Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (6) : 1068-1079    https://doi.org/10.1007/s11684-023-1037-3
Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)
Qiuyu Cao1,2, Yi Ding1,2, Yu Xu1,2, Mian Li1,2, Ruizhi Zheng1,2, Zhujun Cao3, Weiqing Wang1,2, Yufang Bi1,2, Guang Ning1,2, Yiping Xu4(), Ren Zhao5()
1. Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
3. Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
4. Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
5. Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
 Download: PDF(1051 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir–ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir–ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir–ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China’s homegrown anti-COVID-19 drugs.

Keywords COVID-19      antiviral drugs      mindeudesivir     
Corresponding Author(s): Yiping Xu,Ren Zhao   
Just Accepted Date: 08 December 2023   Online First Date: 29 December 2023    Issue Date: 06 February 2024
 Cite this article:   
Qiuyu Cao,Yi Ding,Yu Xu, et al. Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)[J]. Front. Med., 2023, 17(6): 1068-1079.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1037-3
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I6/1068
Generic name (brand name)Drug typeTarget virus life cycle stageEligible patientsStatus
RdRp inhibitors
Azvudine (FNC)Small molecule (oral)RNA synthesisAdults who have moderate COVID-19Conditional approval in China
Remdesivir (Veklury)Small molecule (i.v.)RNA synthesisAdults and children (28 days of age and older), weighing at least 3 kg, who are hospitalized or not and have mild-to-moderate COVID-19, are within 7 days of symptom onset, and are at high risk for severe COVID-19Approved by the United States FDA, EUA in many countries, not approved in China
Molnupiravir (Lagevrio)Small molecule (oral)RNA synthesisAdults who have mild-to-moderate COVID-19, are within 5 days of symptom onset, are at high risk for severe COVID-19, and for whom alternative COVID-19 treatment options approved or authorized by FDA are not accessible or clinically appropriateApproved in UK, EUA in many countries, conditional approval in China
Mindeudesivir (Mindewei, VV116)Small molecule (oral)RNA synthesisAdults who have mild-to-moderate COVID-19 at high risk for progression to severe COVID-19EUA in Uzbekistan, conditional approval in China
Faripiravir (Favivir)Small molecule (oral)RNA synthesisAdults who have mild-to-moderate COVID-19Approved in India, not approved in China
Mpro inhibitors
Nirmatrelvir–ritonavir (Paxlovid)Small molecule (oral)Proteolytic processingAdults and children (12 years and older) who have mild-to-moderate COVID-19, are within 5 days of symptom onset, and have one or more risk factors for severe COVID-19Approved in UK and the United States, EUA in many countries, conditional approval in China
Simnotrelvir–ritonavir (Xiannuoxin)Small molecule (oral)Proteolytic processingAdults who have mild-to-moderate COVID-19 and are within 3 days of symptom onsetConditional approval in China
LeritrelvirSmall molecule (oral)Proteolytic processingAdults who have mild-to-moderate COVID-19 and are better off receiving treatment within 2 days of symptom onsetConditional approval in China
Tab.1  Small-molecule anti-SARS-CoV-2 drugs for the management of COVID-19
Fig.1  Life cycle of SARS-CoV-2 in host cells and the mechanism of action for small-molecule antiviral drugs. The life cycle of SARS-CoV-2 in host cells includes: (1) viral entry through the interaction between the viral S protein and the cellular receptor angiotensin-converting enzyme 2 (ACE2); (2) viral genome release and translation into the viral replicase polyproteins; (3) viral protease cleavage; (4) viral genome replication mediated by the viral replication complex, including the RNA-dependent RNA polymerase (RdRp); (5) packaging of viral genomes and translation of viral structural proteins to assemble viral nucleocapsids; (6) virion release through exocytosis. Current small-molecule antiviral drugs function as either viral protease inhibitors to inhibit viral/endosome membrane fusion or viral polypeptide maturation (nirmatrelvir, simnotrelvir, leritrelvir), or nucleoside/nucleotide analogs to inhibit viral genome replication (remdesivir, molnupiravir, azvudine, mindeudesivir). Reprinted with permission from the reference [16]. Copyright 2020 American Chemical Society.
Fig.2  Chemical structures of Mpro inhibitors nirmatrelvir, simnotrelvir, and leritrelvir. (A) Chemical structure of nirmatrelvir (reprinted from the reference [29] under the terms of the Creative Commons Attribution License). (B) Chemical structure of simnotrelvir (reprinted with permission from ACS Pharmacol. Transl. Sci. 2023, 6, 9, 1306–1309. Copyright 2023 American Chemical Society). (C) Chemical structure of leritrelvir (reprinted from the reference [45] under the terms of the Creative Commons Attribution License).
Fig.3  Chemical structure of GS-441524 derivative mindeudesivir (VV116). Mindeudesivir (VV116) is a hydrobromide of the tri-isobutyrate ester prodrug of the 7-deuterated GS-441524 analog (X1). Reprinted from the reference [47] under the terms of the Creative Commons Attribution License.
InterventionsParticipantsClinicalTrials.gov identifier (year of trial initiation)Number of participantsStatus, results presented if completed and published
Mindeudesivir (25, 200, 400, 800, 1200 mg)Chinese healthy participantsNCT05227768 (2021)38Phase I study completed. In a single ascending-dose study, AUC and Cmax increased in an approximately dose-proportional manner in the dose range of 25–800 mg. T1/2 was within 4.80–6.95 h
Mindeudesivir (200, 400, 600 mg)Chinese healthy participantsNCT05201690 (2021)36Phase I study completed. In the multiple ascending-dose study, the accumulation ratio for Cmax and AUC indicated a slight accumulation upon repeated dosing of mindeudesivir
MindeudesivirChinese healthy participantsNCT05221138 (2021)12Phase I study completed. In the food-effect study, the standard meal had no effect on the Cmax and AUC of mindeudesivir
Mindeudesivir (200 mg, BID; 400 mg, BID; 600 mg, BID)Caucasian healthy participantsNCT05355077 (2022)27Phase I study was withdrawn due to a development strategy adjustment
Mindeudesivir vs. placeboParticipants with mild/moderate COVID-19NCT05242042 (2022)1310Phase II/III study to evaluate the efficacy, safety, and pharmacokinetics of mindeudesivir is currently recruiting
Mindeudesivir vs. PaxlovidParticipants with mild/moderate COVID-19NCT05341609 (2022)822Phase III study to evaluate the efficacy and safety of early COVID-19 treatment was completed. Mindeudesivir was noninferior to Paxlovid with respect to the time to sustained clinical recovery, with fewer safety concerns
Mindeudesivir vs. favipiravirParticipants with moderate/severe COVID-19NCT05279235 (2022)290Phase III study was terminated due to development strategy adjustment
Mindeudesivir vs. placeboParticipants with mild/moderate COVID-19NCT05582629 (2022)1369Phase III study to evaluate the efficacy and safety of mindeudesivir was completed
Tab.2  Ongoing and completed clinical studies of mindeudesivir (based on a systematic search of ClinicalTrials.gov (accessed May 5, 2023))
1 Cumulative Infection Collaborators COVID-19. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet 2022; 399(10344): 2351–2380
https://doi.org/10.1016/S0140-6736(22)00484-6
2 E Boehm, I Kronig, RA Neher, I Eckerle, P Vetter, L; Geneva Centre for Emerging Viral Diseases Kaiser. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 2021; 27(8): 1109–1117
https://doi.org/10.1016/j.cmi.2021.05.022
3 R Viana, S Moyo, DG Amoako, H Tegally, C Scheepers, CL Althaus, UJ Anyaneji, PA Bester, MF Boni, M Chand, WT Choga, R Colquhoun, M Davids, K Deforche, D Doolabh, L du Plessis, S Engelbrecht, J Everatt, J Giandhari, M Giovanetti, D Hardie, V Hill, NY Hsiao, A Iranzadeh, A Ismail, C Joseph, R Joseph, L Koopile, SL Kosakovsky Pond, MUG Kraemer, L Kuate-Lere, O Laguda-Akingba, O Lesetedi-Mafoko, RJ Lessells, S Lockman, AG Lucaci, A Maharaj, B Mahlangu, T Maponga, K Mahlakwane, Z Makatini, G Marais, D Maruapula, K Masupu, M Matshaba, S Mayaphi, N Mbhele, MB Mbulawa, A Mendes, K Mlisana, A Mnguni, T Mohale, M Moir, K Moruisi, M Mosepele, G Motsatsi, MS Motswaledi, T Mphoyakgosi, N Msomi, PN Mwangi, Y Naidoo, N Ntuli, M Nyaga, L Olubayo, S Pillay, B Radibe, Y Ramphal, U Ramphal, JE San, L Scott, R Shapiro, L Singh, P Smith-Lawrence, W Stevens, A Strydom, K Subramoney, N Tebeila, D Tshiabuila, J Tsui, S van Wyk, S Weaver, CK Wibmer, E Wilkinson, N Wolter, AE Zarebski, B Zuze, D Goedhals, W Preiser, F Treurnicht, M Venter, C Williamson, OG Pybus, J Bhiman, A Glass, DP Martin, A Rambaut, S Gaseitsiwe, A von Gottberg, T de Oliveira. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603(7902): 679–686
https://doi.org/10.1038/s41586-022-04411-y
4 Y Cao, J Wang, F Jian, T Xiao, W Song, A Yisimayi, W Huang, Q Li, P Wang, R An, J Wang, Y Wang, X Niu, S Yang, H Liang, H Sun, T Li, Y Yu, Q Cui, S Liu, X Yang, S Du, Z Zhang, X Hao, F Shao, R Jin, X Wang, J Xiao, Y Wang, XS Xie. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663
https://doi.org/10.1038/s41586-021-04385-3
5 L Wang, M Møhlenberg, P Wang, H Zhou. Immune evasion of neutralizing antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev 2023; 70: 13–25
https://doi.org/10.1016/j.cytogfr.2023.03.001
6 L Zheng, S Liu, F Lu. Impact of national Omicron outbreak at the end of 2022 on the future outlook of COVID-19 in China. Emerg Microbes Infect 2023; 12(1): 2191738
https://doi.org/10.1080/22221751.2023.2191738
7 H Yang, Z Rao. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19(11): 685–700
https://doi.org/10.1038/s41579-021-00630-8
8 G Li, R Hilgenfeld, R Whitley, E De Clercq. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22(6): 449–475
https://doi.org/10.1038/s41573-023-00672-y
9 JH Beigel, KM Tomashek, LE Dodd, AK Mehta, BS Zingman, AC Kalil, E Hohmann, HY Chu, A Luetkemeyer, S Kline, de Castilla D Lopez, RW Finberg, K Dierberg, V Tapson, L Hsieh, TF Patterson, R Paredes, DA Sweeney, WR Short, G Touloumi, DC Lye, N Ohmagari, MD Oh, GM Ruiz-Palacios, T Benfield, G Fätkenheuer, MG Kortepeter, RL Atmar, CB Creech, J Lundgren, AG Babiker, S Pett, JD Neaton, TH Burgess, T Bonnett, M Green, M Makowski, A Osinusi, S Nayak, HC; ACTT-1 Study Group Members Lane. Remdesivir for the treatment of Covid-19—final report. N Engl J Med 2020; 383(19): 1813–1826
https://doi.org/10.1056/NEJMoa2007764
10 RL Gottlieb, CE Vaca, R Paredes, J Mera, BJ Webb, G Perez, G Oguchi, P Ryan, BU Nielsen, M Brown, A Hidalgo, Y Sachdeva, S Mittal, O Osiyemi, J Skarbinski, K Juneja, RH Hyland, A Osinusi, S Chen, G Camus, M Abdelghany, S Davies, N Behenna-Renton, F Duff, FM Marty, MJ Katz, AA Ginde, SM Brown, JT Schiffer, JA; GS-US-540-9012 (PINETREE) Investigators Hill. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022; 386(4): 305–315
https://doi.org/10.1056/NEJMoa2116846
11 J Hammond, H Leister-Tebbe, A Gardner, P Abreu, W Bao, W Wisemandle, M Baniecki, VM Hendrick, B Damle, A Simón-Campos, R Pypstra, JM; EPIC-HR Investigators Rusnak. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022; 386(15): 1397–1408
https://doi.org/10.1056/NEJMoa2118542
12 P Li, Y Wang, M Lavrijsen, MM Lamers, AC de Vries, RJ Rottier, MJ Bruno, MP Peppelenbosch, BL Haagmans, Q Pan. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res 2022; 32(3): 322–324
https://doi.org/10.1038/s41422-022-00618-w
13 B Yu, J Chang. The first Chinese oral anti-COVID-19 drug azvudine launched. Innovation (Camb) 2022; 3(6): 100321
https://doi.org/10.1016/j.xinn.2022.100321
14 Y Xie, W Yin, Y Zhang, W Shang, Z Wang, X Luan, G Tian, HA Aisa, Y Xu, G Xiao, J Li, H Jiang, S Zhang, L Zhang, HE Xu, J Shen. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res 2021; 31(11): 1212–1214
https://doi.org/10.1038/s41422-021-00570-1
15 Z Cao, W Gao, H Bao, H Feng, S Mei, P Chen, Y Gao, Z Cui, Q Zhang, X Meng, H Gui, W Wang, Y Jiang, Z Song, Y Shi, J Sun, Y Zhang, Q Xie, Y Xu, G Ning, Y Gao, R Zhao. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med 2023; 388(5): 406–417
https://doi.org/10.1056/NEJMoa2208822
16 RT Eastman, JS Roth, KR Brimacombe, A Simeonov, M Shen, S Patnaik, MD Hall. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672–683
https://doi.org/10.1021/acscentsci.0c00489
17 US Food and Drug Administration. FDA approves first oral antiviral for treatment of COVID-19 in adults. Available at the website of FDA
18 US Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization for molnupiravir. Available at the website of FDA
19 CJ Gordon, EP Tchesnokov, E Woolner, JK Perry, JY Feng, DP Porter, M Götte. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295(20): 6785–6797
https://doi.org/10.1074/jbc.RA120.013679
20 A Cho, OL Saunders, T Butler, L Zhang, J Xu, JE Vela, JY Feng, AS Ray, CU Kim. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett 2012; 22(8): 2705–2707
https://doi.org/10.1016/j.bmcl.2012.02.105
21 T CihlarRL Mackman. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir Ther 2022; 27(2): 13596535221082773 doi:10.1177/13596535221082773
pmid: 35499114
22 SA Olender, KK Perez, AS Go, B Balani, EG Price-Haywood, NS Shah, S Wang, TL Walunas, S Swaminathan, J Slim, B Chin, Wit S De, SM Ali, Viladomiu A Soriano, P Robinson, RL Gottlieb, TYO Tsang, IH Lee, H Hu, RH Haubrich, AP Chokkalingam, L Lin, L Zhong, BN Bekele, R Mera-Giler, C Phulpin, H Edgar, J Gallant, H Diaz-Cuervo, LE Smith, AO Osinusi, DM Brainard, JI; GS-US-540–5773 Bernardino, Investigators GS-US-540–5807. Remdesivir for severe coronavirus disease 2019 (COVID-19) versus a cohort receiving standard of care. Clin Infect Dis 2021; 73(11): e4166–e4174
https://doi.org/10.1093/cid/ciaa1041
23 Solidarity Trial Consortium WHO. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022; 399(10339): 1941–1953
https://doi.org/10.1016/S0140-6736(22)00519-0
24 Y Wang, D Zhang, G Du, R Du, J Zhao, Y Jin, S Fu, L Gao, Z Cheng, Q Lu, Y Hu, G Luo, K Wang, Y Lu, H Li, S Wang, S Ruan, C Yang, C Mei, Y Wang, D Ding, F Wu, X Tang, X Ye, Y Ye, B Liu, J Yang, W Yin, A Wang, G Fan, F Zhou, Z Liu, X Gu, J Xu, L Shang, Y Zhang, L Cao, T Guo, Y Wan, H Qin, Y Jiang, T Jaki, FG Hayden, PW Horby, B Cao, C Wang. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569–1578
https://doi.org/10.1016/S0140-6736(20)31022-9
25 LD Saravolatz, S Depcinski, M Sharma. Molnupiravir and nirmatrelvir-ritonavir: oral coronavirus disease 2019 antiviral drugs. Clin Infect Dis 2023; 76(1): 165–171
https://doi.org/10.1093/cid/ciac180
26 TP Sheahan, AC Sims, S Zhou, RL Graham, AJ Pruijssers, ML Agostini, SR Leist, A Schäfer, KH 3rd Dinnon, LJ Stevens, JD Chappell, X Lu, TM Hughes, AS George, CS Hill, SA Montgomery, AJ Brown, GR Bluemling, MG Natchus, M Saindane, AA Kolykhalov, G Painter, J Harcourt, A Tamin, NJ Thornburg, R Swanstrom, MR Denison, RS Baric. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883
https://doi.org/10.1126/scitranslmed.abb5883
27 Bernal A Jayk, da Silva MM Gomes, DB Musungaie, E Kovalchuk, A Gonzalez, Reyes V Delos, A Martín-Quirós, Y Caraco, A Williams-Diaz, ML Brown, J Du, A Pedley, C Assaid, J Strizki, JA Grobler, HH Shamsuddin, R Tipping, H Wan, A Paschke, JR Butterton, MG Johnson, Anda C; MOVe-OUT Study Group De. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2022; 386(6): 509–520
https://doi.org/10.1056/NEJMoa2116044
28 National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at the website of NIH
29 DR Owen, CMN Allerton, AS Anderson, L Aschenbrenner, M Avery, S Berritt, B Boras, RD Cardin, A Carlo, KJ Coffman, A Dantonio, L Di, H Eng, R Ferre, KS Gajiwala, SA Gibson, SE Greasley, BL Hurst, EP Kadar, AS Kalgutkar, JC Lee, J Lee, W Liu, SW Mason, S Noell, JJ Novak, RS Obach, K Ogilvie, NC Patel, M Pettersson, DK Rai, MR Reese, MF Sammons, JG Sathish, RSP Singh, CM Steppan, AE Stewart, JB Tuttle, L Updyke, PR Verhoest, L Wei, Q Yang, Y Zhu. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374(6575): 1586–1593
https://doi.org/10.1126/science.abl4784
30 HM Mengist, X Fan, T Jin. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct Target Ther 2020; 5(1): 67
https://doi.org/10.1038/s41392-020-0178-y
31 Y Zhao, C Fang, Q Zhang, R Zhang, X Zhao, Y Duan, H Wang, Y Zhu, L Feng, J Zhao, M Shao, X Yang, L Zhang, C Peng, K Yang, D Ma, Z Rao, H Yang. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell 2022; 13(9): 689–693
https://doi.org/10.1007/s13238-021-00883-2
32 F Lamontagne, A Agarwal, B Rochwerg, RA Siemieniuk, T Agoritsas, L Askie, L Lytvyn, YS Leo, H Macdonald, L Zeng, W Amin, ARA da Silva, D Aryal, FAJ Barragan, FJ Bausch, E Burhan, CS Calfee, M Cecconi, B Chacko, D Chanda, VQ Dat, A De Sutter, B Du, S Freedman, H Geduld, P Gee, M Gotte, N Harley, M Hashimi, B Hunt, F Jehan, SK Kabra, S Kanda, YJ Kim, N Kissoon, S Krishna, K Kuppalli, A Kwizera, M Lado Castro-Rial, T Lisboa, R Lodha, I Mahaka, H Manai, M Mendelson, GB Migliori, G Mino, E Nsutebu, J Preller, N Pshenichnaya, N Qadir, P Relan, S Sabzwari, R Sarin, M Shankar-Hari, M Sharland, Y Shen, SS Ranganathan, JP Souza, M Stegemann, R Swanstrom, S Ugarte, T Uyeki, S Venkatapuram, D Vuyiseka, A Wijewickrama, L Tran, D Zeraatkar, JJ Bartoszko, L Ge, R Brignardello-Petersen, A Owen, G Guyatt, J Diaz, L Kawano-Dourado, M Jacobs, PO Vandvik. A living WHO guideline on drugs for covid-19. BMJ 2020; 370: m3379
https://doi.org/10.1136/bmj.m3379
33 ME Charness, K Gupta, G Stack, J Strymish, E Adams, DC Lindy, H Mohri, DD Ho. Rebound of SARS-CoV-2 infection after nirmatrelvir-ritonavir treatment. N Engl J Med 2022; 387(11): 1045–1047
https://doi.org/10.1056/NEJMc2206449
34 L Sun, Y Peng, W Yu, Y Zhang, L Liang, C Song, J Hou, Y Qiao, Q Wang, J Chen, M Wu, D Zhang, E Li, Z Han, Q Zhao, X Jin, B Zhang, Z Huang, J Chai, JH Wang, J Chang. Mechanistic insight into antiretroviral potency of 2′-deoxy-2′-β-fluoro-4′-azidocytidine (FNC) with a long-lasting effect on HIV-1 prevention. J Med Chem 2020; 63(15): 8554–8566
https://doi.org/10.1021/acs.jmedchem.0c00940
35 B Yu, J Chang. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Signal Transduct Target Ther 2020; 5(1): 236
https://doi.org/10.1038/s41392-020-00351-z
36 RR Wang, QH Yang, RH Luo, YM Peng, SX Dai, XJ Zhang, H Chen, XQ Cui, YJ Liu, JF Huang, JB Chang, YT Zheng. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PLoS One 2014; 9(8): e105617
https://doi.org/10.1371/journal.pone.0105617
37 Z Ren, H Luo, Z Yu, J Song, L Liang, L Wang, H Wang, G Cui, Y Liu, J Wang, Q Li, Z Zeng, S Yang, G Pei, Y Zhu, W Song, W Yu, C Song, L Dong, C Hu, J Du, J Chang. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study. Adv Sci (Weinh) 2020; 7(19): 2001435
https://doi.org/10.1002/advs.202001435
38 KW Zhu. Efficacy and safety evaluation of azvudine in the prospective treatment of COVID-19 based on four phase III clinical trials. Front Pharmacol 2023; 14: 1228548
https://doi.org/10.3389/fphar.2023.1228548
39 Y Sun, L Jin, Y Dian, M Shen, F Zeng, X Chen, G Deng. Oral azvudine for hospitalised patients with COVID-19 and pre-existing conditions: a retrospective cohort study. EClinicalMedicine 2023; 59: 101981
https://doi.org/10.1016/j.eclinm.2023.101981
40 Y Gao, Z Luo, S Ren, Z Duan, Y Han, H Liu, Z Gao, X Zhang, Z Hu, Y Ma. Antiviral effect of azvudine and nirmatrelvir-ritonavir among hospitalized patients with COVID-19. J Infect 2023; 86(6): e158–e160
https://doi.org/10.1016/j.jinf.2023.03.023
41 Y Dian, Y Meng, Y Sun, G Deng, F Zeng. Azvudine versus Paxlovid for oral treatment of COVID-19 in Chinese patients with pre-existing comorbidities. J Infect 2023; 87(2): e24–e27
https://doi.org/10.1016/j.jinf.2023.05.012
42 F Wang, W Xiao, Y Tang, M Cao, D Shu, T Asakawa, Y Xu, X Jiang, L Zhang, W Wang, J Tang, Y Huang, Y Yang, Y Yang, R Tang, J Shen, H Lu. Efficacy and safety of SIM0417 (SSD8432) plus ritonavir for COVID-19 treatment: a randomised, double-blind, placebo-controlled, phase 1b trial. Lancet Reg Health West Pac 2023; 38: 100835
https://doi.org/10.1016/j.lanwpc.2023.100835
43 X Chen, P Li, J Huang, Y Yang, H Zhang, Z Wang, Z Zhu, J Wang, J Zhang, K Chen, H He, C Long, S Chen. Discovery of novel bicyclic[3.3.0]proline peptidyl α-ketoamides as potent 3CL-protease inhibitors for SARS-CoV-2. Bioorg Med Chem Lett 2023; 90: 129324
https://doi.org/10.1016/j.bmcl.2023.129324
44 KW Zhu. Deuremidevir and simnotrelvir-ritonavir for the treatment of COVID-19. ACS Pharmacol Transl Sci 2023; 6(9): 1306–1309
https://doi.org/10.1021/acsptsci.3c00134
45 X ChenX HuangQ. Petr Kuzmič MaB ZhouJ XuB LiuH JiangW ZhangC YangS WuJ HuangH LiC LongX ZhaoH XuY ShengY GuoC NiuL XueY XuJ LiuT ZhangSpencer JamesW DengS ChenX XiongZ YangN Zhong. Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor. 2023, PREPRINT (Version 1) Available at Research Square. doi: 10.21203/rs.3.rs-2634509/v1
46 D Wei, T Hu, Y Zhang, W Zheng, H Xue, J Shen, Y Xie, HA Aisa. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2. Bioorg Med Chem 2021; 46: 116364
https://doi.org/10.1016/j.bmc.2021.116364
47 R Zhang, Y Zhang, W Zheng, W Shang, Y Wu, N Li, J Xiong, H Jiang, J Shen, G Xiao, Y Xie, L Zhang. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct Target Ther 2022; 7(1): 123
https://doi.org/10.1038/s41392-022-00963-7
48 Pharmaceuticals and Medical Devices Agency. Tokyo: Pharmaceuticals and medical devices agency; c2022. Gilead sciences. section 2.6.4 pharmacokinetics written summary of remdesivir common technical document. 2020. Available at the website of Pharmaceuticals and Medical Devices Agency
49 HJ Qian, Y Wang, MQ Zhang, YC Xie, QQ Wu, LY Liang, Y Cao, HQ Duan, GH Tian, J Ma, ZB Zhang, N Li, JY Jia, J Zhang, HA Aisa, JS Shen, C Yu, HL Jiang, WH Zhang, Z Wang, GY Liu. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin 2022; 43(12): 3130–3138
https://doi.org/10.1038/s41401-022-00895-6
50 National Health Commission of the People’s Republic of China. A transcript of Press Conference of The Joint Prevention and Control Mechanism of the State Council, 13 May 2022. Available at the website of NHC
51 Y Shen, J Ai, N Lin, H Zhang, Y Li, H Wang, S Wang, Z Wang, T Li, F Sun, Z Fan, L Li, Y Lu, X Meng, H Xiao, H Hu, Y Ling, F Li, H Li, C Xi, L Gu, W Zhang, X Fan. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 Omicron variants. Emerg Microbes Infect 2022; 11(1): 1518–1523
https://doi.org/10.1080/22221751.2022.2078230
52 A Extance. Covid-19: what is the evidence for the antiviral molnupiravir?. BMJ 2022; 377: o926
https://doi.org/10.1136/bmj.o926
53 L WangNA BergerPB DavisDC KaelberND VolkowR Xu. COVID-19 rebound after Paxlovid and Molnupiravir during January–June 2022. medRxiv 2022; doi: 10.1101/2022.06.21.22276724
54 NR Aggarwal, KC Molina, LE Beaty, TD Bennett, NE Carlson, DA Mayer, JL Peers, S Russell, MK Wynia, AA Ginde. Real-world use of nirmatrelvir-ritonavir in outpatients with COVID-19 during the era of omicron variants including BA.4 and BA.5 in Colorado, USA: a retrospective cohort study. Lancet Infect Dis 2023; 23(6): 696–705
https://doi.org/10.1016/S1473-3099(23)00011-7
55 H Ledford. Long-COVID treatments: why the world is still waiting. Nature 2022; 608(7922): 258–260
https://doi.org/10.1038/d41586-022-02140-w
56 D Ayoubkhani, C Bermingham, KB Pouwels, M Glickman, V Nafilyan, F Zaccardi, K Khunti, NA Alwan, AS Walker. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 2022; 377: e069676
https://doi.org/10.1136/bmj-2021-069676
57 MW McCarthy. VV116 as a potential treatment for COVID-19. Expert Opin Pharmacother 2023; 24(6): 675–678
https://doi.org/10.1080/14656566.2023.2193668
58 J Zhao, G Zhang, Y Zhang, D Yi, Q Li, L Ma, S Guo, X Li, F Guo, R Lin, G Luu, Z Liu, Y Wang, S Cen. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res 2021; 196: 105209
https://doi.org/10.1016/j.antiviral.2021.105209
59 AJ Brown, JJ Won, RL Graham, KH 3rd Dinnon, AC Sims, JY Feng, T Cihlar, MR Denison, RS Baric, TP Sheahan. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169: 104541
https://doi.org/10.1016/j.antiviral.2019.104541
60 TP Sheahan, AC Sims, S Zhou, RL Graham, AJ Pruijssers, ML Agostini, SR Leist, A Schäfer, KH 3rd Dinnon, LJ Stevens, JD Chappell, X Lu, TM Hughes, AS George, CS Hill, SA Montgomery, AJ Brown, GR Bluemling, MG Natchus, M Saindane, AA Kolykhalov, G Painter, J Harcourt, A Tamin, NJ Thornburg, R Swanstrom, MR Denison, RS Baric. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883
https://doi.org/10.1126/scitranslmed.abb5883
[1] Xiaoming Yang. Passive antibody therapy in emerging infectious diseases[J]. Front. Med., 2023, 17(6): 1117-1134.
[2] Yuntao Zhang, Yuxiu Zhao, Hongyang Liang, Ying Xu, Chuge Zhou, Yuzhu Yao, Hui Wang, Xiaoming Yang. Innovation-driven trend shaping COVID-19 vaccine development in China[J]. Front. Med., 2023, 17(6): 1096-1116.
[3] Tiantian Li, Dongsheng Wang, Haiming Wei, Xiaoling Xu. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19[J]. Front. Med., 2023, 17(6): 1080-1095.
[4] Linhua Zhao, Chuanxi Tian, Yingying Yang, Huifang Guan, Yu Wei, Yuxin Zhang, Xiaomin Kang, Ling Zhou, Qingwei Li, Jing Ma, Li Wan, Yujiao Zheng, Xiaolin Tong. Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19[J]. Front. Med., 2023, 17(6): 1014-1029.
[5] Kanchana Ngaosuwan, Kamonwan Soonklang, Chawin Warakul, Chirayu Auewarakul, Nithi Mahanonda. Protection of inactivated vaccine against SARS-CoV-2 infections in patients with comorbidities: a prospective cohort study[J]. Front. Med., 2023, 17(5): 867-877.
[6] Gang Lu, Yun Ling, Minghao Jiang, Yun Tan, Dong Wei, Lu Jiang, Shuting Yu, Fangying Jiang, Shuai Wang, Yao Dai, Jinzeng Wang, Geng Wu, Xinxin Zhang, Guoyu Meng, Shengyue Wang, Feng Liu, Xiaohong Fan, Saijuan Chen. Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland[J]. Front. Med., 2023, 17(4): 758-767.
[7] Hao Wang, Yu Yuan, Bihao Wu, Mingzhong Xiao, Zhen Wang, Tingyue Diao, Rui Zeng, Li Chen, Yanshou Lei, Pinpin Long, Yi Guo, Xuefeng Lai, Yuying Wen, Wenhui Li, Hao Cai, Lulu Song, Wei Ni, Youyun Zhao, Kani Ouyang, Jingzhi Wang, Qi Wang, Li Liu, Chaolong Wang, An Pan, Xiaodong Li, Rui Gong, Tangchun Wu. Neutralization against SARS-CoV-2 Delta/Omicron variants and B cell response after inactivated vaccination among COVID-19 convalescents[J]. Front. Med., 2023, 17(4): 747-757.
[8] Ziyu Fu, Dongguo Liang, Wei Zhang, Dongling Shi, Yuhua Ma, Dong Wei, Junxiang Xi, Sizhe Yang, Xiaoguang Xu, Di Tian, Zhaoqing Zhu, Mingquan Guo, Lu Jiang, Shuting Yu, Shuai Wang, Fangyin Jiang, Yun Ling, Shengyue Wang, Saijuan Chen, Feng Liu, Yun Tan, Xiaohong Fan. Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai[J]. Front. Med., 2023, 17(3): 562-575.
[9] Chuansong Quan, Zhenjie Zhang, Guoyong Ding, Fengwei Sun, Hengxia Zhao, Qinghua Liu, Chuanmin Ma, Jing Wang, Liang Wang, Wenbo Zhao, Jinjie He, Yu Wang, Qian He, Michael J. Carr, Dayan Wang, Qiang Xiao, Weifeng Shi. Seroprevalence of influenza viruses in Shandong, Northern China during the COVID-19 pandemic[J]. Front. Med., 2022, 16(6): 984-990.
[10] Suning Chen, Weili Zhao, Jianyong Li, Depei Wu, on behalf of Lymphoid Disease Group, Chinese Society of Hematology, Chinese Medical Association. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition)[J]. Front. Med., 2022, 16(5): 815-826.
[11] Xiaoguang Xu, Wei Zhang, Mingquan Guo, Chenlu Xiao, Ziyu Fu, Shuting Yu, Lu Jiang, Shengyue Wang, Yun Ling, Feng Liu, Yun Tan, Saijuan Chen. Integrated analysis of gut microbiome and host immune responses in COVID-19[J]. Front. Med., 2022, 16(2): 263-275.
[12] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
[13] Yiming Shao, Yingqi Wu, Yi Feng, Wenxin Xu, Feng Xiong, Xinxin Zhang. SARS-CoV-2 vaccine research and immunization strategies for improved control of the COVID-19 pandemic[J]. Front. Med., 2022, 16(2): 185-195.
[14] Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19[J]. Front. Med., 2022, 16(2): 251-262.
[15] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed