Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (5) : 778-797    https://doi.org/10.1007/s11684-024-1085-3
Artificial intelligence methods available for cancer research
Ankita Murmu1,2,3, Balázs Győrffy1,3,4()
. Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
. National Laboratory for Drug Research and Development, Budapest 1117, Hungary
. Department of Bioinformatics, Semmelweis University, Budapest 1094, Hungary
. Department of Biophysics, University of Pecs, Pecs 7624, Hungary
 Download: PDF(4546 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cancer is a heterogeneous and multifaceted disease with a significant global footprint. Despite substantial technological advancements for battling cancer, early diagnosis and selection of effective treatment remains a challenge. With the convenience of large-scale datasets including multiple levels of data, new bioinformatic tools are needed to transform this wealth of information into clinically useful decision-support tools. In this field, artificial intelligence (AI) technologies with their highly diverse applications are rapidly gaining ground. Machine learning methods, such as Bayesian networks, support vector machines, decision trees, random forests, gradient boosting, and K-nearest neighbors, including neural network models like deep learning, have proven valuable in predictive, prognostic, and diagnostic studies. Researchers have recently employed large language models to tackle new dimensions of problems. However, leveraging the opportunity to utilize AI in clinical settings will require surpassing significant obstacles—a major issue is the lack of use of the available reporting guidelines obstructing the reproducibility of published studies. In this review, we discuss the applications of AI methods and explore their benefits and limitations. We summarize the available guidelines for AI in healthcare and highlight the potential role and impact of AI models on future directions in cancer research.

Keywords machine learning      artificial neural network      deep learning      natural language processing      prediction      guideline      diagnosis     
Corresponding Author(s): Balázs Győrffy   
Just Accepted Date: 17 July 2024   Online First Date: 05 August 2024    Issue Date: 29 October 2024
 Cite this article:   
Ankita Murmu,Balázs Győrffy. Artificial intelligence methods available for cancer research[J]. Front. Med., 2024, 18(5): 778-797.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1085-3
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I5/778
Fig.1  A brief overview highlighting the timeline when the different AI methods were introduced for the first time. The timeline from 2000 also shows their applications in different areas of cancer research that are discussed in the review.
+ AI method cancer + diagnosis cancer + prognosis cancer + therapy cancer + pathology cancer + health records
Random forest 1042 726 618 927 36
Decision trees 539 270 406 430 20
Gradient boosting 211 142 121 148 21
Support vector machines 1335 525 426 939 27
K-nearest neighbors 70 21 25 44 2
Bayesian network 85 67 294 151 2
Artificial neural network 337 120 139 206 6
Deep learning 3446 994 1406 2630 94
Natural language processing 279 58 175 210 262
Tab.1  Number of hits in PubMed in the last ten years for the combination of the listed keywords
Fig.2  Classification of AI methods discussed in the manuscript. Machine learning, the sub-domain of AI is divided into unsupervised and supervised learning methods. The unsupervised learning methods consist of dimensionality reduction and clustering algorithms. Supervised learning methods consist of classification and regression algorithms which can also be applied to natural language processing tasks.
Guideline Purpose Utility Citations (as of Nov. 2023) Reference
Diagnosis Prognosis Pathology Decision-making Clinical studies
SPIRIT-AI AI interventions in clinical trial protocols Yes No No Yes Yes 82 [177]
CONSORT-AI AI interventions in clinical trial reports Yes No No Yes Yes 160 [178]
MI-CLAIM Transparent reporting of AI algorithms in medicine No No No Yes No 157 [179]
MINIMAR Minimum information necessary for reporting AI-based studies in medicine No No No Yes No 106 [180]
STARD-AI Diagnostic test accuracy studies using AI Yes No Yes No No 58 [181]
TRIPOD-AI Diagnostic and prognostic prediction studies based on AI Yes Yes No No No 182 [182]
PROBAST-AI Risk bias tool for diagnostic and prognostic prediction studies based on AI Yes Yes No No No 182 [182]
QUADAS-AI Risk bias tool for AI-centered diagnostic test accuracy studies Yes No No No No 34 [183]
DECIDE-AI Early-stage clinical evaluation of decision support systems driven by AI No No No Yes Yes 35 [184]
Tab.2  Overview of described AI guidelines for medical studies
1 M Morrow, J Waters, E Morris. MRI for breast cancer screening, diagnosis, and treatment. Lancet 2011; 378(9805): 1804–1811
https://doi.org/10.1016/S0140-6736(11)61350-0
2 PM Boiselle. Computed tomography screening for lung cancer. JAMA 2013; 309(11): 1163–1170
https://doi.org/10.1001/jama.2012.216988
3 PC Gøtzsche, KJ Jørgensen. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2013; 2013(6): CD001877
https://doi.org/10.1002/14651858.CD001877.pub5
4 M Nair, SS Sandhu, AK Sharma. Cancer molecular markers: a guide to cancer detection and management. Semin Cancer Biol 2018; 52(Pt 1): 39–55
https://doi.org/10.1016/j.semcancer.2018.02.002
5 B Győrffy. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023; 45(3): 1889–1898
https://doi.org/10.1007/s11357-023-00742-4
6 SA Kovács, JT Fekete, B Győrffy. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44(9): 1879–1889
https://doi.org/10.1038/s41401-023-01079-6
7 NA Seebacher, AE Stacy, GM Porter, AM Merlot. Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 2019; 38(1): 156
https://doi.org/10.1186/s13046-019-1094-2
8 G Liang, W Fan, H Luo, X Zhu. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother 2020; 128: 110255
https://doi.org/10.1016/j.biopha.2020.110255
9 Y Kumar, S Gupta, R Singla, YC Hu. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch Comput Methods Eng 2022; 29(4): 2043–2070
https://doi.org/10.1007/s11831-021-09648-w
10 A Pavlopoulou, DA Spandidos, I Michalopoulos. Human cancer databases (review). Oncol Rep 2015; 33(1): 3–18
https://doi.org/10.3892/or.2014.3579
11 E Rios Velazquez, C Parmar, Y Liu, TP Coroller, G Cruz, O Stringfield, Z Ye, M Makrigiorgos, F Fennessy, RH Mak, R Gillies, J Quackenbush, HJWL Aerts. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 2017; 77(14): 3922–3930
https://doi.org/10.1158/0008-5472.CAN-17-0122
12 Q Hou, ZT Bing, C Hu, MY Li, KH Yang, Z Mo, XW Xie, JL Liao, Y Lu, S Horie, MW Lou. RankProd combined with genetic algorithm optimized artificial neural network establishes a diagnostic and prognostic prediction model that revealed C1QTNF3 as a biomarker for prostate cancer. EBioMedicine 2018; 32: 234–244
https://doi.org/10.1016/j.ebiom.2018.05.010
13 SM Carter, W Rogers, KT Win, H Frazer, B Richards, N Houssami. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast 2020; 49: 25–32
https://doi.org/10.1016/j.breast.2019.10.001
14 V Kaul, S Enslin, SA Gross. History of artificial intelligence in medicine. Gastrointest Endosc 2020; 92(4): 807–812
https://doi.org/10.1016/j.gie.2020.06.040
15 JT Fekete, B Győrffy. ROCplot. org: validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3, 104 breast cancer patients. Int J Cancer 2019; 145(11): 3140–3151
https://doi.org/10.1002/ijc.32369
16 JR Quinlan. Induction of decision trees. Mach Learn 1986; 1(1): 81–106
https://doi.org/10.1007/BF00116251
17 C Kingsford, SL Salzberg. What are decision trees. Nat Biotechnol 2008; 26(9): 1011–1013
https://doi.org/10.1038/nbt0908-1011
18 A Talhouk, MK McConechy, S Leung, W Yang, A Lum, J Senz, N Boyd, J Pike, M Anglesio, JS Kwon, AN Karnezis, DG Huntsman, CB Gilks, JN McAlpine. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017; 123(5): 802–813
https://doi.org/10.1002/cncr.30496
19 TJ Selman, C Mann, J Zamora, TL Appleyard, K Khan. Diagnostic accuracy of tests for lymph node status in primary cervical cancer: a systematic review and meta-analysis. CMAJ 2008; 178(7): 855–862
https://doi.org/10.1503/cmaj.071124
20 P Lambin, E Rios-Velazquez, R Leijenaar, S Carvalho, RGPM van Stiphout, P Granton, CM Zegers, R Gillies, R Boellard, A Dekker, HJ Aerts. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer Oxf Engl 2012; 48(4): 441–446
https://doi.org/10.1016/j.ejca.2011.11.036
21 Q Wu, S Wang, X Chen, Y Wang, L Dong, Z Liu, J Tian, M Wang. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer. Radiother Oncol 2019; 138: 141–148
https://doi.org/10.1016/j.radonc.2019.04.035
22 O Gevaert, S Echegaray, A Khuong, CD Hoang, JB Shrager, KC Jensen, GJ Berry, HH Guo, C Lau, SK Plevritis, DL Rubin, S Napel, AN Leung. Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Sci Rep 2017; 7(1): 41674
https://doi.org/10.1038/srep41674
23 LS Hu, S Ning, JM Eschbacher, LC Baxter, N Gaw, S Ranjbar, J Plasencia, AC Dueck, S Peng, KA Smith, P Nakaji, JP Karis, CC Quarles, T Wu, JC Loftus, RB Jenkins, H Sicotte, TM Kollmeyer, BP O’Neill, W Elmquist, JM Hoxworth, D Frakes, J Sarkaria, KR Swanson, NL Tran, J Li, JR Mitchell. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-oncol 2017; 19(1): 128–137
https://doi.org/10.1093/neuonc/now135
24 A Tahmassebi, GJ Wengert, TH Helbich, Z Bago-Horvath, S Alaei, R Bartsch, P Dubsky, P Baltzer, P Clauser, P Kapetas, EA Morris, A Meyer-Baese, K Pinker. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol 2019; 54(2): 110–117
https://doi.org/10.1097/RLI.0000000000000518
25 Y Wang, D Wang, N Geng, Y Wang, Y Yin, Y Jin. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Appl Soft Comput 2019; 77: 188–204
https://doi.org/10.1016/j.asoc.2019.01.015
26 MM Ghiasi, S Zendehboudi. Application of decision tree-based ensemble learning in the classification of breast cancer. Comput Biol Med 2021; 128: 104089
https://doi.org/10.1016/j.compbiomed.2020.104089
27 F De Felice, D Crocetti, M Parisi, V Maiuri, E Moscarelli, R Caiazzo, N Bulzonetti, D Musio, V Tombolini. Decision tree algorithm in locally advanced rectal cancer: an example of over-interpretation and misuse of a machine learning approach. J Cancer Res Clin Oncol 2020; 146(3): 761–765
https://doi.org/10.1007/s00432-019-03102-y
28 L Breiman. Random forests. Mach Learn 2001; 45(1): 5–32
https://doi.org/10.1023/A:1010933404324
29 Fekete J Tibor, B Győrffy. A unified platform enabling biomarker ranking and validation for 1562 drugs using transcriptomic data of 1250 cancer cell lines. Comput Struct Biotechnol J 2022; 20: 2885–2894
https://doi.org/10.1016/j.csbj.2022.06.007
30 JD Cohen, L Li, Y Wang, C Thoburn, B Afsari, L Danilova, C Douville, AA Javed, F Wong, A Mattox, RH Hruban, CL Wolfgang, MG Goggins, Molin M Dal, TL Wang, R Roden, AP Klein, J Ptak, L Dobbyn, J Schaefer, N Silliman, M Popoli, JT Vogelstein, JD Browne, RE Schoen, RE Brand, J Tie, P Gibbs, HL Wong, AS Mansfield, J Jen, SM Hanash, M Falconi, PJ Allen, S Zhou, C Bettegowda, LA Jr Diaz, C Tomasetti, KW Kinzler, B Vogelstein, AM Lennon, N Papadopoulos. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359(6378): 926–930
https://doi.org/10.1126/science.aar3247
31 R Toth, H Schiffmann, C Hube-Magg, F Büscheck, D Höflmayer, S Weidemann, P Lebok, C Fraune, S Minner, T Schlomm, G Sauter, C Plass, Y Assenov, R Simon, J Meiners, C Gerhäuser. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019; 11(1): 148
https://doi.org/10.1186/s13148-019-0736-8
32 E Kawakami, J Tabata, N Yanaihara, T Ishikawa, K Koseki, Y Iida, M Saito, H Komazaki, JS Shapiro, C Goto, Y Akiyama, R Saito, M Saito, H Takano, K Yamada, A Okamoto. Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clin Cancer Res 2019; 25(10): 3006–3015
https://doi.org/10.1158/1078-0432.CCR-18-3378
33 Z Zhang, L Huang, J Li, P Wang. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system. BMC Bioinformatics 2022; 23(1): 124
https://doi.org/10.1186/s12859-022-04657-3
34 J Lin, M Yin, L Liu, J Gao, C Yu, X Liu, C Xu, J Zhu. The development of a prediction model based on random survival forest for the postoperative prognosis of pancreatic cancer: a SEER-based study. Cancers (Basel) 2022; 14(19): 4667
https://doi.org/10.3390/cancers14194667
35 H Zhang, M Chi, D Su, Y Xiong, H Wei, Y Yu, Y Zuo, L Yang. A random forest-based metabolic risk model to assess the prognosis and metabolism-related drug targets in ovarian cancer. Comput Biol Med 2023; 153: 106432
https://doi.org/10.1016/j.compbiomed.2022.106432
36 JY Lee, KS Lee, BK Seo, KR Cho, OH Woo, SE Song, EK Kim, HY Lee, JS Kim, J Cha. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI. Eur Radiol 2022; 32(1): 650–660
https://doi.org/10.1007/s00330-021-08146-8
37 N Horvat, H Veeraraghavan, M Khan, I Blazic, J Zheng, M Capanu, E Sala, J Garcia-Aguilar, MJ Gollub, I Petkovska. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 2018; 287(3): 833–843
https://doi.org/10.1148/radiol.2018172300
38 TM Deist, FJWM Dankers, G Valdes, R Wijsman, IC Hsu, C Oberije, T Lustberg, J van Soest, F Hoebers, A Jochems, I El Naqa, L Wee, O Morin, DR Raleigh, W Bots, JH Kaanders, J Belderbos, M Kwint, T Solberg, R Monshouwer, J Bussink, A Dekker, P Lambin. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys 2018; 45(7): 3449–3459
https://doi.org/10.1002/mp.12967
39 D Paul, R Su, M Romain, V Sébastien, V Pierre, G Isabelle. Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Comput Med Imaging Graph 2017; 60: 42–49
https://doi.org/10.1016/j.compmedimag.2016.12.002
40 S Wang, Y Wang, D Wang, Y Yin, Y Wang, Y Jin. An improved random forest-based rule extraction method for breast cancer diagnosis. Appl Soft Comput 2020; 86: 105941
https://doi.org/10.1016/j.asoc.2019.105941
41 H Singh, S Singh, D Singla, SM Agarwal, GPS Raghava. QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest. Biol Direct 2015; 10: 10
https://doi.org/10.1186/s13062-015-0046-9
42 X Li, Y Xu, H Cui, T Huang, D Wang, B Lian, W Li, G Qin, L Chen, L Xie. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif Intell Med 2017; 83: 35–43
https://doi.org/10.1016/j.artmed.2017.05.008
43 P Sidorov, S Naulaerts, J Ariey-Bonnet, E Pasquier, PJ Ballester. Predicting synergism of cancer drug combinations using NCI-ALMANAC data. Front Chem 2019; 7: 509
https://doi.org/10.3389/fchem.2019.00509
44 C Yang, X Huang, Y Li, J Chen, Y Lv, S Dai. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform 2021; 22(3): bbaa164
https://doi.org/10.1093/bib/bbaa164
45 C Hu, JA Steingrimsson. Personalized risk prediction in clinical oncology research: applications and practical issues using survival trees and random forests. J Biopharm Stat 2018; 28(2): 333–349
https://doi.org/10.1080/10543406.2017.1377730
46 A Natekin, A Knoll. Gradient boosting machines, a tutorial. Front Neurorobot 2013; 7: 21
https://doi.org/10.3389/fnbot.2013.00021
47 JH Friedman. Greedy function approximation: a gradient boosting machine. Ann Stat 2001; 29(5): 1189–1232
https://doi.org/10.1214/aos/1013203451
48 T ChenC Guestrin. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Pages 785–794). 2016; arXiv: 1603.02754
49 S Mallett, P Royston, R Waters, S Dutton, DG Altman. Reporting performance of prognostic models in cancer: a review. BMC Med 2010; 8(1): 21
https://doi.org/10.1186/1741-7015-8-21
50 A Moncada-Torres, MC van Maaren, MP Hendriks, S Siesling, G Geleijnse. Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Sci Rep 2021; 11(1): 6968
https://doi.org/10.1038/s41598-021-86327-7
51 M Nazari, I Shiri, H Zaidi. Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients. Comput Biol Med 2021; 129: 104135
https://doi.org/10.1016/j.compbiomed.2020.104135
52 O Arrieta, AF Cardona, C Martín, L Más-López, L Corrales-Rodríguez, G Bramuglia, O Castillo-Fernandez, M Meyerson, E Amieva-Rivera, AD Campos-Parra, H Carranza, de la Torre JC Gómez, Y Powazniak, F Aldaco-Sarvide, C Vargas, M Trigo, M Magallanes-Maciel, J Otero, R Sánchez-Reyes, M Cuello. Updated frequency of EGFR and KRAS mutations in non-small-cell lung cancer in Latin America: the Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). J Thorac Oncol 2015; 10(5): 838–843
https://doi.org/10.1097/JTO.0000000000000481
53 NQK Le, QH Kha, VH Nguyen, YC Chen, SJ Cheng, CY Chen. Machine learning-based radiomics signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. Int J Mol Sci 2021; 22(17): 9254
https://doi.org/10.3390/ijms22179254
54 Q Li, H Yang, P Wang, X Liu, K Lv, M Ye. XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer. J Transl Med 2022; 20(1): 177
https://doi.org/10.1186/s12967-022-03369-9
55 X Liu, P Yuan, R Li, D Zhang, J An, J Ju, C Liu, F Ren, R Hou, Y Li, J Yang. Predicting breast cancer recurrence and metastasis risk by integrating color and texture features of histopathological images and machine learning technologies. Comput Biol Med 2022; 146: 105569
https://doi.org/10.1016/j.compbiomed.2022.105569
56 A Bomane, A Gonçalves, PJ Ballester. Paclitaxel response can be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data. Front Genet 2019; 10: 1041
https://doi.org/10.3389/fgene.2019.01041
57 M Polano, M Chierici, M Dal Bo, D Gentilini, F Di Cintio, L Baboci, DL Gibbs, C Furlanello, G Toffoli. A pan-cancer approach to predict responsiveness to immune checkpoint inhibitors by machine learning. Cancers (Basel) 2019; 11(10): 1562
https://doi.org/10.3390/cancers11101562
58 GW Ji, CY Jiao, ZG Xu, XC Li, K Wang, XH Wang. Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma. BMC Cancer 2022; 22(1): 258
https://doi.org/10.1186/s12885-022-09352-3
59 A Pfob, BJ Mehrara, JA Nelson, EG Wilkins, AL Pusic, C Sidey-Gibbons. Towards patient-centered decision-making in breast cancer surgery: machine learning to predict individual patient-reported outcomes at 1-year follow-up. Ann Surg 2023; 277(1): e144–e152
https://doi.org/10.1097/SLA.0000000000004862
60 B Ma, F Meng, G Yan, H Yan, B Chai, F Song. Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput Biol Med 2020; 121: 103761
https://doi.org/10.1016/j.compbiomed.2020.103761
61 C Cortes, V Vapnik. Support-vector networks. Mach Learn 1995; 20(3): 273–297
https://doi.org/10.1007/BF00994018
62 WS Noble. What is a support vector machine. Nat Biotechnol 2006; 24(12): 1565–1567
https://doi.org/10.1038/nbt1206-1565
63 TS Furey, N Cristianini, N Duffy, DW Bednarski, M Schummer, D Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000; 16(10): 906–914
https://doi.org/10.1093/bioinformatics/16.10.906
64 SN Dorman, K Baranova, JHM Knoll, BL Urquhart, G Mariani, ML Carcangiu, PK Rogan. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol Oncol 2016; 10(1): 85–100
https://doi.org/10.1016/j.molonc.2015.07.006
65 B Zhang, X He, F Ouyang, D Gu, Y Dong, L Zhang, X Mo, W Huang, J Tian, S Zhang. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 2017; 403: 21–27
https://doi.org/10.1016/j.canlet.2017.06.004
66 Z Liu, XY Zhang, YJ Shi, L Wang, HT Zhu, Z Tang, S Wang, XT Li, J Tian, YS Sun. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res 2017; 23(23): 7253–7262
https://doi.org/10.1158/1078-0432.CCR-17-1038
67 L Yang, D Dong, M Fang, Y Zhu, Y Zang, Z Liu, H Zhang, J Ying, X Zhao, J Tian. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer. Eur Radiol 2018; 28(5): 2058–2067
https://doi.org/10.1007/s00330-017-5146-8
68 T Abeel, T Helleputte, Y Van de Peer, P Dupont, Y Saeys. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 2010; 26(3): 392–398
https://doi.org/10.1093/bioinformatics/btp630
69 Y Li, J Zhao, S Yu, Z Wang, X He, Y Su, T Guo, H Sheng, J Chen, Q Zheng, Y Li, W Guo, X Cai, G Shi, J Wu, L Wang, P Wang, X He, S Huang. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem 2019; 65(6): 798–808
https://doi.org/10.1373/clinchem.2018.301291
70 J Qiu, B Peng, Y Tang, Y Qian, P Guo, M Li, J Luo, B Chen, H Tang, C Lu, M Cai, Z Ke, W He, Y Zheng, D Xie, B Li, Y Yuan. CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol 2017; 35(7): 734–742
https://doi.org/10.1200/JCO.2016.68.2153
71 Y Jiang, J Xie, Z Han, W Liu, S Xi, L Huang, W Huang, T Lin, L Zhao, Y Hu, J Yu, Q Zhang, T Li, S Cai, G Li. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit. Clin Cancer Res 2018; 24(22): 5574–5584
https://doi.org/10.1158/1078-0432.CCR-18-0848
72 JH Cheong, SC Wang, S Park, MR Porembka, AL Christie, H Kim, HS Kim, H Zhu, WJ Hyung, SH Noh, B Hu, C Hong, JD Karalis, IH Kim, SH Lee, TH Hwang. Development and validation of a prognostic and predictive 32-gene signature for gastric cancer. Nat Commun 2022; 13(1): 774
https://doi.org/10.1038/s41467-022-28437-y
73 B Delahunt, JN Eble, L Egevad, H Samaratunga. Grading of renal cell carcinoma. Histopathology 2019; 74(1): 4–17
https://doi.org/10.1111/his.13735
74 Committee on Gynecologic Oncology FIGO. FIGO staging for carcinoma of the vulva, cervix, and corpus uteri. Int J Gynaecol Obstet 2014; 125(2): 97–98
https://doi.org/10.1016/j.ijgo.2014.02.003
75 CT Bektas, B Kocak, AH Yardimci, MH Turkcanoglu, U Yucetas, SB Koca, C Erdim, O Kilickesmez. Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of Fuhrman nuclear grade. Eur Radiol 2019; 29(3): 1153–1163
https://doi.org/10.1007/s00330-018-5698-2
76 L Xie, R Chu, K Wang, X Zhang, J Li, Z Zhao, S Yao, Z Wang, T Dong, X Yang, X Su, X Qiao, K Song, B Kong. Prognostic assessment of cervical cancer patients by clinical staging and surgical-pathological factor: a support vector machine-based approach. Front Oncol 2020; 10: 1353
https://doi.org/10.3389/fonc.2020.01353
77 G Xu, M Zhang, H Zhu, J Xu. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene 2017; 604: 33–40
https://doi.org/10.1016/j.gene.2016.12.016
78 D Jiang, T Lei, Z Wang, C Shen, D Cao, T Hou. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12(1): 16
https://doi.org/10.1186/s13321-020-00421-y
79 X Huang, L Zhang, B Wang, F Li, Z Zhang. Feature clustering based support vector machine recursive feature elimination for gene selection. Appl Intell 2018; 48(3): 594–607
https://doi.org/10.1007/s10489-017-0992-2
80 H Wang, B Zheng, SW Yoon, HS Ko. A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur J Oper Res 2018; 267(2): 687–699
https://doi.org/10.1016/j.ejor.2017.12.001
81 GF Cooper, E Herskovits. A Bayesian method for the induction of probabilistic networks from data. Mach Learn 1992; 9(4): 309–347
https://doi.org/10.1007/BF00994110
82 N Friedman, D Geiger, M Goldszmidt. Bayesian network classifiers. Mach Learn 1997; 29(2/3): 131–163
https://doi.org/10.1023/A:1007465528199
83 M Johnson, A Albizri, S Simsek. Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis. Ann Oper Res 2022; 308(1-2): 275–305
https://doi.org/10.1007/s10479-020-03872-6
84 R Li, C Zhang, K Du, H Dan, R Ding, Z Cai, L Duan, Z Xie, G Zheng, H Wu, G Ren, X Dou, F Feng, J Zheng. Analysis of prognostic factors of rectal cancer and construction of a prognostic prediction model based on Bayesian network. Front Public Health 2022; 10: 842970
https://doi.org/10.3389/fpubh.2022.842970
85 GW Wright, DW Huang, JD Phelan, ZA Coulibaly, S Roulland, RM Young, JQ Wang, R Schmitz, RD Morin, J Tang, A Jiang, A Bagaev, O Plotnikova, N Kotlov, CA Johnson, WH Wilson, DW Scott, LM Staudt. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 2020; 37(4): 551–568.e14
https://doi.org/10.1016/j.ccell.2020.03.015
86 A Jochems, TM Deist, J van Soest, M Eble, P Bulens, P Coucke, W Dries, P Lambin, A Dekker. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital—a real life proof of concept. Radiother Oncol 2016; 121(3): 459–467
https://doi.org/10.1016/j.radonc.2016.10.002
87 NM Braman, M Etesami, P Prasanna, C Dubchuk, H Gilmore, P Tiwari, D Plecha, A Madabhushi. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 2017; 19(1): 57
https://doi.org/10.1186/s13058-017-0846-1
88 L Yang, B Fu, Y Li, Y Liu, W Huang, S Feng, L Xiao, L Sun, L Deng, X Zheng, F Ye, H Bu. Prediction model of the response to neoadjuvant chemotherapy in breast cancers by a Naive Bayes algorithm. Comput Methods Programs Biomed 2020; 192: 105458
https://doi.org/10.1016/j.cmpb.2020.105458
89 R Rouhi, M Jafari, S Kasaei, P Keshavarzian. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 2015; 42(3): 990–1002
https://doi.org/10.1016/j.eswa.2014.09.020
90 DP Russo, KM Zorn, AM Clark, H Zhu, S Ekins. Comparing multiple machine learning algorithms and metrics for estrogen receptor binding prediction. Mol Pharm 2018; 15(10): 4361–4370
https://doi.org/10.1021/acs.molpharmaceut.8b00546
91 M Karabatak. A new classifier for breast cancer detection based on Naïve Bayesian. Measurement 2015; 72: 32–36
https://doi.org/10.1016/j.measurement.2015.04.028
92 M Abdar, M Zomorodi-Moghadam, X Zhou, R Gururajan, X Tao, PD Barua, R Gururajan. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett 2020; 132: 123–131
https://doi.org/10.1016/j.patrec.2018.11.004
93 DM Farid, L Zhang, CM Rahman, MA Hossain, R Strachan. Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 2014; 41(4): 1937–1946
https://doi.org/10.1016/j.eswa.2013.08.089
94 S Chen, GI Webb, L Liu, X Ma. A novel selective naïve Bayes algorithm. Knowl Base Syst 2020; 192: 105361
https://doi.org/10.1016/j.knosys.2019.105361
95 T Cover, P Hart. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967; 13(1): 21–27
https://doi.org/10.1109/TIT.1967.1053964
96 LE Peterson. K-nearest neighbor. Scholarpedia J 2009; 4(2): 1883
https://doi.org/10.4249/scholarpedia.1883
97 S Dhahbi, W Barhoumi, E Zagrouba. Breast cancer diagnosis in digitized mammograms using curvelet moments. Comput Biol Med 2015; 64: 79–90
https://doi.org/10.1016/j.compbiomed.2015.06.012
98 Q Huang, Y Huang, Y Luo, F Yuan, X Li. Segmentation of breast ultrasound image with semantic classification of superpixels. Med Image Anal 2020; 61: 101657
https://doi.org/10.1016/j.media.2020.101657
99 SA Waugh, CA Purdie, LB Jordan, S Vinnicombe, RA Lerski, P Martin, AM Thompson. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol 2016; 26(2): 322–330
https://doi.org/10.1007/s00330-015-3845-6
100 D Leithner, JV Horvat, MA Marino, B Bernard-Davila, MS Jochelson, RE Ochoa-Albiztegui, DF Martinez, EA Morris, S Thakur, K Pinker. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Breast Cancer Res 2019; 21(1): 106
https://doi.org/10.1186/s13058-019-1187-z
101 PJ García-Laencina, PH Abreu, MH Abreu, N Afonoso. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput Biol Med 2015; 59: 125–133
https://doi.org/10.1016/j.compbiomed.2015.02.006
102 W Wu, C Parmar, P Grossmann, J Quackenbush, P Lambin, J Bussink, R Mak, HJ Aerts. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 2016; 6: 71
https://doi.org/10.3389/fonc.2016.00071
103 GS Tandel, A Balestrieri, T Jujaray, NN Khanna, L Saba, JS Suri. Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Comput Biol Med 2020; 122: 103804
https://doi.org/10.1016/j.compbiomed.2020.103804
104 A Wang, N An, G Chen, L Li, G Alterovitz. Accelerating wrapper-based feature selection with K-nearest-neighbor. Knowl Base Syst 2015; 83: 81–91
https://doi.org/10.1016/j.knosys.2015.03.009
105 Y Saeys, I Inza, P Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23(19): 2507–2517
https://doi.org/10.1093/bioinformatics/btm344
106 S Kar, K Das Sharma, M Maitra. Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst Appl 2015; 42(1): 612–627
https://doi.org/10.1016/j.eswa.2014.08.014
107 S Zhang, X Li, M Zong, X Zhu, R Wang. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learn Syst 2018; 29(5): 1774–1785
https://doi.org/10.1109/TNNLS.2017.2673241
108 S Uddin, I Haque, H Lu, MA Moni, E Gide. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci Rep 2022; 12(1): 6256
https://doi.org/10.1038/s41598-022-10358-x
109 A Krogh. What are artificial neural networks. Nat Biotechnol 2008; 26(2): 195–197
https://doi.org/10.1038/nbt1386
110 J Khan, JS Wei, M Ringnér, LH Saal, M Ladanyi, F Westermann, F Berthold, M Schwab, CR Antonescu, C Peterson, PS Meltzer. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001; 7(6): 673–679
https://doi.org/10.1038/89044
111 HA Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 2002; 25(3): 265–281
https://doi.org/10.1016/S0933-3657(02)00028-3
112 JS Wei, BT Greer, F Westermann, SM Steinberg, CG Son, QR Chen, CC Whiteford, S Bilke, AL Krasnoselsky, N Cenacchi, D Catchpoole, F Berthold, M Schwab, J Khan. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 2004; 64(19): 6883–6891
https://doi.org/10.1158/0008-5472.CAN-04-0695
113 D Delen, G Walker, A Kadam. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005; 34(2): 113–127
https://doi.org/10.1016/j.artmed.2004.07.002
114 J Dheeba, N Albert Singh, S Tamil Selvi. Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014; 49: 45–52
https://doi.org/10.1016/j.jbi.2014.01.010
115 A Bhardwaj, A Tiwari. Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Syst Appl 2015; 42(10): 4611–4620
https://doi.org/10.1016/j.eswa.2015.01.065
116 MH Alshayeji, H Ellethy, S Abed, R Gupta. Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach. Biomed Signal Process Control 2022; 71: 103141
https://doi.org/10.1016/j.bspc.2021.103141
117 PP Almeida, CP Cardoso, LM de Freitas. PDAC-ANN: an artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression. BMC Cancer 2020; 20(1): 82
https://doi.org/10.1186/s12885-020-6533-0
118 Y LeCun, Y Bengio, G Hinton. Deep learning. Nature 2015; 521(7553): 436–444
https://doi.org/10.1038/nature14539
119 Y LeCunB BoserJ DenkerD HendersonR Howard W HubbardL Jackel. Handwritten digit recognition with a back-propagation network. NIPS'89: Proceedings of the 2nd International Conference on Neural Information Processing Systems. 1989; 396–404
120 R Yamashita, M Nishio, RKG Do, K Togashi. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018; 9(4): 611–629
https://doi.org/10.1007/s13244-018-0639-9
121 A Esteva, B Kuprel, RA Novoa, J Ko, SM Swetter, HM Blau, S Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115–118
https://doi.org/10.1038/nature21056
122 D Bychkov, N Linder, R Turkki, S Nordling, PE Kovanen, C Verrill, M Walliander, M Lundin, C Haglund, J Lundin. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep 2018; 8(1): 3395
https://doi.org/10.1038/s41598-018-21758-3
123 JN Kather, J Krisam, P Charoentong, T Luedde, E Herpel, CA Weis, T Gaiser, A Marx, NA Valous, D Ferber, L Jansen, CC Reyes-Aldasoro, I Zörnig, D Jäger, H Brenner, J Chang-Claude, M Hoffmeister, N Halama. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med 2019; 16(1): e1002730
https://doi.org/10.1371/journal.pmed.1002730
124 OJ Skrede, Raedt S De, A Kleppe, TS Hveem, K Liestøl, J Maddison, HA Askautrud, M Pradhan, JA Nesheim, F Albregtsen, IN Farstad, E Domingo, DN Church, A Nesbakken, NA Shepherd, I Tomlinson, R Kerr, M Novelli, DJ Kerr, HE Danielsen. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 2020; 395(10221): 350–360
https://doi.org/10.1016/S0140-6736(19)32998-8
125 K Sirinukunwattana, E Domingo, SD Richman, KL Redmond, A Blake, C Verrill, SJ Leedham, A Chatzipli, C Hardy, CM Whalley, CH Wu, AD Beggs, U McDermott, PD Dunne, A Meade, SM Walker, GI Murray, L Samuel, M Seymour, I Tomlinson, P Quirke, T Maughan, J Rittscher, VH; S:CORT consortium Koelzer. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 2021; 70(3): 544–554
https://doi.org/10.1136/gutjnl-2019-319866
126 JN Kather, LR Heij, HI Grabsch, C Loeffler, A Echle, HS Muti, J Krause, JM Niehues, KAJ Sommer, P Bankhead, LFS Kooreman, JJ Schulte, NA Cipriani, RD Buelow, P Boor, NN Ortiz-Brüchle, AM Hanby, V Speirs, S Kochanny, A Patnaik, A Srisuwananukorn, H Brenner, M Hoffmeister, den Brandt PA van, D Jäger, C Trautwein, AT Pearson, T Luedde. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer 2020; 1(8): 789–799
https://doi.org/10.1038/s43018-020-0087-6
127 J Yang, J Ju, L Guo, B Ji, S Shi, Z Yang, S Gao, X Yuan, G Tian, Y Liang, P Yuan. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput Struct Biotechnol J 2022; 20: 333–342
https://doi.org/10.1016/j.csbj.2021.12.028
128 Y Xu, A Hosny, R Zeleznik, C Parmar, T Coroller, I Franco, RH Mak, HJWL Aerts. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019; 25(11): 3266–3275
https://doi.org/10.1158/1078-0432.CCR-18-2495
129 TW Freer, MJ Ulissey. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology 2001; 220(3): 781–786
https://doi.org/10.1148/radiol.2203001282
130 T Kooi, G Litjens, Ginneken B van, A Gubern-Mérida, CI Sánchez, R Mann, Heeten A den, N Karssemeijer. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017; 35: 303–312
https://doi.org/10.1016/j.media.2016.07.007
131 S Ren, K He, R Girshick, J Sun. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2017; 39(6): 1137–1149
https://doi.org/10.1109/TPAMI.2016.2577031
132 IC Moreira, I Amaral, I Domingues, A Cardoso, MJ Cardoso, JS Cardoso. INbreast: toward a full-field digital mammographic database. Acad Radiol 2012; 19(2): 236–248
https://doi.org/10.1016/j.acra.2011.09.014
133 L Shen, LR Margolies, JH Rothstein, E Fluder, R McBride, W Sieh. Deep learning to improve breast cancer detection on screening mammography. Sci Rep 2019; 9(1): 12495
https://doi.org/10.1038/s41598-019-48995-4
134 A Hekler, JS Utikal, AH Enk, C Berking, J Klode, D Schadendorf, P Jansen, C Franklin, T Holland-Letz, D Krahl, Kalle C von, S Fröhling, TJ Brinker. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer 2019; 115: 79–83
https://doi.org/10.1016/j.ejca.2019.04.021
135 D Ardila, AP Kiraly, S Bharadwaj, B Choi, JJ Reicher, L Peng, D Tse, M Etemadi, W Ye, G Corrado, DP Naidich, S Shetty. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019; 25(6): 954–961
https://doi.org/10.1038/s41591-019-0447-x
136 SM McKinney, M Sieniek, V Godbole, J Godwin, N Antropova, H Ashrafian, T Back, M Chesus, GS Corrado, A Darzi, M Etemadi, F Garcia-Vicente, FJ Gilbert, M Halling-Brown, D Hassabis, S Jansen, A Karthikesalingam, CJ Kelly, D King, JR Ledsam, D Melnick, H Mostofi, L Peng, JJ Reicher, B Romera-Paredes, R Sidebottom, M Suleyman, D Tse, KC Young, J De Fauw, S Shetty. International evaluation of an AI system for breast cancer screening. Nature 2020; 577(7788): 89–94
https://doi.org/10.1038/s41586-019-1799-6
137 T Schaffter, DSM Buist, CI Lee, Y Nikulin, D Ribli, Y Guan, W Lotter, Z Jie, H Du, S Wang, J Feng, M Feng, HE Kim, F Albiol, A Albiol, S Morrell, Z Wojna, ME Ahsen, U Asif, Yepes A Jimeno, S Yohanandan, S Rabinovici-Cohen, D Yi, B Hoff, T Yu, Neto E Chaibub, DL Rubin, P Lindholm, LR Margolies, RB McBride, JH Rothstein, W Sieh, R Ben-Ari, S Harrer, A Trister, S Friend, T Norman, B Sahiner, F Strand, J Guinney, G; Stolovitzky, DM DREAM Consortium; Mackey L the, J Cahoon, L Shen, JH Sohn, H Trivedi, Y Shen, L Buturovic, JC Pereira, JS Cardoso, E Castro, KT Kalleberg, O Pelka, I Nedjar, KJ Geras, F Nensa, E Goan, S Koitka, L Caballero, DD Cox, P Krishnaswamy, G Pandey, CM Friedrich, D Perrin, C Fookes, B Shi, Negrie G Cardoso, M Kawczynski, K Cho, CS Khoo, JY Lo, AG Sorensen, H Jung. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open 2020; 3(3): e200265
https://doi.org/10.1001/jamanetworkopen.2020.0265
138 N Wu, J Phang, J Park, Y Shen, Z Huang, M Zorin, S Jastrzębski, T Févry, J Katsnelson, E Kim, S Wolfson, U Parikh, S Gaddam, LLY Lin, K Ho, JD Weinstein, B Reig, Y Gao, H Toth, K Pysarenko, A Lewin, J Lee, K Airola, E Mema, S Chung, E Hwang, N Samreen, SG Kim, L Heacock, L Moy, K Cho, KJ Geras. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging 2020; 39(4): 1184–1194
https://doi.org/10.1109/TMI.2019.2945514
139 S Tabibu, PK Vinod, CV Jawahar. Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci Rep 2019; 9(1): 10509
https://doi.org/10.1038/s41598-019-46718-3
140 X Jin, YF Zhou, D Ma, S Zhao, CJ Lin, Y Xiao, T Fu, CL Liu, YY Chen, WX Xiao, YQ Liu, QW Chen, Y Yu, LM Shi, JX Shi, W Huang, JFR Robertson, YZ Jiang, ZM Shao. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet 2023; 55(10): 1696–1708
https://doi.org/10.1038/s41588-023-01507-7
141 S Munquad, AB Das. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping. BioData Min 2023; 16(1): 32
https://doi.org/10.1186/s13040-023-00349-7
142 M Chen, B Zhang, W Topatana, J Cao, H Zhu, S Juengpanich, Q Mao, H Yu, X Cai. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precis Oncol 2020; 4(1): 14
https://doi.org/10.1038/s41698-020-0120-3
143 N Coudray, PS Ocampo, T Sakellaropoulos, N Narula, M Snuderl, D Fenyö, AL Moreira, N Razavian, A Tsirigos. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018; 24(10): 1559–1567
https://doi.org/10.1038/s41591-018-0177-5
144 H Sharifi-Noghabi, O Zolotareva, CC Collins, M Ester. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 2019; 35(14): i501–i509
https://doi.org/10.1093/bioinformatics/btz318
145 T Sakellaropoulos, K Vougas, S Narang, F Koinis, A Kotsinas, A Polyzos, TJ Moss, S Piha-Paul, H Zhou, E Kardala, E Damianidou, LG Alexopoulos, I Aifantis, PA Townsend, MI Panayiotidis, P Sfikakis, J Bartek, RC Fitzgerald, D Thanos, KR Mills Shaw, R Petty, A Tsirigos, VG Gorgoulis. A deep learning framework for predicting response to therapy in cancer. Cell Rep 2019; 29(11): 3367–3373.e4
https://doi.org/10.1016/j.celrep.2019.11.017
146 BM Kuenzi, J Park, SH Fong, KS Sanchez, J Lee, JF Kreisberg, J Ma, T Ideker. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 2020; 38(5): 672–684.e6
https://doi.org/10.1016/j.ccell.2020.09.014
147 R Su, X Liu, L Wei, Q Zou. Deep-Resp-Forest: a deep forest model to predict anti-cancer drug response. Methods 2019; 166: 91–102
https://doi.org/10.1016/j.ymeth.2019.02.009
148 K Preuer, RPI Lewis, S Hochreiter, A Bender, KC Bulusu, G Klambauer. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 2018; 34(9): 1538–1546
https://doi.org/10.1093/bioinformatics/btx806
149 A Rajkomar, E Oren, K Chen, AM Dai, N Hajaj, M Hardt, PJ Liu, X Liu, J Marcus, M Sun, P Sundberg, H Yee, K Zhang, Y Zhang, G Flores, GE Duggan, J Irvine, Q Le, K Litsch, A Mossin, J Tansuwan, D Wang, J Wexler, J Wilson, D Ludwig, SL Volchenboum, K Chou, M Pearson, S Madabushi, NH Shah, AJ Butte, MD Howell, C Cui, GS Corrado, J Dean. Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018; 1(1): 18
https://doi.org/10.1038/s41746-018-0029-1
150 A Yala, C Lehman, T Schuster, T Portnoi, R Barzilay. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019; 292(1): 60–66
https://doi.org/10.1148/radiol.2019182716
151 L Rasmy, Y Xiang, Z Xie, C Tao, D Zhi. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit Med 2021; 4(1): 86
https://doi.org/10.1038/s41746-021-00455-y
152 R Miotto, L Li, BA Kidd, JT Dudley. Deep Patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016; 6(1): 26094
https://doi.org/10.1038/srep26094
153 A Hosny, C Parmar, TP Coroller, P Grossmann, R Zeleznik, A Kumar, J Bussink, RJ Gillies, RH Mak, HJWL Aerts. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 2018; 15(11): e1002711
https://doi.org/10.1371/journal.pmed.1002711
154 J Hirschberg, CD Manning. Advances in natural language processing. Science 2015; 349(6245): 261–266
https://doi.org/10.1126/science.aaa8685
155 WW Yim, M Yetisgen, WP Harris, SW Kwan. Natural language processing in oncology: a review. JAMA Oncol 2016; 2(6): 797–804
https://doi.org/10.1001/jamaoncol.2016.0213
156 SM Castro, E Tseytlin, O Medvedeva, K Mitchell, S Visweswaran, T Bekhuis, RS Jacobson. Automated annotation and classification of BI-RADS assessment from radiology reports. J Biomed Inform 2017; 69: 177–187
https://doi.org/10.1016/j.jbi.2017.04.011
157 TA Patel, M Puppala, RO Ogunti, JE Ensor, T He, JB Shewale, DP Ankerst, VG Kaklamani, AA Rodriguez, ST Wong, JC Chang. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods. Cancer 2017; 123(1): 114–121
https://doi.org/10.1002/cncr.30245
158 DS Carrell, S Halgrim, DT Tran, DSM Buist, J Chubak, WW Chapman, G Savova. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence. Am J Epidemiol 2014; 179(6): 749–758
https://doi.org/10.1093/aje/kwt441
159 H Xu, MC Aldrich, Q Chen, H Liu, NB Peterson, Q Dai, M Levy, A Shah, X Han, X Ruan, M Jiang, Y Li, JS Julien, J Warner, C Friedman, DM Roden, JC Denny. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc 2015; 22(1): 179–191
https://doi.org/10.1136/amiajnl-2014-002649
160 GK Savova, E Tseytlin, S Finan, M Castine, T Miller, O Medvedeva, D Harris, H Hochheiser, C Lin, G Chavan, RS Jacobson. DeepPhe: a natural language processing system for extracting cancer phenotypes from clinical records. Cancer Res 2017; 77(21): e115–e118
https://doi.org/10.1158/0008-5472.CAN-17-0615
161 GK Savova, I Danciu, F Alamudun, T Miller, C Lin, DS Bitterman, G Tourassi, JL Warner. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Cancer Res 2019; 79(21): 5463–5470
https://doi.org/10.1158/0008-5472.CAN-19-0579
162 KL Kehl, H Elmarakeby, M Nishino, EM Van Allen, EM Lepisto, MJ Hassett, BE Johnson, D Schrag. Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports. JAMA Oncol 2019; 5(10): 1421–1429
https://doi.org/10.1001/jamaoncol.2019.1800
163 A VaswaniN ShazeerN ParmarJ UszkoreitL Jones AN GomezŁ KaiserI Polosukhin. Attention is all you need. In: Advances in Neural Information Processing Systems. 2017; 30
164 AJ Thirunavukarasu, DSJ Ting, K Elangovan, L Gutierrez, TF Tan, DSW Ting. Large language models in medicine. Nat Med 2023; 29(8): 1930–1940
https://doi.org/10.1038/s41591-023-02448-8
165 X Qiu, T Sun, Y Xu, Y Shao, N Dai, X Huang. Pre-trained models for natural language processing: a survey. Sci China Technol Sci 2020; 63(10): 1872–1897
https://doi.org/10.1007/s11431-020-1647-3
166 A RadfordK NarasimhanT SalimansI Sutskever. Improving Language Understanding by Generative Pre-Training. 2018. Available at the website of cdn.openai.com
167 YH Yeo, JS Samaan, WH Ng, PS Ting, H Trivedi, A Vipani, W Ayoub, JD Yang, O Liran, B Spiegel, A Kuo. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin Mol Hepatol 2023; 29(3): 721–732
https://doi.org/10.3350/cmh.2023.0089
168 AM Hopkins, JM Logan, G Kichenadasse, MJ Sorich. Artificial intelligence chatbots will revolutionize how cancer patients access information: ChatGPT represents a paradigm-shift. JNCI Cancer Spectr 2023; 7(2): pkad010
https://doi.org/10.1093/jncics/pkad010
169 V Sorin, E Klang, M Sklair-Levy, I Cohen, DB Zippel, N Balint Lahat, E Konen, Y Barash. Large language model (ChatGPT) as a support tool for breast tumor board. NPJ Breast Cancer 2023; 9(1): 44
https://doi.org/10.1038/s41523-023-00557-8
170 SB Johnson, AJ King, EL Warner, S Aneja, BH Kann, CL Bylund. Using ChatGPT to evaluate cancer myths and misconceptions: artificial intelligence and cancer information. JNCI Cancer Spectr 2023; 7(2): pkad015
https://doi.org/10.1093/jncics/pkad015
171 S Chen, BH Kann, MB Foote, HJWL Aerts, GK Savova, RH Mak, DS Bitterman. Use of artificial intelligence chatbots for cancer treatment information. JAMA Oncol 2023; 9(10): 1459–1462
https://doi.org/10.1001/jamaoncol.2023.2954
172 B Coskun, G Ocakoglu, M Yetemen, O Kaygisiz. Can ChatGPT, an artificial intelligence language model, provide accurate and high-quality patient information on prostate cancer. Urology 2023; 180: 35–58
https://doi.org/10.1016/j.urology.2023.05.040
173 K Sanderson. GPT-4 is here: what scientists think. Nature 2023; 615(7954): 773
https://doi.org/10.1038/d41586-023-00816-5
174 Q Lyu, J Tan, ME Zapadka, J Ponnatapura, C Niu, KJ Myers, G Wang, CT Whitlow. Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential. Vis Comput Ind Biomed Art 2023; 6(1): 9
https://doi.org/10.1186/s42492-023-00136-5
175 MA Fink, A Bischoff, CA Fink, M Moll, J Kroschke, L Dulz, CP Heußel, HU Kauczor, TF Weber. Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer. Radiology 2023; 308(3): e231362
https://doi.org/10.1148/radiol.231362
176 H Ibrahim, X Liu, AK Denniston. Reporting guidelines for artificial intelligence in healthcare research. Clin Exp Ophthalmol 2021; 49(5): 470–476
https://doi.org/10.1111/ceo.13943
177 Rivera S Cruz, X Liu, AW Chan, AK Denniston, MJ; SPIRIT-AI Calvert, Working Group; SPIRIT-AI CONSORT-AI, Steering Group; SPIRIT-AI CONSORT-AI, Consensus Group CONSORT-AI. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med 2020; 26(9): 1351–1363
https://doi.org/10.1038/s41591-020-1037-7
178 X Liu, Rivera S Cruz, D Moher, MJ Calvert, AK; SPIRIT-AI Denniston, Working Group CONSORT-AI. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med 2020; 26(9): 1364–1374
https://doi.org/10.1038/s41591-020-1034-x
179 B Norgeot, G Quer, BK Beaulieu-Jones, A Torkamani, R Dias, M Gianfrancesco, R Arnaout, IS Kohane, S Saria, E Topol, Z Obermeyer, B Yu, AJ Butte. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med 2020; 26(9): 1320–1324
https://doi.org/10.1038/s41591-020-1041-y
180 T Hernandez-Boussard, S Bozkurt, JPA Ioannidis, NH Shah. MINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 2020; 27(12): 2011–2015
https://doi.org/10.1093/jamia/ocaa088
181 V Sounderajah, H Ashrafian, RM Golub, S Shetty, Fauw J De, L Hooft, K Moons, G Collins, D Moher, PM Bossuyt, A Darzi, A Karthikesalingam, AK Denniston, BA Mateen, D Ting, D Treanor, D King, F Greaves, J Godwin, J Pearson-Stuttard, L Harling, M McInnes, N Rifai, N Tomasev, P Normahani, P Whiting, R Aggarwal, S Vollmer, SR Markar, T Panch, X; STARD-AI Steering Committee Liu. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021; 11(6): e047709
https://doi.org/10.1136/bmjopen-2020-047709
182 GS Collins, P Dhiman, CL Andaur Navarro, J Ma, L Hooft, JB Reitsma, P Logullo, AL Beam, L Peng, B Van Calster, M van Smeden, RD Riley, KG Moons. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021; 11(7): e048008
https://doi.org/10.1136/bmjopen-2020-048008
183 V Sounderajah, H Ashrafian, S Rose, NH Shah, M Ghassemi, R Golub, CE Jr Kahn, A Esteva, A Karthikesalingam, B Mateen, D Webster, D Milea, D Ting, D Treanor, D Cushnan, D King, D McPherson, B Glocker, F Greaves, L Harling, J Ordish, JF Cohen, J Deeks, M Leeflang, M Diamond, MDF McInnes, M McCradden, MD Abràmoff, P Normahani, SR Markar, S Chang, X Liu, S Mallett, S Shetty, A Denniston, GS Collins, D Moher, P Whiting, PM Bossuyt, A Darzi. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med 2021; 27(10): 1663–1665
https://doi.org/10.1038/s41591-021-01517-0
184 B Vasey, M Nagendran, B Campbell, DA Clifton, GS Collins, S Denaxas, AK Denniston, L Faes, B Geerts, M Ibrahim, X Liu, BA Mateen, P Mathur, MD McCradden, L Morgan, J Ordish, C Rogers, S Saria, DSW Ting, P Watkinson, W Weber, P Wheatstone, P; DECIDE-AI expert group McCulloch. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. BMJ 2022; 377: e070904
https://doi.org/10.1136/bmj-2022-070904
185 JF Cohen, DA Korevaar, DG Altman, DE Bruns, CA Gatsonis, L Hooft, L Irwig, D Levine, JB Reitsma, HC de Vet, PM Bossuyt. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016; 6(11): e012799
https://doi.org/10.1136/bmjopen-2016-012799
186 M Smith, A Sattler, G Hong, S Lin. From code to bedside: implementing artificial intelligence using quality improvement methods. J Gen Intern Med 2021; 36(4): 1061–1066
https://doi.org/10.1007/s11606-020-06394-w
187 J Wiens, S Saria, M Sendak, M Ghassemi, VX Liu, F Doshi-Velez, K Jung, K Heller, D Kale, M Saeed, PN Ossorio, S Thadaney-Israni, A Goldenberg. Do no harm: a roadmap for responsible machine learning for health care. Nat Med 2019; 25(9): 1337–1340
https://doi.org/10.1038/s41591-019-0548-6
188 DB Larson, H Harvey, DL Rubin, N Irani, JR Tse, CP Langlotz. Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: summary and recommendations. J Am Coll Radiol 2021; 18(3 3 Pt A): 413–424
https://doi.org/10.1016/j.jacr.2020.09.060
189 D Gunning, M Stefik, J Choi, T Miller, S Stumpf, GZ Yang. XAI-explainable artificial intelligence. Sci Robot 2019; 4(37): eaay7120
https://doi.org/10.1126/scirobotics.aay7120
190 H Klein, T Mazor, E Siegel, P Trukhanov, A Ovalle, CD Vecchio Fitz, Z Zwiesler, P Kumari, B Van Der Veen, E Marriott, J Hansel, J Yu, A Albayrak, S Barry, RB Keller, LE MacConaill, N Lindeman, BE Johnson, BJ Rollins, KT Do, B Beardslee, G Shapiro, S Hector-Barry, J Methot, L Sholl, J Lindsay, MJ Hassett, E Cerami. MatchMiner: an open-source platform for cancer precision medicine. NPJ Precis Oncol 2022; 6(1): 69
https://doi.org/10.1038/s41698-022-00312-5
191 T Li, S Shetty, A Kamath, A Jaiswal, X Jiang, Y Ding, Y Kim. CancerGPT for few shot drug pair synergy prediction using large pretrained language models. NPJ Digit Med 2024; 7(1): 40
https://doi.org/10.1038/s41746-024-01024-9
192 RI Hartman, N Trepanowski, MS Chang, K Tepedino, C Gianacas, JM McNiff, M Fung, NF Braghiroli, JM Grant-Kels. Multicenter prospective blinded melanoma detection study with a handheld elastic scattering spectroscopy device. JAAD Int 2024; 15: 24–31
https://doi.org/10.1016/j.jdin.2023.10.011
[1] Yixin Chen, Murad Al-Nusaif, Song Li, Xiang Tan, Huijia Yang, Huaibin Cai, Weidong Le. Progress on early diagnosing Alzheimer’s disease[J]. Front. Med., 2024, 18(3): 446-464.
[2] Jiaqi Dai, Tao Wang, Ke Xu, Yang Sun, Zongzhe Li, Peng Chen, Hong Wang, Dongyang Wu, Yanghui Chen, Lei Xiao, Hao Liu, Haoran Wei, Rui Li, Liyuan Peng, Ting Yu, Yan Wang, Zhongsheng Sun, Dao Wen Wang. Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature[J]. Front. Med., 2023, 17(4): 768-780.
[3] Shuhang Wang, Peiwen Ma, Ning Jiang, Yale Jiang, Yue Yu, Yuan Fang, Huilei Miao, Huiyao Huang, Qiyu Tang, Dandan Cui, Hong Fang, Huishan Zhang, Qi Fan, Yuning Wang, Gang Liu, Zicheng Yu, Qi Lei, Ning Li. Rare tumors: a blue ocean of investigation[J]. Front. Med., 2023, 17(2): 220-230.
[4] Na Chen, Shuang Song, Xinmiao Bao, Lan Zhu. Update on Mayer–Rokitansky–Küster–Hauser syndrome[J]. Front. Med., 2022, 16(6): 859-872.
[5] Yashuang Yang, Guimei Li, Yanzhou Wang, Yan Sun, Chao Xu, Zhen Wei, Shuping Zhang, Ling Gao, Sijin Liu, Jiajun Zhao. Facile discovery of red blood cell deformation and compromised membrane/skeleton assembly in Prader–Willi syndrome[J]. Front. Med., 2022, 16(6): 946-956.
[6] Yaxin Chen, Tianyi Yang, Xiaofeng Gao, Ajing Xu. Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis[J]. Front. Med., 2022, 16(3): 496-506.
[7] Ying Deng, Zhaowei Sun, Lei Wang, Minghui Wang, Jie Yang, Genxi Li. Biosensor-based assay of exosome biomarker for early diagnosis of cancer[J]. Front. Med., 2022, 16(2): 157-175.
[8] Jianhai Yin, Mei Li, He Yan, Shuisen Zhou, Zhigui Xia. Laboratory diagnosis for malaria in the elimination phase in China: efforts and challenges[J]. Front. Med., 2022, 16(1): 10-16.
[9] Baiwan Zhou, Dongmei An, Fenglai Xiao, Running Niu, Wenbin Li, Wei Li, Xin Tong, Graham J Kemp, Dong Zhou, Qiyong Gong, Du Lei. Machine learning for detecting mesial temporal lobe epilepsy by structural and functional neuroimaging[J]. Front. Med., 2020, 14(5): 630-641.
[10] Wei Tian, Bo Liu, Da He, Yajun Liu, Xiaoguang Han, Jingwei Zhao, Mingxing Fan, International Society for Computer Assisted Orthopaedic Surgery. Guidelines for navigation-assisted spine surgery[J]. Front. Med., 2020, 14(4): 518-527.
[11] Yang Jiao, Zhan Zhang, Ting Zhang, Wen Shi, Yan Zhu, Jie Hu, Qin Zhang. Development of an artificial intelligence diagnostic model based on dynamic uncertain causality graph for the differential diagnosis of dyspnea[J]. Front. Med., 2020, 14(4): 488-497.
[12] Dongping Ning, Zhan Zhang, Kun Qiu, Lin Lu, Qin Zhang, Yan Zhu, Renzhi Wang. Efficacy of intelligent diagnosis with a dynamic uncertain causality graph model for rare disorders of sex development[J]. Front. Med., 2020, 14(4): 498-505.
[13] Ke Sheng. Artificial intelligence in radiotherapy: a technological review[J]. Front. Med., 2020, 14(4): 431-449.
[14] Shujian Deng, Xin Zhang, Wen Yan, Eric I-Chao Chang, Yubo Fan, Maode Lai, Yan Xu. Deep learning in digital pathology image analysis: a survey[J]. Front. Med., 2020, 14(4): 470-487.
[15] Allison J. Navarrete-Welton, Daniel A. Hashimoto. Current applications of artificial intelligence for intraoperative decision support in surgery[J]. Front. Med., 2020, 14(4): 369-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed