, AN Murphy, SC Beeman, GI Smith, S Klein, YS Lee, JM Olefsky. Knockdown of Ant2 reduces adipocyte hypoxia and improves insulin resistance in obesity. Nat Metab 2019; 1(1): 86–97
https://doi.org/10.1038/s42255-018-0003-x
48 C Peyssonnaux, P Cejudo-Martin, A Doedens, AS Zinkernagel, RS Johnson, V Nizet. Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 2007; 178(12): 7516–7519
https://doi.org/10.4049/jimmunol.178.12.7516
49 GM Tannahill, AM Curtis, J Adamik, EM Palsson-McDermott, AF McGettrick, G Goel, C Frezza, NJ Bernard, B Kelly, NH Foley, L Zheng, A Gardet, Z Tong, SS Jany, SC Corr, M Haneklaus, BE Caffrey, K Pierce, S Walmsley, FC Beasley, E Cummins, V Nizet, M Whyte, CT Taylor, H Lin, SL Masters, E Gottlieb, VP Kelly, C Clish, PE Auron, RJ Xavier, LA O’Neill. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496(7444): 238–242
https://doi.org/10.1038/nature11986
50 EM Palsson-McDermott, AM Curtis, G Goel, MA Lauterbach, FJ Sheedy, LE Gleeson, den Bosch MW van, SR Quinn, R Domingo-Fernandez, DG Johnston, JK Jiang, WJ Israelsen, J Keane, C Thomas, C Clish, Heiden M Vander, RJ Xavier, LA O’Neill. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 2015; 21(1): 65–80
https://doi.org/10.1016/j.cmet.2014.12.005
51 Y Li, YC Li, XT Liu, L Zhang, YH Chen, Q Zhao, W Gao, B Liu, H Yang, P Li. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation. Cell Rep 2022; 38(7): 110391
https://doi.org/10.1016/j.celrep.2022.110391
52 HJ Jansen, R Stienstra, JA van Diepen, A Hijmans, JA van der Laak, GM Vervoort, CJ Tack. Start of insulin therapy in patients with type 2 diabetes mellitus promotes the influx of macrophages into subcutaneous adipose tissue. Diabetologia 2013; 56(12): 2573–2581
https://doi.org/10.1007/s00125-013-3018-6
53 DJ Pedersen, A Guilherme, LV Danai, L Heyda, A Matevossian, J Cohen, SM Nicoloro, J Straubhaar, HL Noh, D Jung, JK Kim, MP Czech. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol Metab 2015; 4(7): 507–518
https://doi.org/10.1016/j.molmet.2015.04.003
54 J Mauer, B Chaurasia, L Plum, T Quast, B Hampel, M Blüher, W Kolanus, CR Kahn, JC Brüning. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLoS Genet 2010; 6(5): e1000938
https://doi.org/10.1371/journal.pgen.1000938
55 J Klauder, J Henkel, M Vahrenbrink, AS Wohlenberg, RG Camargo, GP Püschel. Direct and indirect modulation of LPS-induced cytokine production by insulin in human macrophages. Cytokine 2020; 136: 155241
https://doi.org/10.1016/j.cyto.2020.155241
56 JM Ratter, JIP van Heck, HMM Rooijackers, HJ Jansen, PCM van Poppel, CJ Tack, R Stienstra. Insulin acutely activates metabolism of primary human monocytes and promotes a proinflammatory phenotype. J Leukoc Biol 2021; 110(5): 885–891
https://doi.org/10.1002/JLB.3AB0120-019RR
57 CC Maresch, DC Stute, MG Alves, PF Oliveira, DM de Kretser, T Linn. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update 2018; 24(1): 86–105
https://doi.org/10.1093/humupd/dmx033
58 X Geeraerts, E Bolli, SM Fendt, JA Van Ginderachter. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol 2017; 8: 289
https://doi.org/10.3389/fimmu.2017.00289
59 N de Rekeneire, R Peila, J Ding, LH Colbert, M Visser, RI Shorr, SB Kritchevsky, LH Kuller, ES Strotmeyer, AV Schwartz, B Vellas, TB Harris. Diabetes, hyperglycemia, and inflammation in older individuals: the health, aging and body composition study. Diabetes Care 2006; 29(8): 1902–1908
https://doi.org/10.2337/dc05-2327
60 MA Venneri, E Giannetta, G Panio, R De Gaetano, D Gianfrilli, R Pofi, S Masciarelli, F Fazi, M Pellegrini, A Lenzi, F Naro, AM Isidori. Chronic inhibition of PDE5 limits pro-inflammatory monocyte-macrophage polarization in streptozotocin-induced diabetic mice. PLoS One 2015; 10(5): e0126580
https://doi.org/10.1371/journal.pone.0126580
61 L Ren. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats. Saudi J Biol Sci 2019; 26(8): 1961–1972
https://doi.org/10.1016/j.sjbs.2019.07.005
62 H Yapislar, E Haciosmanoglu, T Sarioglu, S Degirmencioglu, I Sogut, M Poteser, C Ekmekcioglu. Anti-inflammatory effects of melatonin in rats with induced type 2 diabetes mellitus. Life (Basel) 2022; 12(4): 574
https://doi.org/10.3390/life12040574
63 Y Lin, AH Berg, P Iyengar, TK Lam, A Giacca, TP Combs, MW Rajala, X Du, B Rollman, W Li, M Hawkins, N Barzilai, CJ Rhodes, IG Fantus, M Brownlee, PE Scherer. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem 2005; 280(6): 4617–4626
https://doi.org/10.1074/jbc.M411863200
64 X Xu, X Qi, Y Shao, Y Li, X Fu, S Feng, Y Wu. High glucose induced-macrophage activation through TGF-β-activated kinase 1 signaling pathway. Inflamm Res 2016; 65(8): 655–664
https://doi.org/10.1007/s00011-016-0948-8
65 SM Huang, CS Wu, MH Chiu, CH Wu, YT Chang, GS Chen, CE Lan. High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: an important mechanism to delay the diabetic wound healing. J Dermatol Sci 2019; 96(3): 159–167
https://doi.org/10.1016/j.jdermsci.2019.11.004
66 PH Paradkar, LS Mishra, JV Joshi, SP Dandekar, RA Vaidya, AB Vaidya. In vitro macrophage activation: a technique for screening anti-inflammatory, immunomodulatory and anticancer activity of phytomolecules. Indian J Exp Biol 2017; 55(3): 133–141
67 den Bossche J Van, LA O’Neill, D Menon. Macrophage immunometabolism: where are we (going)?. Trends Immunol 2017; 38(6): 395–406
https://doi.org/10.1016/j.it.2017.03.001
68 J Yan, T Horng. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol 2020; 30(12): 979–989
https://doi.org/10.1016/j.tcb.2020.09.006
69 SB Jung, MJ Choi, D Ryu, HS Yi, SE Lee, JY Chang, HK Chung, YK Kim, SG Kang, JH Lee, KS Kim, HJ Kim, CS Kim, CH Lee, RW Williams, H Kim, HK Lee, J Auwerx, M Shong. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun 2018; 9(1): 1551
https://doi.org/10.1038/s41467-018-03998-z
70 Y Wang, B Tang, L Long, P Luo, W Xiang, X Li, H Wang, Q Jiang, X Tan, S Luo, H Li, Z Wang, Z Chen, Y Leng, Z Jiang, Y Wang, L Ma, R Wang, C Zeng, Z Liu, Y Wang, H Miao, C Shi. Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nat Commun 2021; 12(1): 102
https://doi.org/10.1038/s41467-020-20315-9
71 EA Day, RJ Ford, GR Steinberg. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab 2017; 28(8): 545–560
https://doi.org/10.1016/j.tem.2017.05.004
72 JS Moon, FF da Cunha, JY Huh, AY Andreyev, J Lee, SK Mahata, FC Reis, CA Nasamran, YS Lee. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 2021; 6(20): e147033
https://doi.org/10.1172/jci.insight.147033
73 LH Huang, EM Melton, H Li, P Sohn, D Jung, CY Tsai, T Ma, H Sano, H Ha, RH Friedline, JK Kim, E Usherwood, CCY Chang, TY Chang. Myeloid-specific Acat1 ablation attenuates inflammatory responses in macrophages, improves insulin sensitivity, and suppresses diet-induced obesity. Am J Physiol Endocrinol Metab 2018; 315(3): E340–E356
https://doi.org/10.1152/ajpendo.00174.2017
74 K Petkevicius, S Virtue, G Bidault, B Jenkins, C Çubuk, C Morgantini, M Aouadi, J Dopazo, MJ Serlie, A Koulman, A Vidal-Puig. Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. Elife 2019; 8: e47990
https://doi.org/10.7554/eLife.47990
75 A Takei, S Nagashima, S Takei, D Yamamuro, A Murakami, T Wakabayashi, M Isoda, H Yamazaki, C Ebihara, M Takahashi, K Ebihara, S Ishibashi. Myeloid HMG-CoA reductase determines adipose tissue inflammation, insulin resistance, and hepatic steatosis in diet-induced obese mice. Diabetes 2020; 69(2): 158–164
https://doi.org/10.2337/db19-0076
76 M Sharma, L Boytard, T Hadi, G Koelwyn, R Simon, M Ouimet, L Seifert, W Spiro, B Yan, S Hutchison, EA Fisher, R Ramasamy, B Ramkhelawon, KJ Moore. Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci Rep 2020; 10(1): 5555
https://doi.org/10.1038/s41598-020-62272-9
77 W Yu, Z Wang, K Zhang, Z Chi, T Xu, D Jiang, S Chen, W Li, X Yang, X Zhang, Y Wu, D Wang. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell 2019; 75(6): 1147–1160.e5
https://doi.org/10.1016/j.molcel.2019.06.039
78 PS Liu, H Wang, X Li, T Chao, T Teav, S Christen, G Di Conza, WC Cheng, CH Chou, M Vavakova, C Muret, K Debackere, M Mazzone, HD Huang, SM Fendt, J Ivanisevic, PC Ho. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017; 18(9): 985–994
https://doi.org/10.1038/ni.3796
79 L Ran, S Zhang, G Wang, P Zhao, J Sun, J Zhou, H Gan, R Jeon, Q Li, J Herrmann, F Wang. Mitochondrial pyruvate carrier-mediated metabolism is dispensable for the classical activation of macrophages. Nat Metab 2023; 5(5): 804–820
https://doi.org/10.1038/s42255-023-00800-3
80 I Martínez-Reyes, NS Chandel. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020; 11(1): 102
https://doi.org/10.1038/s41467-019-13668-3
81 AE Rodriguez, GS Ducker, LK Billingham, CA Martinez, N Mainolfi, V Suri, A Friedman, MG Manfredi, SE Weinberg, JD Rabinowitz, NS Chandel. Serine metabolism supports macrophage IL-1β production. Cell Metab 2019; 29(4): 1003–1011.e4
https://doi.org/10.1016/j.cmet.2019.01.014
82 B McDonald, K Pittman, GB Menezes, SA Hirota, I Slaba, CC Waterhouse, PL Beck, DA Muruve, P Kubes. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330(6002): 362–366
https://doi.org/10.1126/science.1195491
83 K Wilhelm, J Ganesan, T Müller, C Dürr, M Grimm, A Beilhack, CD Krempl, S Sorichter, UV Gerlach, E Jüttner, A Zerweck, F Gärtner, P Pellegatti, Virgilio F Di, D Ferrari, N Kambham, P Fisch, J Finke, M Idzko, R Zeiser. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 2010; 16(12): 1434–1438
https://doi.org/10.1038/nm.2242
84 MR Elliott, FB Chekeni, PC Trampont, ER Lazarowski, A Kadl, SF Walk, D Park, RI Woodson, M Ostankovich, P Sharma, JJ Lysiak, TK Harden, N Leitinger, KS Ravichandran. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461(7261): 282–286
https://doi.org/10.1038/nature08296
85 GS Hotamisligil. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140(6): 900–917
https://doi.org/10.1016/j.cell.2010.02.034
86 C Hetz, FR Papa. The unfolded protein response and cell fate control. Mol Cell 2018; 69(2): 169–181
https://doi.org/10.1016/j.molcel.2017.06.017
87 C Hetz, F Martinon, D Rodriguez, LH Glimcher. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 2011; 91(4): 1219–1243
https://doi.org/10.1152/physrev.00001.2011
88 B Shan, X Wang, Y Wu, C Xu, Z Xia, J Dai, M Shao, F Zhao, S He, L Yang, M Zhang, F Nan, J Li, J Liu, J Liu, W Jia, Y Qiu, B Song, JJ Han, L Rui, SZ Duan, Y Liu. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol 2017; 18(5): 519–529
https://doi.org/10.1038/ni.3709
89 JH Kim, E Lee, RH Friedline, S Suk, DY Jung, S Dagdeviren, X Hu, K Inashima, HL Noh, JY Kwon, A Nambu, JR Huh, MS Han, RJ Davis, AS Lee, KW Lee, JK Kim. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity. FASEB J 2018; 32(4): 2292–2304
https://doi.org/10.1096/fj.201701017R
90 L Song, DS Kim, W Gou, J Wang, P Wang, Z Wei, B Liu, Z Li, K Gou, H Wang. GRP94 regulates M1 macrophage polarization and insulin resistance. Am J Physiol Endocrinol Metab 2020; 318(6): E1004–E1013
https://doi.org/10.1152/ajpendo.00542.2019
91 W Li, H Wu, S Sui, Q Wang, S Xu, D Pang. Targeting histone modifications in breast cancer: a precise weapon on the way. Front Cell Dev Biol 2021; 9: 736935
https://doi.org/10.3389/fcell.2021.736935
92 L Chen, J Zhang, Y Zou, F Wang, J Li, F Sun, X Luo, M Zhang, Y Guo, Q Yu, P Yang, Q Zhou, Z Chen, H Zhang, Q Gong, J Zhao, DL Eizirik, Z Zhou, F Xiong, S Zhang, CY Wang. Kdm2a deficiency in macrophages enhances thermogenesis to protect mice against HFD-induced obesity by enhancing H3K36me2 at the Pparg locus. Cell Death Differ 2021; 28(6): 1880–1899
https://doi.org/10.1038/s41418-020-00714-7
93 J Chen, X Xu, Y Li, F Li, J Zhang, Q Xu, W Chen, Y Wei, X Wang. Kdm6a suppresses the alternative activation of macrophages and impairs energy expenditure in obesity. Cell Death Differ 2021; 28(5): 1688–1704
https://doi.org/10.1038/s41418-020-00694-8
94 Z Chi, S Chen, T Xu, W Zhen, W Yu, D Jiang, X Guo, Z Wang, K Zhang, M Li, J Zhang, H Fang, D Yang, Q Ye, X Yang, H Lin, F Yang, X Zhang, D Wang. Histone deacetylase 3 couples mitochondria to drive IL-1β-dependent inflammation by configuring fatty acid oxidation. Mol Cell 2020; 80(1): 43–58.e7
https://doi.org/10.1016/j.molcel.2020.08.015
95 H Kang, Y Lee, MB Kim, S Hu, H Jang, YK Park, JY Lee. The loss of histone deacetylase 4 in macrophages exacerbates hepatic and adipose tissue inflammation in male but not in female mice with diet-induced non-alcoholic steatohepatitis. J Pathol 2021; 255(3): 319–329
https://doi.org/10.1002/path.5758
96 Y Lee, SO Ka, HN Cha, YN Chae, MK Kim, SY Park, EJ Bae, BH Park. Myeloid sirtuin 6 deficiency causes insulin resistance in high-fat diet-fed mice by eliciting macrophage polarization toward an M1 phenotype. Diabetes 2017; 66(10): 2659–2668
https://doi.org/10.2337/db16-1446
97 Q Zhou, Y Wang, Z Lu, B Wang, L Li, M You, L Wang, T Cao, Y Zhao, Q Li, A Mou, W Shu, H He, Z Zhao, D Liu, Z Zhu, P Gao, Z Yan. Mitochondrial dysfunction caused by SIRT3 inhibition drives proinflammatory macrophage polarization in obesity. Obesity (Silver Spring) 2023; 31(4): 1050–1063
https://doi.org/10.1002/oby.23707
98 N Keiran, V Ceperuelo-Mallafré, E Calvo, MI Hernández-Alvarez, M Ejarque, C Núñez-Roa, D Horrillo, E Maymó-Masip, MM Rodríguez, R Fradera, la Rosa JV de, R Jorba, A Megia, A Zorzano, G Medina-Gómez, C Serena, A Castrillo, J Vendrell, S Fernández-Veledo. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 2019; 20(5): 581–592
https://doi.org/10.1038/s41590-019-0372-7
99 KC Shin, I Hwang, SS Choe, J Park, Y Ji, JI Kim, GY Lee, SH Choi, J Ching, JP Kovalik, JB Kim. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun 2017; 8(1): 1087
https://doi.org/10.1038/s41467-017-01232-w
100 G Caratti, U Stifel, B Caratti, AJM Jamil, KJ Chung, M Kiehntopf, MH Gräler, M Blüher, A Rauch, JP Tuckermann. Glucocorticoid activation of anti-inflammatory macrophages protects against insulin resistance. Nat Commun 2023; 14(1): 2271
https://doi.org/10.1038/s41467-023-37831-z
101 J Ma, W Hu, D Zhang, J Xie, C Duan, Y Liu, Y Wang, X Xu, K Cheng, B Jin, Y Zhang, R Zhuang. CD226 knockout alleviates high-fat diet induced obesity by suppressing proinflammatory macrophage phenotype. J Transl Med 2021; 19(1): 477
https://doi.org/10.1186/s12967-021-03150-4
102 H Duan, L Jing, J Xiang, C Ju, Z Wu, J Liu, X Ma, X Chen, Z Liu, J Feng, X Yan. CD146 associates with Gp130 to control a macrophage pro-inflammatory program that regulates the metabolic response to obesity. Adv Sci (Weinh) 2022; 9(13): e2103719
https://doi.org/10.1002/advs.202103719
103 PS Liu, YW Lin, B Lee, SK McCrady-Spitzer, JA Levine, LN Wei. Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates white adipose tissue browning, and prevents high-fat diet-induced insulin resistance. Diabetes 2014; 63(12): 4021–4031
https://doi.org/10.2337/db14-0619
104 Y Qin, L Jia, H Liu, W Ma, X Ren, H Li, Y Liu, H Li, S Ma, M Liu, P Li, J Yan, J Zhang, Y Guo, H You, Y Guo, NA Rahman, S Wołczyński, A Kretowski, D Li, X Li, F Ren, X Li. Macrophage deletion of Noc4l triggers endosomal TLR4/TRIF signal and leads to insulin resistance. Nat Commun 2021; 12(1): 6121
https://doi.org/10.1038/s41467-021-26408-3
105 M Schieber, NS Chandel. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24(10): R453–R462
https://doi.org/10.1016/j.cub.2014.03.034
106 E Rendra, V Riabov, DM Mossel, T Sevastyanova, MC Harmsen, J Kzhyshkowska. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2019; 224(2): 242–253
https://doi.org/10.1016/j.imbio.2018.11.010
107 CR Reczek, NS Chandel. ROS-dependent signal transduction. Curr Opin Cell Biol 2015; 33: 8–13
https://doi.org/10.1016/j.ceb.2014.09.010
108 YH Kang, MH Cho, JY Kim, MS Kwon, JJ Peak, SW Kang, SY Yoon, Y Song. Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget 2016; 7(24): 35577–35591
https://doi.org/10.18632/oncotarget.9590
109 C Wang, Y Chao, W Xu, Z Liu, H Wang, K Huang. Myeloid FBW7 deficiency disrupts redox homeostasis and aggravates dietary-induced insulin resistance. Redox Biol 2020; 37: 101688
https://doi.org/10.1016/j.redox.2020.101688
110 R Acín-Pérez, S Iborra, Y Martí-Mateos, ECL Cook, R Conde-Garrosa, A Petcherski, MDM Muñoz, de Mena R Martínez, KC Krishnan, C Jiménez, JP Bolaños, M Laakso, AJ Lusis, OS Shirihai, D Sancho, JA Enríquez. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nat Metab 2020; 2(9): 974–988
https://doi.org/10.1038/s42255-020-00273-8
111 YJ Ahn, L Wang, S Tavakoli, HN Nguyen, JD Short, R Asmis. Glutaredoxin 1 controls monocyte reprogramming during nutrient stress and protects mice against obesity and atherosclerosis in a sex-specific manner. Nat Commun 2022; 13(1): 790
https://doi.org/10.1038/s41467-022-28433-2
112 MS Han, DY Jung, C Morel, SA Lakhani, JK Kim, RA Flavell, RJ Davis. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 2013; 339(6116): 218–222
https://doi.org/10.1126/science.1227568
113 HR Desai, T Sivasubramaniyam, XS Revelo, SA Schroer, CT Luk, PR Rikkala, AH Metherel, DW Dodington, YJ Park, MJ Kim, JA Rapps, R Besla, CS Robbins, KU Wagner, RP Bazinet, DA Winer, M Woo. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation. Sci Rep 2017; 7(1): 7653
https://doi.org/10.1038/s41598-017-07923-0
114 T Kubota, M Inoue, N Kubota, I Takamoto, T Mineyama, K Iwayama, K Tokuyama, M Moroi, K Ueki, T Yamauchi, T Kadowaki. Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nat Commun 2018; 9(1): 4863
https://doi.org/10.1038/s41467-018-07358-9
115 N Saito, S Kimura, T Miyamoto, S Fukushima, M Amagasa, Y Shimamoto, C Nishioka, S Okamoto, C Toda, K Washio, A Asano, I Miyoshi, E Takahashi, H Kitamura. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep 2017; 9: 322–329
https://doi.org/10.1016/j.bbrep.2017.01.009
116 Y Yang, X Li, HH Luan, B Zhang, K Zhang, JH Nam, Z Li, M Fu, A Munk, D Zhang, S Wang, Y Liu, JP Albuquerque, Q Ong, R Li, Q Wang, ME Robert, RJ Perry, D Chung, GI Shulman, X Yang. OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance. Proc Natl Acad Sci U S A 2020; 117(28): 16616–16625
https://doi.org/10.1073/pnas.1916121117
117 GD Kim, HP Ng, N Patel, GH Mahabeleshwar. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation. FASEB J 2019; 33(10): 10902–10915
https://doi.org/10.1096/fj.201900867RR
118 M Voisin, E Shrestha, C Rollet, CA Nikain, T Josefs, M Mahé, TJ Barrett, HR Chang, R Ruoff, JA Schneider, ML Garabedian, C Zoumadakis, C Yun, B Badwan, EJ Brown, AC Mar, RJ Schneider, IJ Goldberg, I Pineda-Torra, EA Fisher, MJ Garabedian. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol 2021; 4(1): 420
https://doi.org/10.1038/s42003-021-01925-5
119 Y Ikeda, H Watanabe, T Shiuchi, H Hamano, Y Horinouchi, M Imanishi, M Goda, Y Zamami, K Takechi, Y Izawa-Ishizawa, L Miyamoto, K Ishizawa, KI Aihara, K Tsuchiya, T Tamaki. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia 2020; 63(8): 1588–1602
https://doi.org/10.1007/s00125-020-05153-0
120 N Joffin, CM Gliniak, JB Funcke, VA Paschoal, C Crewe, S Chen, R Gordillo, CM Kusminski, DY Oh, WJ Geldenhuys, PE Scherer. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat Metab 2022; 4(11): 1474–1494
https://doi.org/10.1038/s42255-022-00664-z
121 M Shi, XY Huang, XY Ren, XY Wei, Y Ma, ZZ Lin, DT Liu, L Song, TJ Zhao, G Li, L Yao, M Zhu, C Zhang, C Xie, Y Wu, HM Wu, LP Fan, J Ou, YH Zhan, SY Lin, SC Lin. AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nat Cell Biol 2021; 23(3): 268–277
https://doi.org/10.1038/s41556-021-00642-9
122 H Jiang, X Ding, Y Cao, H Wang, W Zeng. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab 2017; 26(4): 686–692.e3
https://doi.org/10.1016/j.cmet.2017.08.016
123 JW Hsu, CY Nien, SC Yeh, FY Tsai, HW Chen, TS Lee, SL Chen, YH Kao, TC Tsou. Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food Chem Toxicol 2020; 142: 111487
https://doi.org/10.1016/j.fct.2020.111487
124 CC Picoli, GR Gilio, F Henriques, LG Leal, JC Besson, MA Lopes, SM Franzoi de Moraes, L Hernandes, ML Batista Junior, SB Peres. Resistance exercise training induces subcutaneous and visceral adipose tissue browning in Swiss mice. J Appl Physiol 2020; 129(1): 66–74
125 G Zaror-Behrens, J Himms-Hagen. Cold-stimulated sympathetic activity in brown adipose tissue of obese (ob/ob) mice. Am J Physiol 1983; 244(4): E361–E366
126 SL Sigurdson, J Himms-Hagen. Control of norepinephrine turnover in brown adipose tissue of Syrian hamsters. Am J Physiol 1988; 254(6 Pt 2): R960–R968
127 K Hücking, M Hamilton-Wessler, M Ellmerer, RN Bergman. Burst-like control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest 2003; 111(2): 257–264
https://doi.org/10.1172/JCI14466
128 ET Chouchani, L Kazak, BM Spiegelman. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 2019; 29(1): 27–37
https://doi.org/10.1016/j.cmet.2018.11.002
129 T Sakamoto, N Takahashi, Y Sawaragi, S Naknukool, R Yu, T Goto, T Kawada. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am J Physiol Cell Physiol 2013; 304(8): C729–C738
https://doi.org/10.1152/ajpcell.00312.2012
130 T Goto, S Naknukool, R Yoshitake, Y Hanafusa, S Tokiwa, Y Li, T Sakamoto, T Nitta, M Kim, N Takahashi, R Yu, H Daiyasu, S Seno, H Matsuda, T Kawada. Proinflammatory cytokine interleukin-1β suppresses cold-induced thermogenesis in adipocytes. Cytokine 2016; 77: 107–114
https://doi.org/10.1016/j.cyto.2015.11.001
131 H Zhou, H Wang, M Yu, RC Schugar, W Qian, F Tang, W Liu, H Yang, RE McDowell, J Zhao, J Gao, A Dongre, JA Carman, M Yin, JA Drazba, R Dent, C Hine, YR Chen, JD Smith, PL Fox, JM Brown, X Li. IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nat Immunol 2020; 21(10): 1219–1231
https://doi.org/10.1038/s41590-020-0750-1
132 W Zou, N Rohatgi, JR Brestoff, JR Moley, Y Li, JW Williams, Y Alippe, H Pan, TA Pietka, G Mbalaviele, EP Newberry, NO Davidson, A Dey, KI Shoghi, RD Head, SA Wickline, GJ Randolph, NA Abumrad, SL Teitelbaum. Myeloid-specific Asxl2 deletion limits diet-induced obesity by regulating energy expenditure. J Clin Invest 2020; 130(5): 2644–2656
https://doi.org/10.1172/JCI128687
133 KD Nguyen, Y Qiu, X Cui, YP Goh, J Mwangi, T David, L Mukundan, F Brombacher, RM Locksley, A Chawla. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2011; 480(7375): 104–108
https://doi.org/10.1038/nature10653
134 Y Qiu, KD Nguyen, JI Odegaard, X Cui, X Tian, RM Locksley, RD Palmiter, A Chawla. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014; 157(6): 1292–1308
https://doi.org/10.1016/j.cell.2014.03.066
135 K Fischer, HH Ruiz, K Jhun, B Finan, DJ Oberlin, der Heide V van, AV Kalinovich, N Petrovic, Y Wolf, C Clemmensen, AC Shin, S Divanovic, F Brombacher, E Glasmacher, S Keipert, M Jastroch, J Nagler, KW Schramm, D Medrikova, G Collden, SC Woods, S Herzig, D Homann, S Jung, J Nedergaard, B Cannon, MH Tschöp, TD Müller, C Buettner. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med 2017; 23(5): 623–630
https://doi.org/10.1038/nm.4316
136 NJ Balter, SL Schwartz. Accumulation of norepinephrine by macrophages and relationships to known uptake processes. J Pharmacol Exp Ther 1977; 201(3): 636–643
137 Z Czimmerer, T Varga, S Poliska, I Nemet, A Szanto, L Nagy. Identification of novel markers of alternative activation and potential endogenous PPARγ ligand production mechanisms in human IL-4 stimulated differentiating macrophages. Immunobiology 2012; 217(12): 1301–1314
https://doi.org/10.1016/j.imbio.2012.08.270
138 RM Pirzgalska, E Seixas, JS Seidman, VM Link, NM Sánchez, I Mahú, R Mendes, V Gres, N Kubasova, I Morris, BA Arús, CM Larabee, M Vasques, F Tortosa, AL Sousa, S Anandan, E Tranfield, MK Hahn, M Iannacone, NJ Spann, CK Glass, AI Domingos. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 2017; 23(11): 1309–1318
https://doi.org/10.1038/nm.4422
139 YN Wang, Y Tang, Z He, H Ma, L Wang, Y Liu, Q Yang, D Pan, C Zhu, S Qian, QQ Tang. Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue. Nat Metab 2021; 3(11): 1536–1551
https://doi.org/10.1038/s42255-021-00482-9
140 AJ Knights, S Liu, Y Ma, VS Nudell, E Perkey, MJ Sorensen, RT Kennedy, I Maillard, L Ye, H Jun, J Wu. Acetylcholine-synthesizing macrophages in subcutaneous fat are regulated by β2 -adrenergic signaling. EMBO J 2021; 40(24): e106061
https://doi.org/10.15252/embj.2020106061
141 H Jun, H Yu, J Gong, J Jiang, X Qiao, E Perkey, DI Kim, MP Emont, AG Zestos, JS Cho, J Liu, RT Kennedy, I Maillard, XZS Xu, J Wu. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med 2018; 24(6): 814–822
https://doi.org/10.1038/s41591-018-0032-8
142 H Jun, Y Ma, Y Chen, J Gong, S Liu, J Wang, AJ Knights, X Qiao, MP Emont, XZS Xu, S Kajimura, J Wu. Adrenergic-independent signaling via CHRNA2 regulates beige fat activation. Dev Cell 2020; 54(1): 106–116.e5
https://doi.org/10.1016/j.devcel.2020.05.017
143 EA Schon, S DiMauro, M Hirano. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 2012; 13(12): 878–890
https://doi.org/10.1038/nrg3275
144 JL Spees, SD Olson, MJ Whitney, DJ Prockop. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 2006; 103(5): 1283–1288
https://doi.org/10.1073/pnas.0510511103
145 AB Gustafsson, GW 2nd Dorn. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process. Physiol Rev 2019; 99(1): 853–892
https://doi.org/10.1152/physrev.00005.2018
146 FJ Bock, SWG Tait. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21(2): 85–100
https://doi.org/10.1038/s41580-019-0173-8
147 D Liu, Y Gao, J Liu, Y Huang, J Yin, Y Feng, L Shi, BP Meloni, C Zhang, M Zheng, J Gao. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 2021; 6(1): 65
https://doi.org/10.1038/s41392-020-00440-z
148 I Kim, S Rodriguez-Enriquez, JJ Lemasters. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462(2): 245–253
https://doi.org/10.1016/j.abb.2007.03.034
149 Y Pang, C Zhang, J Gao. Macrophages as emerging key players in mitochondrial transfers. Front Cell Dev Biol 2021; 9: 747377
https://doi.org/10.3389/fcell.2021.747377
150 MN Islam, SR Das, MT Emin, M Wei, L Sun, K Westphalen, DJ Rowlands, SK Quadri, S Bhattacharya, J Bhattacharya. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18(5): 759–765
https://doi.org/10.1038/nm.2736
151 CS Liu, JC Chang, SJ Kuo, KH Liu, TT Lin, WL Cheng, SF Chuang. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 2014; 53: 141–146
https://doi.org/10.1016/j.biocel.2014.05.009
152 YC Hsu, YT Wu, TH Yu, YH Wei. Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 2016; 52: 119–131
https://doi.org/10.1016/j.semcdb.2016.02.011
153 M van der Vlist, R Raoof, HLDM Willemen, J Prado, S Versteeg, C Martin Gil, M Vos, RE Lokhorst, RJ Pasterkamp, T Kojima, H Karasuyama, W Khoury-Hanold, L Meyaard, N Eijkelkamp. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 2022; 110(4): 613–626.e9
https://doi.org/10.1016/j.neuron.2021.11.020
154 JR Brestoff, CB Wilen, JR Moley, Y Li, W Zou, NP Malvin, MN Rowen, BT Saunders, H Ma, MR Mack, BL Jr Hykes, DR Balce, A Orvedahl, JW Williams, N Rohatgi, X Wang, MR McAllaster, SA Handley, BS Kim, JG Doench, BH Zinselmeyer, MS Diamond, HW Virgin, AE Gelman, SL Teitelbaum. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab 2021; 33(2): 270–282.e8
https://doi.org/10.1016/j.cmet.2020.11.008
155 M Rosina, V Ceci, R Turchi, L Chuan, N Borcherding, F Sciarretta, M Sánchez-Díaz, F Tortolici, K Karlinsey, V Chiurchiù, C Fuoco, R Giwa, RL Field, M Audano, S Arena, A Palma, F Riccio, F Shamsi, G Renzone, M Verri, A Crescenzi, S Rizza, F Faienza, G Filomeni, S Kooijman, S Rufini, Vries AAF de, A Scaloni, N Mitro, YH Tseng, A Hidalgo, B Zhou, JR Brestoff, K Aquilano, D Lettieri-Barbato. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab 2022; 34(4): 533–548.e12
https://doi.org/10.1016/j.cmet.2022.02.016
156 N Borcherding, W Jia, R Giwa, RL Field, JR Moley, BJ Kopecky, MM Chan, BQ Yang, JM Sabio, EC Walker, O Osorio, AL Bredemeyer, T Pietka, J Alexander-Brett, SC Morley, MN Artyomov, NA Abumrad, J Schilling, K Lavine, C Crewe, JR Brestoff. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab 2022; 34(10): 1499–1513.e8
https://doi.org/10.1016/j.cmet.2022.08.010
157 G Marcelin, EL Gautier, K Clément. Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol 2022; 84(1): 135–155
https://doi.org/10.1146/annurev-physiol-060721-092930
158 A Sorisky, AS Molgat, A Gagnon. Macrophage-induced adipose tissue dysfunction and the preadipocyte: should I stay (and differentiate) or should I go?. Adv Nutr 2013; 4(1): 67–75
https://doi.org/10.3945/an.112.003020
159 C Crewe, YA An, PE Scherer. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest 2017; 127(1): 74–82
https://doi.org/10.1172/JCI88883
160 G Marcelin, A Ferreira, Y Liu, M Atlan, J Aron-Wisnewsky, V Pelloux, Y Botbol, M Ambrosini, M Fradet, C Rouault, C Hénégar, JS Hulot, C Poitou, A Torcivia, R Nail-Barthelemy, JC Bichet, EL Gautier, K Clément. A PDGFRα-mediated switch toward CD9high adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metab 2017; 25(3): 673–685
https://doi.org/10.1016/j.cmet.2017.01.010
161 IK Vila, PM Badin, MA Marques, L Monbrun, C Lefort, L Mir, K Louche, V Bourlier, B Roussel, P Gui, J Grober, V Štich, L Rossmeislová, A Zakaroff-Girard, A Bouloumié, N Viguerie, C Moro, G Tavernier, D Langin. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep 2014; 7(4): 1116–1129
https://doi.org/10.1016/j.celrep.2014.03.062
162 M Tanaka, K Ikeda, T Suganami, C Komiya, K Ochi, I Shirakawa, M Hamaguchi, S Nishimura, I Manabe, T Matsuda, K Kimura, H Inoue, Y Inagaki, S Aoe, S Yamasaki, Y Ogawa. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun 2014; 5(1): 4982
https://doi.org/10.1038/ncomms5982
163 H Memetimin, D Li, K Tan, C Zhou, Y Liang, Y Wu, S Wang. Myeloid-specific deletion of thrombospondin 1 protects against inflammation and insulin resistance in long-term diet-induced obese male mice. Am J Physiol Endocrinol Metab 2018; 315(6): E1194–E1203
https://doi.org/10.1152/ajpendo.00273.2018
164 N Rabhi, K Desevin, AC Belkina, A Tilston-Lunel, X Varelas, MD Layne, SR Farmer. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci Alliance 2022; 5(5): e202101286
https://doi.org/10.26508/lsa.202101286
165 V Pellegrinelli, S Rodriguez-Cuenca, C Rouault, E Figueroa-Juarez, H Schilbert, S Virtue, JM Moreno-Navarrete, G Bidault, MC Vázquez-Borrego, AR Dias, B Pucker, M Dale, M Campbell, S Carobbio, YH Lin, M Vacca, J Aron-Wisnewsky, S Mora, MM Masiero, A Emmanouilidou, S Mukhopadhyay, G Dougan, Hoed M den, RJF Loos, JM Fernández-Real, D Chiarugi, K Clément, A Vidal-Puig. Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nat Metab 2022; 4(4): 476–494
https://doi.org/10.1038/s42255-022-00561-5
166 DH Madsen, D Leonard, A Masedunskas, A Moyer, HJ Jürgensen, DE Peters, P Amornphimoltham, A Selvaraj, SS Yamada, DA Brenner, S Burgdorf, LH Engelholm, N Behrendt, K Holmbeck, R Weigert, TH Bugge. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 2013; 202(6): 951–966
https://doi.org/10.1083/jcb.201301081
167 G Müller. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 2012; 5: 247–282
https://doi.org/10.2147/DMSO.S32923
168 AC Mallory, BJ Reinhart, MW Jones-Rhoades, G Tang, PD Zamore, MK Barton, DP Bartel. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 2004; 23(16): 3356–3364
https://doi.org/10.1038/sj.emboj.7600340
169 SL Ameres, J Martinez, R Schroeder. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007; 130(1): 101–112
https://doi.org/10.1016/j.cell.2007.04.037
170 W Ying, M Riopel, G Bandyopadhyay, Y Dong, A Birmingham, JB Seo, JM Ofrecio, J Wollam, A Hernandez-Carretero, W Fu, P Li, JM Olefsky. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 2017; 171(2): 372–384.e12
https://doi.org/10.1016/j.cell.2017.08.035
171 W Ying, H Gao, FCG Dos Reis, G Bandyopadhyay, JM Ofrecio, Z Luo, Y Ji, Z Jin, C Ly, JM Olefsky. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab 2021; 33(4): 781–790.e5
https://doi.org/10.1016/j.cmet.2020.12.019
172 F Tian, P Tang, Z Sun, R Zhang, D Zhu, J He, J Liao, Q Wan, J Shen. miR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression. J Diabetes Res 2020; 2020: 6894684
https://doi.org/10.1155/2020/6894684
173 L Li, H Zuo, X Huang, T Shen, W Tang, X Zhang, T An, L Dou, J Li. Bone marrow macrophage-derived exosomal miR-143-5p contributes to insulin resistance in hepatocytes by repressing MKP5. Cell Prolif 2021; 54(12): e13140
https://doi.org/10.1111/cpr.13140
174 B Qian, Y Yang, N Tang, J Wang, P Sun, N Yang, F Chen, T Wu, T Sun, Y Li, X Chang, Y Zhu, Y Zhang, X Han. M1 macrophage-derived exosomes impair beta cell insulin secretion via miR-212-5p by targeting SIRT2 and inhibiting Akt/GSK-3β/β-catenin pathway in mice. Diabetologia 2021; 64(9): 2037–2051
https://doi.org/10.1007/s00125-021-05489-1
175 S Nishimura, I Manabe, M Nagasaki, K Eto, H Yamashita, M Ohsugi, M Otsu, K Hara, K Ueki, S Sugiura, K Yoshimura, T Kadowaki, R Nagai. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009; 15(8): 914–920
https://doi.org/10.1038/nm.1964
176 J Surendar, I Karunakaran, SJ Frohberger, M Koschel, A Hoerauf, MP Hübner. Macrophages mediate increased CD8 T cell inflammation during weight loss in formerly obese mice. Front Endocrinol (Lausanne) 2020; 11: 257
https://doi.org/10.3389/fendo.2020.00257
177 CN Lumeng, JL Bodzin, AR Saltiel. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117(1): 175–184
https://doi.org/10.1172/JCI29881
178 JI Odegaard, A Chawla. Alternative macrophage activation and metabolism. Annu Rev Pathol 2011; 6(1): 275–297
https://doi.org/10.1146/annurev-pathol-011110-130138
179 DL Morris, KW Cho, JL Delproposto, KE Oatmen, LM Geletka, G Martinez-Santibanez, K Singer, CN Lumeng. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 2013; 62(8): 2762–2772
https://doi.org/10.2337/db12-1404
180 KW Cho, DL Morris, JL DelProposto, L Geletka, B Zamarron, G Martinez-Santibanez, KA Meyer, K Singer, RW O’Rourke, CN Lumeng. An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep 2014; 9(2): 605–617
https://doi.org/10.1016/j.celrep.2014.09.004
181 E Dalmas, N Venteclef, C Caer, C Poitou, I Cremer, J Aron-Wisnewsky, S Lacroix-Desmazes, J Bayry, SV Kaveri, K Clément, S André, M Guerre-Millo. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 2014; 63(6): 1966–1977
https://doi.org/10.2337/db13-1511
182 S Cinti, G Mitchell, G Barbatelli, I Murano, E Ceresi, E Faloia, S Wang, M Fortier, AS Greenberg, MS Obin. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46(11): 2347–2355
https://doi.org/10.1194/jlr.M500294-JLR200
183 SS Choe, JY Huh, IJ Hwang, JI Kim, JB Kim. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne) 2016; 7: 30
https://doi.org/10.3389/fendo.2016.00030
184 P Fischer-Posovszky, QA Wang, IW Asterholm, JM Rutkowski, PE Scherer. Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology 2011; 152(8): 3074–3081
https://doi.org/10.1210/en.2011-1031
185 I Murano, G Barbatelli, V Parisani, C Latini, G Muzzonigro, M Castellucci, S Cinti. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 2008; 49(7): 1562–1568
https://doi.org/10.1194/jlr.M800019-JLR200
186 AS Haka, VC Barbosa-Lorenzi, HJ Lee, DJ Falcone, CA Hudis, AJ Dannenberg, FR Maxfield. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation. J Lipid Res 2016; 57(6): 980–992
https://doi.org/10.1194/jlr.M064089
187 AA Hill, W Reid Bolus, AH Hasty. A decade of progress in adipose tissue macrophage biology. Immunol Rev 2014; 262(1): 134–152
https://doi.org/10.1111/imr.12216
188 AD Ruggiero, CC Key, K Kavanagh. Adipose tissue macrophage polarization in healthy and unhealthy obesity. Front Nutr 2021; 8: 625331
https://doi.org/10.3389/fnut.2021.625331
189 C Pang, Z Gao, J Yin, J Zhang, W Jia, J Ye. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 2008; 295(2): E313–E322
https://doi.org/10.1152/ajpendo.90296.2008
190 F Xu, D Burk, Z Gao, J Yin, X Zhang, J Weng, J Ye. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/- mice. Endocrinology 2012; 153(4): 1706–1716
https://doi.org/10.1210/en.2011-1667
191 Y Cao. Angiogenesis modulates adipogenesis and obesity. J Clin Invest 2007; 117(9): 2362–2368
https://doi.org/10.1172/JCI32239
192 Y Fan, J Ye, F Shen, Y Zhu, Y Yeghiazarians, W Zhu, Y Chen, MT Lawton, WL Young, GY Yang. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 2008; 28(1): 90–98
https://doi.org/10.1038/sj.jcbfm.9600509
193 G Ligresti, AC Aplin, P Zorzi, A Morishita, RF Nicosia. Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arterioscler Thromb Vasc Biol 2011; 31(5): 1151–1159
https://doi.org/10.1161/ATVBAHA.111.223917
194 D Mathis. Immunological goings-on in visceral adipose tissue. Cell Metab 2013; 17(6): 851–859
https://doi.org/10.1016/j.cmet.2013.05.008
195 CH Cho, YJ Koh, J Han, HK Sung, H Jong Lee, T Morisada, RA Schwendener, RA Brekken, G Kang, Y Oike, TS Choi, T Suda, OJ Yoo, GY Koh. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 2007; 100(4): e47–e57
https://doi.org/10.1161/01.RES.0000259564.92792.93
196 V Bourlier, A Zakaroff-Girard, A Miranville, Barros S De, M Maumus, C Sengenes, J Galitzky, M Lafontan, F Karpe, KN Frayn, A Bouloumié. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 2008; 117(6): 806–815
https://doi.org/10.1161/CIRCULATIONAHA.107.724096
197 Z Han, DL Boyle, L Chang, B Bennett, M Karin, L Yang, AM Manning, GS Firestein. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 2001; 108(1): 73–81
https://doi.org/10.1172/JCI12466
198 J Zhao, L Wang, X Dong, X Hu, L Zhou, Q Liu, B Song, Q Wu, L Li. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci Rep 2016; 6(1): 19670
https://doi.org/10.1038/srep19670
199 YR Chen, TH Tan. The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 2000; 16(4): 651–662
https://doi.org/10.3892/ijo.16.4.651
200 S Mitchell, J Vargas, A Hoffmann. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 2016; 8(3): 227–241
https://doi.org/10.1002/wsbm.1331
201 R Rios, HBFD Silva, NVQ Carneiro, AO Pires, TCB Carneiro, RDS Costa, CR Marques, MSS Machado, EDS Velozo, TMGD Silva, TMSD Silva, AS Conceição, NM Alcântara-Neves, CA Figueiredo. Solanum paniculatum L. decreases levels of inflammatory cytokines by reducing NFKB, TBET and GATA3 gene expression in vitro. J Ethnopharmacol 2017; 209: 32–40
https://doi.org/10.1016/j.jep.2017.07.014
202 C Peiró, Ó Lorenzo, R Carraro, CF Sánchez-Ferrer. IL-1β inhibition in cardiovascular complications associated to diabetes mellitus. Front Pharmacol 2017; 8: 363
https://doi.org/10.3389/fphar.2017.00363
203 CA Dinarello. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol 2011; 41(5): 1203–1217
https://doi.org/10.1002/eji.201141550
204 O Schultz, F Oberhauser, J Saech, A Rubbert-Roth, M Hahn, W Krone, M Laudes. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One 2010; 5(12): e14328
https://doi.org/10.1371/journal.pone.0014328
205 PC Taylor, M Feldmann. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5(10): 578–582
https://doi.org/10.1038/nrrheum.2009.181
206 Q Wang, H Li, Y Xiao, S Li, B Li, X Zhao, L Ye, B Guo, X Chen, Y Ding, C Bao. Locally controlled delivery of TNFα antibody from a novel glucose-sensitive scaffold enhances alveolar bone healing in diabetic conditions. J Control Release 2015; 206: 232–242
https://doi.org/10.1016/j.jconrel.2015.03.019
207 N Paquot, MJ Castillo, PJ Lefèbvre, AJ Scheen. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 2000; 85(3): 1316–1319
208 F Ofei, S Hurel, J Newkirk, M Sopwith, R Taylor. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996; 45(7): 881–885
https://doi.org/10.2337/diab.45.7.881
209 P Li, M Lu, MTA Nguyen, EJ Bae, J Chapman, D Feng, M Hawkins, JE Pessin, DD Sears, AK Nguyen, A Amidi, SM Watkins, U Nguyen, JM Olefsky. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J Biol Chem 2010; 285(20): 15333–15345
https://doi.org/10.1074/jbc.M110.100263
210 C Li, A Menoret, C Farragher, Z Ouyang, C Bonin, P Holvoet, AT Vella, B Zhou. Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight 2019; 5(10): e126453
https://doi.org/10.1172/jci.insight.126453
211 AK Sárvári, Hauwaert EL Van, LK Markussen, E Gammelmark, AB Marcher, MF Ebbesen, R Nielsen, JR Brewer, JGS Madsen, S Mandrup. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab 2021; 33(2): 437–453.e5
https://doi.org/10.1016/j.cmet.2020.12.004
212 RB Burl, VD Ramseyer, EA Rondini, R Pique-Regi, YH Lee, JG Granneman. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab 2018; 28(2): 300–309.e4
https://doi.org/10.1016/j.cmet.2018.05.025
213 DA Jaitin, L Adlung, CA Thaiss, A Weiner, B Li, H Descamps, P Lundgren, C Bleriot, Z Liu, A Deczkowska, H Keren-Shaul, E David, N Zmora, SM Eldar, N Lubezky, O Shibolet, DA Hill, MA Lazar, M Colonna, F Ginhoux, H Shapiro, E Elinav, I Amit. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent Manner. Cell 2019; 178(3): 686–698.e14
https://doi.org/10.1016/j.cell.2019.05.054
214 DA Hill, HW Lim, YH Kim, WY Ho, YH Foong, VL Nelson, HCB Nguyen, K Chegireddy, J Kim, A Habertheuer, P Vallabhajosyula, T Kambayashi, KJ Won, MA Lazar. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci U S A 2018; 115(22): E5096–E5105
https://doi.org/10.1073/pnas.1802611115
215 M Sharma, M Schlegel, EJ Brown, BE Sansbury, A Weinstock, MS Afonso, EM Corr, C van Solingen, LC Shanley, D Peled, R Ramasamy, AM Schmidt, M Spite, EA Fisher, KJ Moore. Netrin-1 alters adipose tissue macrophage fate and function in obesity. Immunometabolism 2019; 1(2): e190010
https://doi.org/10.20900/immunometab20190010
216 A Weinstock, EJ Brown, ML Garabedian, S Pena, M Sharma, J Lafaille, KJ Moore, EA Fisher. Single-cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells. Immunometabolism 2019; 1(1): e190008
https://doi.org/10.20900/immunometab20190008
217 X Xu, A Grijalva, A Skowronski, Eijk M van, MJ Serlie, AW Jr Ferrante. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab 2013; 18(6): 816–830
https://doi.org/10.1016/j.cmet.2013.11.001
218 MA Cottam, HL Caslin, NC Winn, AH Hasty. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat Commun 2022; 13(1): 2950
https://doi.org/10.1038/s41467-022-30646-4
219 M Saberi, NB Woods, C de Luca, S Schenk, JC Lu, G Bandyopadhyay, IM Verma, JM Olefsky. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 2009; 10(5): 419–429
https://doi.org/10.1016/j.cmet.2009.09.006
220 MC Arkan, AL Hevener, FR Greten, S Maeda, ZW Li, JM Long, A Wynshaw-Boris, G Poli, J Olefsky, M Karin. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191–198
https://doi.org/10.1038/nm1185
221 M Yu, H Zhou, J Zhao, N Xiao, S Roychowdhury, D Schmitt, B Hu, RM Ransohoff, CV Harding, AG Hise, SL Hazen, AL DeFranco, PL Fox, RE Morton, PE Dicorleto, M Febbraio, LE Nagy, JD Smith, JA Wang, X Li. MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. J Exp Med 2014; 211(5): 887–907
https://doi.org/10.1084/jem.20131314
222 X Li, Y Ren, K Chang, W Wu, HR Griffiths, S Lu, D Gao. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol 2023; 14: 1153915
https://doi.org/10.3389/fimmu.2023.1153915
223 T Lazarov, S Juarez-Carreño, N Cox, F Geissmann. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618(7966): 698–707
https://doi.org/10.1038/s41586-023-06002-x
224 E Dror, E Dalmas, DT Meier, S Wueest, J Thévenet, C Thienel, K Timper, TM Nordmann, S Traub, F Schulze, F Item, D Vallois, F Pattou, J Kerr-Conte, V Lavallard, T Berney, B Thorens, D Konrad, M Böni-Schnetzler, MY Donath. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 2017; 18(3): 283–292
https://doi.org/10.1038/ni.3659
225 A Takikawa, A Mahmood, A Nawaz, T Kado, K Okabe, S Yamamoto, A Aminuddin, S Senda, K Tsuneyama, M Ikutani, Y Watanabe, Y Igarashi, Y Nagai, K Takatsu, K Koizumi, J Imura, N Goda, M Sasahara, M Matsumoto, K Saeki, T Nakagawa, S Fujisaka, I Usui, K Tobe. HIF-1α in myeloid cells promotes adipose tissue remodeling toward insulin resistance. Diabetes 2016; 65(12): 3649–3659
https://doi.org/10.2337/db16-0012
226 C Branco-Price, N Zhang, M Schnelle, C Evans, DM Katschinski, D Liao, L Ellies, RS Johnson. Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell 2012; 21(1): 52–65
https://doi.org/10.1016/j.ccr.2011.11.017
227 Risk Factor Collaboration (NCD-RisC) NCD. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390(10113): 2627–2642
https://doi.org/10.1016/S0140-6736(17)32129-3
228 C Maffeis, F Olivieri, G Valerio, E Verduci, MR Licenziati, V Calcaterra, G Pelizzo, M Salerno, A Staiano, S Bernasconi, R Buganza, A Crinò, N Corciulo, D Corica, F Destro, Bonito P Di, Pietro M Di, Sessa A Di, L deSanctis, MF Faienza, G Filannino, D Fintini, E Fornari, R Franceschi, F Franco, A Franzese, LF Giusti, G Grugni, D Iafusco, L Iughetti, R Lera, R Limauro, A Maguolo, V Mancioppi, M Manco, Giudice EM Del, A Morandi, B Moro, E Mozzillo, I Rabbone, P Peverelli, B Predieri, S Purromuto, S Stagi, ME Street, R Tanas, G Tornese, GR Umano, M Wasniewska. The treatment of obesity in children and adolescents: consensus position statement of the Italian society of pediatric endocrinology and diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. Ital J Pediatr 2023; 49(1): 69
https://doi.org/10.1186/s13052-023-01458-z
229 S Wharton, DCW Lau, M Vallis, AM Sharma, L Biertho, D Campbell-Scherer, K Adamo, A Alberga, R Bell, N Boulé, E Boyling, J Brown, B Calam, C Clarke, L Crowshoe, D Divalentino, M Forhan, Y Freedhoff, M Gagner, S Glazer, C Grand, M Green, M Hahn, R Hawa, R Henderson, D Hong, P Hung, I Janssen, K Jacklin, C Johnson-Stoklossa, A Kemp, S Kirk, J Kuk, MF Langlois, S Lear, A McInnes, D Macklin, L Naji, P Manjoo, MP Morin, K Nerenberg, I Patton, S Pedersen, L Pereira, H Piccinini-Vallis, M Poddar, P Poirier, D Prud’homme, XR Salas, C Rueda-Clausen, S Russell-Mayhew, J Shiau, D Sherifali, J Sievenpiper, S Sockalingam, V Taylor, E Toth, L Twells, R Tytus, S Walji, L Walker, S Wicklum. Obesity in adults: a clinical practice guideline. CMAJ 2020; 192(31): E875–E891
https://doi.org/10.1503/cmaj.191707
230 X Wen, B Zhang, B Wu, H Xiao, Z Li, R Li, X Xu, T Li. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7(1): 298
https://doi.org/10.1038/s41392-022-01149-x
231 B Viollet, B Guigas, N Sanz Garcia, J Leclerc, M Foretz, F Andreelli. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012; 122(6): 253–270
https://doi.org/10.1042/CS20110386
232 R Song. Mechanism of metformin: a tale of two sites. Diabetes Care 2016; 39(2): 187–189
https://doi.org/10.2337/dci15-0013
233 X Feng, W Chen, X Ni, PJ Little, S Xu, L Tang, J Weng. Metformin, macrophage dysfunction and atherosclerosis. Front Immunol 2021; 12: 682853
https://doi.org/10.3389/fimmu.2021.682853
234 Y Jing, F Wu, D Li, L Yang, Q Li, R Li. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 2018; 461: 256–264
https://doi.org/10.1016/j.mce.2017.09.025
235 T Ma, X Tian, B Zhang, M Li, Y Wang, C Yang, J Wu, X Wei, Q Qu, Y Yu, S Long, JW Feng, C Li, C Zhang, C Xie, Y Wu, Z Xu, J Chen, Y Yu, X Huang, Y He, L Yao, L Zhang, M Zhu, W Wang, ZC Wang, M Zhang, Y Bao, W Jia, SY Lin, Z Ye, HL Piao, X Deng, CS Zhang, SC Lin. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022; 603(7899): 159–165
https://doi.org/10.1038/s41586-022-04431-8
236 G Rena, DG Hardie, ER Pearson. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577–1585
https://doi.org/10.1007/s00125-017-4342-z
237 F Zhuge, Y Ni, M Nagashimada, N Nagata, L Xu, N Mukaida, S Kaneko, T Ota. DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes 2016; 65(10): 2966–2979
https://doi.org/10.2337/db16-0317
238 W Zheng, J Zhou, S Song, W Kong, W Xia, L Chen, T Zeng. Dipeptidyl-peptidase 4 inhibitor sitagliptin ameliorates hepatic insulin resistance by modulating inflammation and autophagy in ob/ob mice. Int J Endocrinol 2018; 2018: 8309723
https://doi.org/10.1155/2018/8309723
239 L Xu, N Nagata, M Nagashimada, F Zhuge, Y Ni, G Chen, E Mayoux, S Kaneko, T Ota. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 2017; 20: 137–149
https://doi.org/10.1016/j.ebiom.2017.05.028
240 L Xu, N Nagata, G Chen, M Nagashimada, F Zhuge, Y Ni, Y Sakai, S Kaneko, T Ota. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Res Care 2019; 7(1): e000783
https://doi.org/10.1136/bmjdrc-2019-000783
241 J Shi, PW Kantoff, R Wooster, OC Farokhzad. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20–37
https://doi.org/10.1038/nrc.2016.108
242 EJ Hong, DG Choi, MS Shim. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B 2016; 6(4): 297–307
https://doi.org/10.1016/j.apsb.2016.01.007
243 L Kang, Z Gao, W Huang, M Jin, Q Wang. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B 2015; 5(3): 169–175
https://doi.org/10.1016/j.apsb.2015.03.001
244 W Ngo, S Ahmed, C Blackadar, B Bussin, Q Ji, SM Mladjenovic, Z Sepahi, WCW Chan. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022; 185: 114238
https://doi.org/10.1016/j.addr.2022.114238
245 AS Thakor, JV Jokerst, P Ghanouni, JL Campbell, E Mittra, SS Gambhir. Clinically approved nanoparticle imaging agents. J Nucl Med 2016; 57(12): 1833–1837
https://doi.org/10.2967/jnumed.116.181362
246 V Vijayan, S Uthaman, IK Park. Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy. Adv Exp Med Biol 2018; 1064: 45–59
https://doi.org/10.1007/978-981-13-0445-3_3
247 N Khatoon, Z Zhang, C Zhou, M Chu. Macrophage membrane coated nanoparticles: a biomimetic approach for enhanced and targeted delivery. Biomater Sci 2022; 10(5): 1193–1208
https://doi.org/10.1039/D1BM01664D
248 KK Hou, H Pan, GM Lanza, SA Wickline. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials 2013; 34(12): 3110–3119
https://doi.org/10.1016/j.biomaterials.2013.01.037
249 HF Zhou, H Yan, H Pan, KK Hou, A Akk, LE Springer, Y Hu, JS Allen, SA Wickline, CT Pham. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J Clin Invest 2014; 124(10): 4363–4374
https://doi.org/10.1172/JCI75673
250 H Yan, X Duan, H Pan, N Holguin, MF Rai, A Akk, LE Springer, SA Wickline, LJ Sandell, CT Pham. Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc Natl Acad Sci U S A 2016; 113(41): E6199–E6208
https://doi.org/10.1073/pnas.1608245113
251 KJ Strissel, Z Stancheva, H Miyoshi, JW 2nd Perfield, J DeFuria, Z Jick, AS Greenberg, MS Obin. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56(12): 2910–2918
https://doi.org/10.2337/db07-0767
252 T Shimaoka, N Kume, M Minami, K Hayashida, H Kataoka, T Kita, S Yonehara. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 2000; 275(52): 40663–40666
https://doi.org/10.1074/jbc.C000761200
253 C He, Y Hu, L Yin, C Tang, C Yin. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31(13): 3657–3666
https://doi.org/10.1016/j.biomaterials.2010.01.065
254 S Pustylnikov, D Sagar, P Jain, ZK Khan. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J Pharm Pharm Sci 2014; 17(3): 371–392
https://doi.org/10.18433/J3N590
255 L Ma, TW Liu, MA Wallig, IT Dobrucki, LW Dobrucki, ER Nelson, KS Swanson, AM Smith. Efficient targeting of adipose tissue macrophages in obesity with polysaccharide nanocarriers. ACS Nano 2016; 10(7): 6952–6962
https://doi.org/10.1021/acsnano.6b02878
256 KR Peterson, MA Cottam, AJ Kennedy, AH Hasty. Macrophage-targeted therapeutics for metabolic disease. Trends Pharmacol Sci 2018; 39(6): 536–546
https://doi.org/10.1016/j.tips.2018.03.001
257 GA Koning, G Storm. Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov Today 2003; 8(11): 482–483
https://doi.org/10.1016/S1359-6446(03)02699-0
258 JM Metselaar, G Storm. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv 2005; 2(3): 465–476
https://doi.org/10.1517/17425247.2.3.465
259 BS Ding, T Dziubla, VV Shuvaev, S Muro, VR Muzykantov. Advanced drug delivery systems that target the vascular endothelium. Mol Interv 2006; 6(2): 98–112
https://doi.org/10.1124/mi.6.2.7
260 S Hua, SY Wu. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol 2013; 4: 143
https://doi.org/10.3389/fphar.2013.00143
261 NK Jain, V Mishra, NK Mehra. Targeted drug delivery to macrophages. Expert Opin Drug Deliv 2013; 10(3): 353–367
https://doi.org/10.1517/17425247.2013.751370
262 JR Adair, PW Howard, JA Hartley, DG Williams, KA Chester. Antibody-drug conjugates — a perfect synergy. Expert Opin Biol Ther 2012; 12(9): 1191–1206
https://doi.org/10.1517/14712598.2012.693473
263 J Harper, S Mao, P Strout, A Kamal. Selecting an optimal antibody for antibody-drug conjugate therapy: internalization and intracellular localization. Methods Mol Biol 2013; 1045: 41–49
https://doi.org/10.1007/978-1-62703-541-5_3
264 M Kristiansen, JH Graversen, C Jacobsen, O Sonne, HJ Hoffman, SK Law, SK Moestrup. Identification of the haemoglobin scavenger receptor. Nature 2001; 409(6817): 198–201
https://doi.org/10.1038/35051594
265 A Etzerodt, MB Maniecki, JH Graversen, HJ Møller, VP Torchilin, SK Moestrup. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release 2012; 160(1): 72–80
https://doi.org/10.1016/j.jconrel.2012.01.034
266 S Chono, Y Tauchi, Y Deguchi, K Morimoto. Efficient drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by dexamethasone incorporated into liposomes in atherogenic mice. J Drug Target 2005; 13(4): 267–276
https://doi.org/10.1080/10611860500159030
267 AM Gibbons, NG McElvaney, CC Taggart, SA Cryan. Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul 2009; 26(6): 513–522
https://doi.org/10.1080/02652040802466535
268 M Ponzoni, F Pastorino, D Di Paolo, P Perri, C Brignole. Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci 2018; 19(7): 1953
https://doi.org/10.3390/ijms19071953
269 V Ghinoi, ML Brandi. Clodronate: mechanisms of action on bone remodelling and clinical use in osteometabolic disorders. Expert Opin Pharmacother 2002; 3(11): 1643–1656
https://doi.org/10.1517/14656566.3.11.1643
270 N van Rooijen, E van Kesteren-Hendrikx. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 2002; 12(1–2): 81–94
https://doi.org/10.1081/LPR-120004780
271 N Van Rooijen, A Sanders. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174(1–2): 83–93
https://doi.org/10.1016/0022-1759(94)90012-4
272 L Bu, M Gao, S Qu, D Liu. Intraperitoneal injection of clodronate liposomes eliminates visceral adipose macrophages and blocks high-fat diet-induced weight gain and development of insulin resistance. AAPS J 2013; 15(4): 1001–1011
https://doi.org/10.1208/s12248-013-9501-7
273 CA Curat, A Miranville, C Sengenès, M Diehl, C Tonus, R Busse, A Bouloumié. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 2004; 53(5): 1285–1292
https://doi.org/10.2337/diabetes.53.5.1285
274 K Takahashi, S Mizuarai, H Araki, S Mashiko, A Ishihara, A Kanatani, H Itadani, H Kotani. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 2003; 278(47): 46654–46660
https://doi.org/10.1074/jbc.M309895200
275 P Sartipy, DJ Loskutoff. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 2003; 100(12): 7265–7270
https://doi.org/10.1073/pnas.1133870100
276 T Christiansen, B Richelsen, JM Bruun. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond) 2005; 29(1): 146–150
https://doi.org/10.1038/sj.ijo.0802839
277 I Dahlman, M Kaaman, T Olsson, GD Tan, AS Bickerton, K Wåhlén, J Andersson, EA Nordström, L Blomqvist, A Sjögren, M Forsgren, A Attersand, P Arner. A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects. J Clin Endocrinol Metab 2005; 90(10): 5834–5840
https://doi.org/10.1210/jc.2005-0369
278 GB Di Gregorio, A Yao-Borengasser, N Rasouli, V Varma, T Lu, LM Miles, G Ranganathan, CA Peterson, RE McGehee, PA Kern. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 2005; 54(8): 2305–2313
https://doi.org/10.2337/diabetes.54.8.2305
279 A Chen, S Mumick, C Zhang, J Lamb, H Dai, D Weingarth, J Mudgett, H Chen, DJ MacNeil, ML Reitman, S Qian. Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 2005; 13(8): 1311–1320
https://doi.org/10.1038/oby.2005.159
280 GD Brown, S Gordon. Immune recognition. A new receptor for beta-glucans. Nature 2001; 413(6851): 36–37
https://doi.org/10.1038/35092620
281 GD Brown, PR Taylor, DM Reid, JA Willment, DL Williams, L Martinez-Pomares, SY Wong, S Gordon. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 2002; 196(3): 407–412
https://doi.org/10.1084/jem.20020470
282 M Aouadi, GJ Tesz, SM Nicoloro, M Wang, M Chouinard, E Soto, GR Ostroff, MP Czech. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458(7242): 1180–1184
https://doi.org/10.1038/nature07774
283 ER Soto, O O’Connell, F Dikengil, PJ Peters, PR Clapham, GR Ostroff. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. J Drug Deliv 2016; 2016: 8520629
https://doi.org/10.1155/2016/8520629
284 TK Upadhyay, N Fatima, D Sharma, V Saravanakumar, R Sharma. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages. EXCLI J 2017; 16: 210–228
285 V Mishra, U Gupta, NK Jain. Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Pharmazie 2010; 65(12): 891–895
286 PV Kumar, A Asthana, T Dutta, NK Jain. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006; 14(8): 546–556
https://doi.org/10.1080/10611860600825159
287 SB Yong, Y Song, YH Kim. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes. Biomaterials 2017; 148: 81–89
https://doi.org/10.1016/j.biomaterials.2017.09.023
288 B Caballero. Humans against obesity: who will win?. Adv Nutr 2019; 10(suppl_1): S4–S9
https://doi.org/10.1093/advances/nmy055
289 M Green, K Arora, S Prakash. Microbial medicine: prebiotic and probiotic functional foods to target obesity and metabolic syndrome. Int J Mol Sci 2020; 21(8): 2890
https://doi.org/10.3390/ijms21082890
290 JE Campbell, DJ Drucker. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17(6): 819–837
https://doi.org/10.1016/j.cmet.2013.04.008
291 DJ Drucker, JF Habener, JJ Holst. Discovery, characterization, and clinical development of the glucagon-like peptides. J Clin Invest 2017; 127(12): 4217–4227
https://doi.org/10.1172/JCI97233
292 R Hachiya, M Tanaka, M Itoh, T Suganami. Molecular mechanism of crosstalk between immune and metabolic systems in metabolic syndrome. Inflamm Regen 2022; 42(1): 13
https://doi.org/10.1186/s41232-022-00198-7
293 A Das, M Sinha, S Datta, M Abas, S Chaffee, CK Sen, S Roy. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 2015; 185(10): 2596–2606
https://doi.org/10.1016/j.ajpath.2015.06.001
294 M Locati, A Mantovani, A Sica. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013; 120: 163–184
https://doi.org/10.1016/B978-0-12-417028-5.00006-5
295 M Kratz, BR Coats, KB Hisert, D Hagman, V Mutskov, E Peris, KQ Schoenfelt, JN Kuzma, I Larson, PS Billing, RW Landerholm, M Crouthamel, D Gozal, S Hwang, PK Singh, L Becker. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 2014; 20(4): 614–625
https://doi.org/10.1016/j.cmet.2014.08.010
296 BR Coats, KQ Schoenfelt, VC Barbosa-Lorenzi, E Peris, C Cui, A Hoffman, G Zhou, S Fernandez, L Zhai, BA Hall, AS Haka, AM Shah, CA Reardon, MJ Brady, CJ Rhodes, FR Maxfield, L Becker. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep 2017; 20(13): 3149–3161
https://doi.org/10.1016/j.celrep.2017.08.096
297 J Vijay, MF Gauthier, RL Biswell, DA Louiselle, JJ Johnston, WA Cheung, B Belden, A Pramatarova, L Biertho, M Gibson, MM Simon, H Djambazian, A Staffa, G Bourque, A Laitinen, J Nystedt, MC Vohl, JD Fraser, T Pastinen, A Tchernof, E Grundberg. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2020; 2(1): 97–109
https://doi.org/10.1038/s42255-019-0152-6
298 L Boutens, GJ Hooiveld, S Dhingra, RA Cramer, MG Netea, R Stienstra. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 2018; 61(4): 942–953
https://doi.org/10.1007/s00125-017-4526-6
[1] Hongyan Qi, Chunyan Hu, Jie Zhang, Lin Lin, Shuangyuan Wang, Hong Lin, Xiaojing Jia, Yuanyue Zhu, Yi Zhang, Xueyan Wu, Mian Li, Min Xu, Yu Xu, Tiange Wang, Zhiyun Zhao, Weiqing Wang, Yufang Bi, Meng Dai, Yuhong Chen, Jieli Lu. Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture[J]. Front. Med., 2024, 18(1): 192-203.
[2] Fang Wang, Yuxing Liu, Yi Dong, Meifang Zhao, Hao Huang, Jieyuan Jin, Liangliang Fan, Rong Xiang. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1[J]. Front. Med., 2024, 18(1): 180-191.
[3] Yu Han, Yu Zhang, Kelan Yuan, Yaying Wu, Xiuming Jin, Xiaodan Huang. Hyperosmolarity promotes macrophage pyroptosis by driving the glycolytic reprogramming of corneal epithelial cells in dry eye disease[J]. Front. Med., 2023, 17(4): 781-795.
[4] Yuqiu Han, Lanjuan Li, Baohong Wang. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives[J]. Front. Med., 2022, 16(5): 667-685.
[5] Yves Ingenbleek. Plasma transthyretin is a nutritional biomarker in human morbidities[J]. Front. Med., 2022, 16(4): 540-550.
[6] Qiaoli Shi, Fei Xia, Qixin Wang, Fulong Liao, Qiuyan Guo, Chengchao Xu, Jigang Wang. Discovery and repurposing of artemisinin[J]. Front. Med., 2022, 16(1): 1-9.
[7] Yalin Liu, Xianghang Luo. New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation[J]. Front. Med., 2022, 16(1): 17-24.
[8] Manling Liu, Zhaoling Shi, Yue Yin, Yishi Wang, Nan Mu, Chen Li, Heng Ma, Qiong Wang. Particulate matter 2.5 triggers airway inflammation and bronchial hyperresponsiveness in mice by activating the SIRT2--p65 pathway[J]. Front. Med., 2021, 15(5): 750-766.
[9] Weijian Hang, Chen Chen, Xin A. Zhang, Dao Wen Wang. Endothelial dysfunction in COVID-19 calls for immediate attention: the emerging roles of the endothelium in inflammation caused by SARS-CoV-2[J]. Front. Med., 2021, 15(4): 638-643.
[10] Lingli Cai, Jun Yin, Xiaojing Ma, Yifei Mo, Cheng Li, Wei Lu, Yuqian Bao, Jian Zhou, Weiping Jia. Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial[J]. Front. Med., 2021, 15(3): 460-471.
[11] Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen. White blood cell count and the incidence of hyperuricemia: insights from a community-based study[J]. Front. Med., 2019, 13(6): 741-746.
[12] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[13] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[14] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[15] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed