|
|
|
Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116) |
Qiuyu Cao1,2, Yi Ding1,2, Yu Xu1,2, Mian Li1,2, Ruizhi Zheng1,2, Zhujun Cao3, Weiqing Wang1,2, Yufang Bi1,2, Guang Ning1,2, Yiping Xu4( ), Ren Zhao5( ) |
1. Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 3. Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 4. Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 5. Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
|
|
|
|
Abstract The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir–ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir–ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir–ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China’s homegrown anti-COVID-19 drugs.
|
| Keywords
COVID-19
antiviral drugs
mindeudesivir
|
|
Corresponding Author(s):
Yiping Xu,Ren Zhao
|
|
Just Accepted Date: 08 December 2023
Online First Date: 29 December 2023
Issue Date: 06 February 2024
|
|
| 1 |
Cumulative Infection Collaborators COVID-19. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet 2022; 399(10344): 2351–2380
https://doi.org/10.1016/S0140-6736(22)00484-6
|
| 2 |
E Boehm, I Kronig, RA Neher, I Eckerle, P Vetter, L; Geneva Centre for Emerging Viral Diseases Kaiser. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 2021; 27(8): 1109–1117
https://doi.org/10.1016/j.cmi.2021.05.022
|
| 3 |
R Viana, S Moyo, DG Amoako, H Tegally, C Scheepers, CL Althaus, UJ Anyaneji, PA Bester, MF Boni, M Chand, WT Choga, R Colquhoun, M Davids, K Deforche, D Doolabh, L du Plessis, S Engelbrecht, J Everatt, J Giandhari, M Giovanetti, D Hardie, V Hill, NY Hsiao, A Iranzadeh, A Ismail, C Joseph, R Joseph, L Koopile, SL Kosakovsky Pond, MUG Kraemer, L Kuate-Lere, O Laguda-Akingba, O Lesetedi-Mafoko, RJ Lessells, S Lockman, AG Lucaci, A Maharaj, B Mahlangu, T Maponga, K Mahlakwane, Z Makatini, G Marais, D Maruapula, K Masupu, M Matshaba, S Mayaphi, N Mbhele, MB Mbulawa, A Mendes, K Mlisana, A Mnguni, T Mohale, M Moir, K Moruisi, M Mosepele, G Motsatsi, MS Motswaledi, T Mphoyakgosi, N Msomi, PN Mwangi, Y Naidoo, N Ntuli, M Nyaga, L Olubayo, S Pillay, B Radibe, Y Ramphal, U Ramphal, JE San, L Scott, R Shapiro, L Singh, P Smith-Lawrence, W Stevens, A Strydom, K Subramoney, N Tebeila, D Tshiabuila, J Tsui, S van Wyk, S Weaver, CK Wibmer, E Wilkinson, N Wolter, AE Zarebski, B Zuze, D Goedhals, W Preiser, F Treurnicht, M Venter, C Williamson, OG Pybus, J Bhiman, A Glass, DP Martin, A Rambaut, S Gaseitsiwe, A von Gottberg, T de Oliveira. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603(7902): 679–686
https://doi.org/10.1038/s41586-022-04411-y
|
| 4 |
Y Cao, J Wang, F Jian, T Xiao, W Song, A Yisimayi, W Huang, Q Li, P Wang, R An, J Wang, Y Wang, X Niu, S Yang, H Liang, H Sun, T Li, Y Yu, Q Cui, S Liu, X Yang, S Du, Z Zhang, X Hao, F Shao, R Jin, X Wang, J Xiao, Y Wang, XS Xie. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663
https://doi.org/10.1038/s41586-021-04385-3
|
| 5 |
L Wang, M Møhlenberg, P Wang, H Zhou. Immune evasion of neutralizing antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev 2023; 70: 13–25
https://doi.org/10.1016/j.cytogfr.2023.03.001
|
| 6 |
L Zheng, S Liu, F Lu. Impact of national Omicron outbreak at the end of 2022 on the future outlook of COVID-19 in China. Emerg Microbes Infect 2023; 12(1): 2191738
https://doi.org/10.1080/22221751.2023.2191738
|
| 7 |
H Yang, Z Rao. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19(11): 685–700
https://doi.org/10.1038/s41579-021-00630-8
|
| 8 |
G Li, R Hilgenfeld, R Whitley, E De Clercq. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22(6): 449–475
https://doi.org/10.1038/s41573-023-00672-y
|
| 9 |
JH Beigel, KM Tomashek, LE Dodd, AK Mehta, BS Zingman, AC Kalil, E Hohmann, HY Chu, A Luetkemeyer, S Kline, de Castilla D Lopez, RW Finberg, K Dierberg, V Tapson, L Hsieh, TF Patterson, R Paredes, DA Sweeney, WR Short, G Touloumi, DC Lye, N Ohmagari, MD Oh, GM Ruiz-Palacios, T Benfield, G Fätkenheuer, MG Kortepeter, RL Atmar, CB Creech, J Lundgren, AG Babiker, S Pett, JD Neaton, TH Burgess, T Bonnett, M Green, M Makowski, A Osinusi, S Nayak, HC; ACTT-1 Study Group Members Lane. Remdesivir for the treatment of Covid-19—final report. N Engl J Med 2020; 383(19): 1813–1826
https://doi.org/10.1056/NEJMoa2007764
|
| 10 |
RL Gottlieb, CE Vaca, R Paredes, J Mera, BJ Webb, G Perez, G Oguchi, P Ryan, BU Nielsen, M Brown, A Hidalgo, Y Sachdeva, S Mittal, O Osiyemi, J Skarbinski, K Juneja, RH Hyland, A Osinusi, S Chen, G Camus, M Abdelghany, S Davies, N Behenna-Renton, F Duff, FM Marty, MJ Katz, AA Ginde, SM Brown, JT Schiffer, JA; GS-US-540-9012 (PINETREE) Investigators Hill. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022; 386(4): 305–315
https://doi.org/10.1056/NEJMoa2116846
|
| 11 |
J Hammond, H Leister-Tebbe, A Gardner, P Abreu, W Bao, W Wisemandle, M Baniecki, VM Hendrick, B Damle, A Simón-Campos, R Pypstra, JM; EPIC-HR Investigators Rusnak. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022; 386(15): 1397–1408
https://doi.org/10.1056/NEJMoa2118542
|
| 12 |
P Li, Y Wang, M Lavrijsen, MM Lamers, AC de Vries, RJ Rottier, MJ Bruno, MP Peppelenbosch, BL Haagmans, Q Pan. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res 2022; 32(3): 322–324
https://doi.org/10.1038/s41422-022-00618-w
|
| 13 |
B Yu, J Chang. The first Chinese oral anti-COVID-19 drug azvudine launched. Innovation (Camb) 2022; 3(6): 100321
https://doi.org/10.1016/j.xinn.2022.100321
|
| 14 |
Y Xie, W Yin, Y Zhang, W Shang, Z Wang, X Luan, G Tian, HA Aisa, Y Xu, G Xiao, J Li, H Jiang, S Zhang, L Zhang, HE Xu, J Shen. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res 2021; 31(11): 1212–1214
https://doi.org/10.1038/s41422-021-00570-1
|
| 15 |
Z Cao, W Gao, H Bao, H Feng, S Mei, P Chen, Y Gao, Z Cui, Q Zhang, X Meng, H Gui, W Wang, Y Jiang, Z Song, Y Shi, J Sun, Y Zhang, Q Xie, Y Xu, G Ning, Y Gao, R Zhao. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med 2023; 388(5): 406–417
https://doi.org/10.1056/NEJMoa2208822
|
| 16 |
RT Eastman, JS Roth, KR Brimacombe, A Simeonov, M Shen, S Patnaik, MD Hall. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672–683
https://doi.org/10.1021/acscentsci.0c00489
|
| 17 |
US Food and Drug Administration. FDA approves first oral antiviral for treatment of COVID-19 in adults. Available at the website of FDA
|
| 18 |
US Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization for molnupiravir. Available at the website of FDA
|
| 19 |
CJ Gordon, EP Tchesnokov, E Woolner, JK Perry, JY Feng, DP Porter, M Götte. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295(20): 6785–6797
https://doi.org/10.1074/jbc.RA120.013679
|
| 20 |
A Cho, OL Saunders, T Butler, L Zhang, J Xu, JE Vela, JY Feng, AS Ray, CU Kim. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett 2012; 22(8): 2705–2707
https://doi.org/10.1016/j.bmcl.2012.02.105
|
| 21 |
T CihlarRL Mackman. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir Ther 2022; 27(2): 13596535221082773 doi:10.1177/13596535221082773
pmid: 35499114
|
| 22 |
SA Olender, KK Perez, AS Go, B Balani, EG Price-Haywood, NS Shah, S Wang, TL Walunas, S Swaminathan, J Slim, B Chin, Wit S De, SM Ali, Viladomiu A Soriano, P Robinson, RL Gottlieb, TYO Tsang, IH Lee, H Hu, RH Haubrich, AP Chokkalingam, L Lin, L Zhong, BN Bekele, R Mera-Giler, C Phulpin, H Edgar, J Gallant, H Diaz-Cuervo, LE Smith, AO Osinusi, DM Brainard, JI; GS-US-540–5773 Bernardino, Investigators GS-US-540–5807. Remdesivir for severe coronavirus disease 2019 (COVID-19) versus a cohort receiving standard of care. Clin Infect Dis 2021; 73(11): e4166–e4174
https://doi.org/10.1093/cid/ciaa1041
|
| 23 |
Solidarity Trial Consortium WHO. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022; 399(10339): 1941–1953
https://doi.org/10.1016/S0140-6736(22)00519-0
|
| 24 |
Y Wang, D Zhang, G Du, R Du, J Zhao, Y Jin, S Fu, L Gao, Z Cheng, Q Lu, Y Hu, G Luo, K Wang, Y Lu, H Li, S Wang, S Ruan, C Yang, C Mei, Y Wang, D Ding, F Wu, X Tang, X Ye, Y Ye, B Liu, J Yang, W Yin, A Wang, G Fan, F Zhou, Z Liu, X Gu, J Xu, L Shang, Y Zhang, L Cao, T Guo, Y Wan, H Qin, Y Jiang, T Jaki, FG Hayden, PW Horby, B Cao, C Wang. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569–1578
https://doi.org/10.1016/S0140-6736(20)31022-9
|
| 25 |
LD Saravolatz, S Depcinski, M Sharma. Molnupiravir and nirmatrelvir-ritonavir: oral coronavirus disease 2019 antiviral drugs. Clin Infect Dis 2023; 76(1): 165–171
https://doi.org/10.1093/cid/ciac180
|
| 26 |
TP Sheahan, AC Sims, S Zhou, RL Graham, AJ Pruijssers, ML Agostini, SR Leist, A Schäfer, KH 3rd Dinnon, LJ Stevens, JD Chappell, X Lu, TM Hughes, AS George, CS Hill, SA Montgomery, AJ Brown, GR Bluemling, MG Natchus, M Saindane, AA Kolykhalov, G Painter, J Harcourt, A Tamin, NJ Thornburg, R Swanstrom, MR Denison, RS Baric. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883
https://doi.org/10.1126/scitranslmed.abb5883
|
| 27 |
Bernal A Jayk, da Silva MM Gomes, DB Musungaie, E Kovalchuk, A Gonzalez, Reyes V Delos, A Martín-Quirós, Y Caraco, A Williams-Diaz, ML Brown, J Du, A Pedley, C Assaid, J Strizki, JA Grobler, HH Shamsuddin, R Tipping, H Wan, A Paschke, JR Butterton, MG Johnson, Anda C; MOVe-OUT Study Group De. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2022; 386(6): 509–520
https://doi.org/10.1056/NEJMoa2116044
|
| 28 |
National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at the website of NIH
|
| 29 |
DR Owen, CMN Allerton, AS Anderson, L Aschenbrenner, M Avery, S Berritt, B Boras, RD Cardin, A Carlo, KJ Coffman, A Dantonio, L Di, H Eng, R Ferre, KS Gajiwala, SA Gibson, SE Greasley, BL Hurst, EP Kadar, AS Kalgutkar, JC Lee, J Lee, W Liu, SW Mason, S Noell, JJ Novak, RS Obach, K Ogilvie, NC Patel, M Pettersson, DK Rai, MR Reese, MF Sammons, JG Sathish, RSP Singh, CM Steppan, AE Stewart, JB Tuttle, L Updyke, PR Verhoest, L Wei, Q Yang, Y Zhu. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374(6575): 1586–1593
https://doi.org/10.1126/science.abl4784
|
| 30 |
HM Mengist, X Fan, T Jin. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct Target Ther 2020; 5(1): 67
https://doi.org/10.1038/s41392-020-0178-y
|
| 31 |
Y Zhao, C Fang, Q Zhang, R Zhang, X Zhao, Y Duan, H Wang, Y Zhu, L Feng, J Zhao, M Shao, X Yang, L Zhang, C Peng, K Yang, D Ma, Z Rao, H Yang. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell 2022; 13(9): 689–693
https://doi.org/10.1007/s13238-021-00883-2
|
| 32 |
F Lamontagne, A Agarwal, B Rochwerg, RA Siemieniuk, T Agoritsas, L Askie, L Lytvyn, YS Leo, H Macdonald, L Zeng, W Amin, ARA da Silva, D Aryal, FAJ Barragan, FJ Bausch, E Burhan, CS Calfee, M Cecconi, B Chacko, D Chanda, VQ Dat, A De Sutter, B Du, S Freedman, H Geduld, P Gee, M Gotte, N Harley, M Hashimi, B Hunt, F Jehan, SK Kabra, S Kanda, YJ Kim, N Kissoon, S Krishna, K Kuppalli, A Kwizera, M Lado Castro-Rial, T Lisboa, R Lodha, I Mahaka, H Manai, M Mendelson, GB Migliori, G Mino, E Nsutebu, J Preller, N Pshenichnaya, N Qadir, P Relan, S Sabzwari, R Sarin, M Shankar-Hari, M Sharland, Y Shen, SS Ranganathan, JP Souza, M Stegemann, R Swanstrom, S Ugarte, T Uyeki, S Venkatapuram, D Vuyiseka, A Wijewickrama, L Tran, D Zeraatkar, JJ Bartoszko, L Ge, R Brignardello-Petersen, A Owen, G Guyatt, J Diaz, L Kawano-Dourado, M Jacobs, PO Vandvik. A living WHO guideline on drugs for covid-19. BMJ 2020; 370: m3379
https://doi.org/10.1136/bmj.m3379
|
| 33 |
ME Charness, K Gupta, G Stack, J Strymish, E Adams, DC Lindy, H Mohri, DD Ho. Rebound of SARS-CoV-2 infection after nirmatrelvir-ritonavir treatment. N Engl J Med 2022; 387(11): 1045–1047
https://doi.org/10.1056/NEJMc2206449
|
| 34 |
L Sun, Y Peng, W Yu, Y Zhang, L Liang, C Song, J Hou, Y Qiao, Q Wang, J Chen, M Wu, D Zhang, E Li, Z Han, Q Zhao, X Jin, B Zhang, Z Huang, J Chai, JH Wang, J Chang. Mechanistic insight into antiretroviral potency of 2′-deoxy-2′-β-fluoro-4′-azidocytidine (FNC) with a long-lasting effect on HIV-1 prevention. J Med Chem 2020; 63(15): 8554–8566
https://doi.org/10.1021/acs.jmedchem.0c00940
|
| 35 |
B Yu, J Chang. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Signal Transduct Target Ther 2020; 5(1): 236
https://doi.org/10.1038/s41392-020-00351-z
|
| 36 |
RR Wang, QH Yang, RH Luo, YM Peng, SX Dai, XJ Zhang, H Chen, XQ Cui, YJ Liu, JF Huang, JB Chang, YT Zheng. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PLoS One 2014; 9(8): e105617
https://doi.org/10.1371/journal.pone.0105617
|
| 37 |
Z Ren, H Luo, Z Yu, J Song, L Liang, L Wang, H Wang, G Cui, Y Liu, J Wang, Q Li, Z Zeng, S Yang, G Pei, Y Zhu, W Song, W Yu, C Song, L Dong, C Hu, J Du, J Chang. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study. Adv Sci (Weinh) 2020; 7(19): 2001435
https://doi.org/10.1002/advs.202001435
|
| 38 |
KW Zhu. Efficacy and safety evaluation of azvudine in the prospective treatment of COVID-19 based on four phase III clinical trials. Front Pharmacol 2023; 14: 1228548
https://doi.org/10.3389/fphar.2023.1228548
|
| 39 |
Y Sun, L Jin, Y Dian, M Shen, F Zeng, X Chen, G Deng. Oral azvudine for hospitalised patients with COVID-19 and pre-existing conditions: a retrospective cohort study. EClinicalMedicine 2023; 59: 101981
https://doi.org/10.1016/j.eclinm.2023.101981
|
| 40 |
Y Gao, Z Luo, S Ren, Z Duan, Y Han, H Liu, Z Gao, X Zhang, Z Hu, Y Ma. Antiviral effect of azvudine and nirmatrelvir-ritonavir among hospitalized patients with COVID-19. J Infect 2023; 86(6): e158–e160
https://doi.org/10.1016/j.jinf.2023.03.023
|
| 41 |
Y Dian, Y Meng, Y Sun, G Deng, F Zeng. Azvudine versus Paxlovid for oral treatment of COVID-19 in Chinese patients with pre-existing comorbidities. J Infect 2023; 87(2): e24–e27
https://doi.org/10.1016/j.jinf.2023.05.012
|
| 42 |
F Wang, W Xiao, Y Tang, M Cao, D Shu, T Asakawa, Y Xu, X Jiang, L Zhang, W Wang, J Tang, Y Huang, Y Yang, Y Yang, R Tang, J Shen, H Lu. Efficacy and safety of SIM0417 (SSD8432) plus ritonavir for COVID-19 treatment: a randomised, double-blind, placebo-controlled, phase 1b trial. Lancet Reg Health West Pac 2023; 38: 100835
https://doi.org/10.1016/j.lanwpc.2023.100835
|
| 43 |
X Chen, P Li, J Huang, Y Yang, H Zhang, Z Wang, Z Zhu, J Wang, J Zhang, K Chen, H He, C Long, S Chen. Discovery of novel bicyclic[3.3.0]proline peptidyl α-ketoamides as potent 3CL-protease inhibitors for SARS-CoV-2. Bioorg Med Chem Lett 2023; 90: 129324
https://doi.org/10.1016/j.bmcl.2023.129324
|
| 44 |
KW Zhu. Deuremidevir and simnotrelvir-ritonavir for the treatment of COVID-19. ACS Pharmacol Transl Sci 2023; 6(9): 1306–1309
https://doi.org/10.1021/acsptsci.3c00134
|
| 45 |
X ChenX HuangQ. Petr Kuzmič MaB ZhouJ XuB LiuH JiangW ZhangC YangS WuJ HuangH LiC LongX ZhaoH XuY ShengY GuoC NiuL XueY XuJ LiuT ZhangSpencer JamesW DengS ChenX XiongZ YangN Zhong. Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor. 2023, PREPRINT (Version 1) Available at Research Square. doi: 10.21203/rs.3.rs-2634509/v1
|
| 46 |
D Wei, T Hu, Y Zhang, W Zheng, H Xue, J Shen, Y Xie, HA Aisa. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2. Bioorg Med Chem 2021; 46: 116364
https://doi.org/10.1016/j.bmc.2021.116364
|
| 47 |
R Zhang, Y Zhang, W Zheng, W Shang, Y Wu, N Li, J Xiong, H Jiang, J Shen, G Xiao, Y Xie, L Zhang. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct Target Ther 2022; 7(1): 123
https://doi.org/10.1038/s41392-022-00963-7
|
| 48 |
Pharmaceuticals and Medical Devices Agency. Tokyo: Pharmaceuticals and medical devices agency; c2022. Gilead sciences. section 2.6.4 pharmacokinetics written summary of remdesivir common technical document. 2020. Available at the website of Pharmaceuticals and Medical Devices Agency
|
| 49 |
HJ Qian, Y Wang, MQ Zhang, YC Xie, QQ Wu, LY Liang, Y Cao, HQ Duan, GH Tian, J Ma, ZB Zhang, N Li, JY Jia, J Zhang, HA Aisa, JS Shen, C Yu, HL Jiang, WH Zhang, Z Wang, GY Liu. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin 2022; 43(12): 3130–3138
https://doi.org/10.1038/s41401-022-00895-6
|
| 50 |
National Health Commission of the People’s Republic of China. A transcript of Press Conference of The Joint Prevention and Control Mechanism of the State Council, 13 May 2022. Available at the website of NHC
|
| 51 |
Y Shen, J Ai, N Lin, H Zhang, Y Li, H Wang, S Wang, Z Wang, T Li, F Sun, Z Fan, L Li, Y Lu, X Meng, H Xiao, H Hu, Y Ling, F Li, H Li, C Xi, L Gu, W Zhang, X Fan. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 Omicron variants. Emerg Microbes Infect 2022; 11(1): 1518–1523
https://doi.org/10.1080/22221751.2022.2078230
|
| 52 |
A Extance. Covid-19: what is the evidence for the antiviral molnupiravir?. BMJ 2022; 377: o926
https://doi.org/10.1136/bmj.o926
|
| 53 |
L WangNA BergerPB DavisDC KaelberND VolkowR Xu. COVID-19 rebound after Paxlovid and Molnupiravir during January–June 2022. medRxiv 2022; doi: 10.1101/2022.06.21.22276724
|
| 54 |
NR Aggarwal, KC Molina, LE Beaty, TD Bennett, NE Carlson, DA Mayer, JL Peers, S Russell, MK Wynia, AA Ginde. Real-world use of nirmatrelvir-ritonavir in outpatients with COVID-19 during the era of omicron variants including BA.4 and BA.5 in Colorado, USA: a retrospective cohort study. Lancet Infect Dis 2023; 23(6): 696–705
https://doi.org/10.1016/S1473-3099(23)00011-7
|
| 55 |
H Ledford. Long-COVID treatments: why the world is still waiting. Nature 2022; 608(7922): 258–260
https://doi.org/10.1038/d41586-022-02140-w
|
| 56 |
D Ayoubkhani, C Bermingham, KB Pouwels, M Glickman, V Nafilyan, F Zaccardi, K Khunti, NA Alwan, AS Walker. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 2022; 377: e069676
https://doi.org/10.1136/bmj-2021-069676
|
| 57 |
MW McCarthy. VV116 as a potential treatment for COVID-19. Expert Opin Pharmacother 2023; 24(6): 675–678
https://doi.org/10.1080/14656566.2023.2193668
|
| 58 |
J Zhao, G Zhang, Y Zhang, D Yi, Q Li, L Ma, S Guo, X Li, F Guo, R Lin, G Luu, Z Liu, Y Wang, S Cen. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res 2021; 196: 105209
https://doi.org/10.1016/j.antiviral.2021.105209
|
| 59 |
AJ Brown, JJ Won, RL Graham, KH 3rd Dinnon, AC Sims, JY Feng, T Cihlar, MR Denison, RS Baric, TP Sheahan. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169: 104541
https://doi.org/10.1016/j.antiviral.2019.104541
|
| 60 |
TP Sheahan, AC Sims, S Zhou, RL Graham, AJ Pruijssers, ML Agostini, SR Leist, A Schäfer, KH 3rd Dinnon, LJ Stevens, JD Chappell, X Lu, TM Hughes, AS George, CS Hill, SA Montgomery, AJ Brown, GR Bluemling, MG Natchus, M Saindane, AA Kolykhalov, G Painter, J Harcourt, A Tamin, NJ Thornburg, R Swanstrom, MR Denison, RS Baric. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883
https://doi.org/10.1126/scitranslmed.abb5883
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|