Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (1) : 56-66    https://doi.org/10.1007/s11684-012-0177-7
REVIEW
Natural killer cell lines in tumor immunotherapy
Min Cheng1, Jian Zhang2, Wen Jiang2, Yongyan Chen1, Zhigang Tian1()
1. Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; 2. Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
 Download: PDF(187 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Natural killer (NK) cells are considered to be critical players in anticancer immunity. However, cancers are able to develop mechanisms to escape NK cell attack or to induce defective NK cells. Current NK cell-based cancer immunotherapy is aimed at overcoming NK cell paralysis through several potential approaches, including activating autologous NK cells, expanding allogeneic NK cells, usage of stable allogeneic NK cell lines and genetically modifying fresh NK cells or NK cell lines. The stable allogeneic NK cell line approach is more practical for quality-control and large-scale production. Additionally, genetically modifying NK cell lines by increasing their expression of cytokines and engineering chimeric tumor antigen receptors could improve their specificity and cytotoxicity. In this review, NK cells in tumor immunotherapy are discussed, and a list of therapeutic NK cell lines currently undergoing preclinical and clinical trials of several kinds of tumors are reviewed.

Keywords natural killer cell      natural killer cell line      tumor immunotherapy      genetic modification     
Corresponding Author(s): Tian Zhigang,Email:tzg@ustc.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Min Cheng,Jian Zhang,Wen Jiang, et al. Natural killer cell lines in tumor immunotherapy[J]. Front Med, 2012, 6(1): 56-66.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0177-7
https://academic.hep.com.cn/fmd/EN/Y2012/V6/I1/56
NK cell lineInstrumentCulture mediumCytokine in mediumStarting cell numberCulture time (days)Harvested cell numberViability
NK-921-L Vuelife culture bag [74,105]X-Vivo 10 serum-free media amino acids and 2.5% human AB plasmaIL-2 (500IU/ml)(2.5 × 105/ml) × 25ml/bag15-17> 1 × 109/bag≥ 80%
Controlled stirred bioreactor [56]Optimized clinical-grade mediaIL-2 (100-500IU/ml)1 × 107/bioreactor11-16> 1010/bioreactor> 95%
NKG* [59]WAVE Bioreactorα-MEM medium 10% fetal bovine serum + 10% horse serumIL-2 (100IU/ml)(1 × 105/ml) × 200ml/bag12-14> 1010/bag> 90%
NKL [63,81]Plates or FlasksRPMI 1640 medium 10% heat-inactivated human AB serumIL-2 (100 pM)
KHYG-1 [67,78,79]Plates or FlasksRPMI 1640 medium 2% human low-toxicity AB serumIL-2 (450 IU/ml)
Tab.1  Large-scale expansion of NK cell lines for clinical application
NK cell lineTumor cells killed by NK cell lines in vitroExperimental therapyClinical trials
Animal modelTreatmentEffectsPatientsTreatmentEffects
NK-92Daudi, K562, OKM-2T, KG1, HL60, Raji, NALM6, CEM-S, CEM-T, primary patient-derived leukemic cells [62,68,71-73,106,107].malignant melanoma in a SCID mouse model [69]5 × 106 or 1 × 107 NK-92 cells i.v.,one doseprolonged survival significantly; reduced tumor growthPhase I/II [56] 4 sarcoma, 2 medulloblastoma, 1 PNET, 1 B cell ALL1-3 × 109 NK-92 cells/m2 body surface; i.v. two doseswithout any significant side effects; no conclusions as to the efficacy can be drawn
xenografted primary human leukemia in SCID mouse model [68]2 × 107 NK-92 cells i.p.,one dose or five doses every other dayprolonged survival significantly; lead to cure in some micePhase I [74] 11 advanced renal cell cancer, 1 melanoma1 × 108 or 3 × 108 or 1 × 109 or 3 × 109 NK-92 cells/m2 body surface; i.v. three doses (3 patients/group)no severe hemodynamic or hematologic toxicities
Phase I (a)Acute Myeloid Leukemia1 × 109 or 3 × 109 or 5 × 109 NK-92 cells/m2 body surface; i.v. two dosesstatus: suspended
Phase I (b) Leukemia, Lymphoma, Myeloma, Hodgkin's Disease1 × 109 or 3 × 109 or 5 × 109 NK-92 cells/m2 body surface; i.v. on days 1, 3 and 5 of each cycle; 6 cycles monthlystatus: suspended
NKG [59]Ho8910, K562, SGC7901, A549, Hep2, HepG2, HCT116, SBKR3, LoVo, and DaudiXenografted human ovarian cancer in nude mouse model1 × 107 NKG cells i.p., one dose or 6.67 × 105 NKG cell/g bodyweight i.p., nine dosesprolonged survival significantly; inhibited the tumor growth; decreased mortality rateNo
NKLK562, Daudi, and U937 [81,82]NoNo
KHYG-1K562, Daudi, Raji, HL60, EM2 and EM3 [67,78,79];NoNo
Tab.2  Experimental therapy and clinical trials of NK cell line for tumor immunotherapy
NK cell lineGenes transferredMethod of gene transferEffects
NK-92IL-2 [84]RetrovirusIncreased proliferation; increased cytotoxicity against target tumor cells; increased secretion of IFN-γ and TNF-α; enhanced antitumor activity in human tumor-bearing SCID mice.
IL-15 [91]Transfection (Lipofectamine 2000)Increased proliferation; inhibited apoptosis of NK cell line; increased cytotoxicity via increasing expression of perforin, FasL and IFN-γ.
SCF [93]Transfection (Lipofectamine 2000)Increased proliferation; increased cytotoxicity; increased expression of perforin and FasL.
Anti-CD19-CD3ξ [104]ElectroporationIncreased cytotoxicity to CD19+tumor cell lines and CD19+ primary tumor cells.
Anti-CD20-CD3ξ [100]RetrovirusIncreased cytotoxicity to CD20+ tumor targets.
Anti-ErbB2-CD3ξ [103]RetrovirusIncreased cytotoxicity to erbB2+ T cell lymphoma cells, breast, ovarian and squamous cell carcinomas.
NKLIL-15 [92]ElectroporationIncreased proliferation; inhibited apoptosis of NK cell line; increased cytotoxicity via increased expression of perforin, FasL and IFN-γ.
IFN-α*ElectroporationPromoted expression of perforin, grazyme, TNF-α and IFN-γ; increased cytotoxicity; enhanced anti-tumor activity in human tumor-bearing SCID mice.
Tab.3  Genetic modification of NK cell lines
1 Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975; 16(2): 216-229
doi: 10.1002/ijc.2910160204 pmid:50294
2 Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5(2): 112-117
doi: 10.1002/eji.1830050208 pmid:1234049
3 Di Santo JP. Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 2006; 24(1): 257-286
doi: 10.1146/annurev.immunol.24.021605.090700 pmid:16551250
4 Grégoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T. The trafficking of natural killer cells. Immunol Rev 2007; 220(1): 169-182
doi: 10.1111/j.1600-065X.2007.00563.x pmid:17979846
5 Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22(11): 633-640
doi: 10.1016/S1471-4906(01)02060-9 pmid:11698225
6 Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100(6): 1935-1947
doi: 10.1182/blood-2002-02-0350 pmid:12200350
7 Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol 2004; 25(1): 47-52
doi: 10.1016/j.it.2003.10.012 pmid:14698284
8 Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998; 161(11): 5821-5824
pmid:9834059
9 Roder JC, Pross HF. The biology of the human natural killer cell. J Clin Immunol 1982; 2(4): 249-263
doi: 10.1007/BF00915064 pmid:6292259
10 Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol 2001; 1(1): 41-49
doi: 10.1038/35095564 pmid:11905813
11 Miller JS. The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol 2001; 29(10): 1157-1168
doi: 10.1016/S0301-472X(01)00696-8 pmid:11602317
12 Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med 2009; 266(2): 154-181
doi: 10.1111/j.1365-2796.2009.02121.x pmid:19614820
13 Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006; 214(1): 73-91
doi: 10.1111/j.1600-065X.2006.00457.x pmid:17100877
14 Paust S, von Andrian UH. Natural killer cell memory. Nat Immunol 2011; 12(6): 500-508
doi: 10.1038/ni.2032 pmid:21739673
15 Vitale M, Sivori S, Pende D, Augugliaro R, Di Donato C, Amoroso A, Malnati M, Bottino C, Moretta L, Moretta A. Physical and functional independency of p70 and p58 natural killer (NK) cell receptors for HLA class I: their role in the definition of different groups of alloreactive NK cell clones. Proc Natl Acad Sci USA 1996; 93(4): 1453-1457
doi: 10.1073/pnas.93.4.1453 pmid:8643653
16 Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 1992; 358(6381): 66-70
doi: 10.1038/358066a0 pmid:1614533
17 Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995; 268(5209): 405-408
doi: 7716543" target="_blank">10.1126/science. pmid:7716543 pmid:7716543
18 Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16-cells and display an impaired capability to kill tumor cells. Cancer 2008; 112(4): 863-875
doi: 10.1002/cncr.23239 pmid:18203207
19 Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S, Hayashi N. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 2005; 43(6): 1013-1020
doi: 10.1016/j.jhep.2005.05.026 pmid:16168521
20 Bauernhofer T, Kuss I, Henderson B, Baum AS, Whiteside TL. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer. Eur J Immunol 2003; 33(1): 119-124
doi: 10.1002/immu.200390014 pmid:12594840
21 Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 1996; 88(6): 2279-2287
pmid:8822949
22 Fauriat C, Mallet F, Olive D, Costello RT. Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia 2006; 20(4): 732-733
doi: 10.1038/sj.leu.2404096 pmid:16437151
23 Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, Petersson M, Kast WM, Kiessling R. Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res 1996; 2(11): 1825-1828
pmid:9816136
24 Tajima F, Kawatani T, Endo A, Kawasaki H. Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia. Leukemia 1996; 10(3): 478-482
pmid:8642865
25 Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7(5): 329-339
doi: 10.1038/nri2073 pmid:17438573
26 Semino C, Martini L, Queirolo P, Cangemi G, Costa R, Alloisio A, Ferlazzo G, Sertoli MR, Reali UM, Ratto GB, Melioli G. Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res 1999; 19(6C): 5645-5649
pmid:10697634
27 Margolin KA. Interleukin-2 in the treatment of renal cancer. Semin Oncol 2000; 27(2): 194-203
pmid:10768598
28 Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, White DE, Steinberg SM. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993; 85(8): 622-632
doi: 10.1093/jnci/85.8.622 pmid:8468720
29 Chan JK, Hamilton CA, Cheung MK, Karimi M, Baker J, Gall JM, Schulz S, Thorne SH, Teng NN, Contag CH, Lum LG, Negrin RS. Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study. Clin Cancer Res 2006; 12(6): 1859-1867
doi: 10.1158/1078-0432.CCR-05-2019 pmid:16551871
30 Farag SS, Caligiuri MA. Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv Pharmacol 2004; 51: 295-318
doi: 10.1016/S1054-3589(04)51013-X pmid:15464915
31 Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev 2004; 202(1): 275-293
doi: 10.1111/j.0105-2896.2004.00199.x pmid:15546400
32 Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005; 86: 209-239
doi: 10.1016/S0065-2776(04)86006-1 pmid:15705423
33 Rosenberg SA. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 2000; 6(Suppl 1): S2-S7
pmid:10685650
34 Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13(2): 155-168
doi: 10.1016/S1359-6101(01)00032-6 pmid:11900991
35 Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol 2004; 41(6-7): 569-575
doi: 10.1016/j.molimm.2004.04.004 pmid:15219995
36 Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol 2004; 25(12): 670-676
doi: 10.1016/j.it.2004.09.008 pmid:15530838
37 Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47: 187-376
doi: 10.1016/S0065-2776(08)60664-1 pmid:2683611
38 Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3(2): 133-146
doi: 10.1038/nri1001 pmid:12563297
39 Medvedev AE, Johnsen AC, Haux J, Steinkjer B, Egeberg K, Lynch DH, Sundan A, Espevik T. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine 1997; 9(6): 394-404
doi: 10.1006/cyto.1996.0181 pmid:9199873
40 Johnsen AC, Haux J, Steinkjer B, Nonstad U, Egeberg K, Sundan A, Ashkenazi A, Espevik T. Regulation of APO-2 ligand/trail expression in NK cells-involvement in NK cell-mediated cytotoxicity. Cytokine 1999; 11(9): 664-672
doi: 10.1006/cyto.1999.0489 pmid:10479402
41 Mirandola P, Ponti C, Gobbi G, Sponzilli I, Vaccarezza M, Cocco L, Zauli G, Secchiero P, Manzoli FA, Vitale M. Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood 2004; 104(8): 2418-2424
doi: 10.1182/blood-2004-04-1294 pmid:15205263
42 Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 1998; 188(12): 2375-2380
doi: 10.1084/jem.188.12.2375 pmid:9858524
43 Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 2002; 13(2): 169-183
doi: 10.1016/S1359-6101(01)00021-1 pmid:11900992
44 van der Vliet HJ, Koon HB, Yue SC, Uzunparmak B, Seery V, Gavin MA, Rudensky AY, Atkins MB, Balk SP, Exley MA. Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 2007; 13(7): 2100-2108
doi: 10.1158/1078-0432.CCR-06-1662 pmid:17404092
45 Ghiringhelli F, Ménard C, Martin F, Zitvogel L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 2006; 214(1): 229-238
doi: 10.1111/j.1600-065X.2006.00445.x pmid:17100888
46 Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, Childs R. Clinical-grade exvivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 2009; 11(3): 341-355
doi: 10.1080/14653240902807034 pmid:19308771
47 Escudier B, Farace F, Angevin E, Charpentier F, Nitenberg G, Triebel F, Hercend T. Immunotherapy with interleukin-2 (IL2) and lymphokine-activated natural killer cells: improvement of clinical responses in metastatic renal cell carcinoma patients previously treated with IL2. Eur J Cancer 1994; 30A(8): 1078-1083
doi: 10.1016/0959-8049(94)90460-X pmid:7654433
48 Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004; 24(3b): 1861-1871
pmid:15274367
49 deMagalhaes-Silverman M, Donnenberg A, Lembersky B, Elder E, Lister J, Rybka W, Whiteside T, Ball E. Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer. J Immunother 2000; 23(1): 154-160
doi: 10.1097/00002371-200001000-00018 pmid:10687148
50 Miller JS, Tessmer-Tuck J, Pierson BA, Weisdorf D, McGlave P, Blazar BR, Katsanis E, Verfaillie C, Lebkowski J, Radford J Jr, Burns LJ. Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant 1997; 3(1): 34-44
pmid:9209739
51 Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 2003; 32(2): 177-186
doi: 10.1038/sj.bmt.1704086 pmid:12838283
52 Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy JP Jr, Takahashi Y, Suffredini DA, Linehan WM, Caligiuri MA, Childs RW. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004; 104(1): 170-177
doi: 10.1182/blood-2003-12-4438 pmid:15016654
53 Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105(8): 3051-3057
doi: 10.1182/blood-2004-07-2974 pmid:15632206
54 Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, Rigatos G, Papamichail M, Perez SA. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 2010; 59(12): 1781-1789
doi: 10.1007/s00262-010-0904-3 pmid:20703455
55 Kobayashi N. Artificial cells for the development of cell therapy. Cell Transplant 2008; 17(1): 3-9
doi: 10.3727/000000008783907099 pmid:18468229
56 Tonn T, Becker S, Esser R, Schwabe D, Seifried E. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 2001; 10(4): 535-544
doi: 10.1089/15258160152509145 pmid:11522236
57 Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2(11): 850-861
doi: 10.1038/nrc928 pmid:12415255
58 Drexler HG, Matsuo Y. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma. Leukemia 2000; 14(5): 777-782
doi: 10.1038/sj.leu.2401778 pmid:10803505
59 Cheng M, Ma J, Chen Y, Zhang J, Zhao W, Wei H, Ling B, Sun R, Tian Z. Establishment, characterization and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant 2011 Jun 7. [Epub ahead of print].
doi: 10.3727/096368911X580536 pmid:21669033
60 Fernandez LA, Pope B, Lee C, Zayed E. Aggressive natural killer cell leukemia in an adult with establishment of an NK cell line. Blood 1986; 67(4): 925-930
pmid:3955237
61 Yodoi J, Teshigawara K, Nikaido T, Fukui K, Noma T, Honjo T, Takigawa M, Sasaki M, Minato N, Tsudo M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol 1985; 134(3): 1623-1630
pmid:2578514
62 Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994; 8(4): 652-658
pmid:8152260
63 Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24(3): 406-415
pmid:8599969
64 Yoneda N, Tatsumi E, Kawano S, Teshigawara K, Oka T, Fukuda M, Yamaguchi N. Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia 1992; 6(2): 136-141
pmid:1313126
65 Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, Hiraki A, Nakayama H, Shibuya A, Ma Y, Kawabata T, Okada S, Harada M. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood 1998; 92(4): 1374-1383
pmid:9694726
66 Kagami Y, Nakamura S, Suzuki R, Iida S, Yatabe Y, Okada Y, Kobayashi T, Tsurumi T, Seto M, Ogura M, Taguchi O, Morishima Y. Establishment of an IL-2-dependent cell line derived from ‘nasal-type’ NK/T-cell lymphoma of CD2+, sCD3-, CD3e+, CD56+ phenotype and associated with the Epstein-Barr virus. Br J Haematol 1998; 103(3): 669-677
doi: 10.1046/j.1365-2141.1998.01029.x pmid:9858215
67 Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M, Konaka Y, Takatsuki K. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 2000; 14(5): 922-930
doi: 10.1038/sj.leu.2401769 pmid:10803526
68 Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, O’Reilly RJ. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 1998; 4(11): 2859-2868
pmid:9829753
69 Tam YK, Miyagawa B, Ho VC, Klingemann HG. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother 1999; 8(3): 281-290
doi: 10.1089/106161299320316 pmid:10417052
70 Maki G, Klingemann HG, Martinson JA, Tam YK. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother Stem Cell Res 2001; 10(3): 369-383
doi: 10.1089/152581601750288975 pmid:11454312
71 Komatsu F, Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol Res 1998; 10(10): 483-489
pmid:10338151
72 Klingemann HG, Wong E, Maki G. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant 1996; 2(2): 68-75
pmid:9118301
73 Maki G, Tam YK, Berkahn L, Klingemann HG. Ex vivo purging with NK-92 prior to autografting for chronic myelogenous leukemia. Bone Marrow Transplant 2003; 31(12): 1119-1125
doi: 10.1038/sj.bmt.1704117 pmid:12796791
74 Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 2008; 10(6): 625-632
doi: 10.1080/14653240802301872 pmid:18836917
75 Klingemann HG. Natural killer cell-based immunotherapeutic strategies. Cytotherapy 2005; 7(1): 16-22
doi: 10.1080/14653240510018000 pmid:16040380
76 Malmberg KJ, Bryceson YT, Carlsten M, Andersson S, Bj?rklund A, Bj?rkstr?m NK, Baumann BC, Fauriat C, Alici E, Dilber MS, Ljunggren HG. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother 2008; 57(10): 1541-1552
doi: 10.1007/s00262-008-0492-7 pmid:18317755
77 Tam YK, Maki G, Miyagawa B, Hennemann B, Tonn T, Klingemann HG. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum Gene Ther 1999; 10(8): 1359-1373
doi: 10.1089/10430349950018030 pmid:10365666
78 Suck G, Branch DR, Smyth MJ, Miller RG, Vergidis J, Fahim S, Keating A. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol 2005; 33(10): 1160-1171
doi: 10.1016/j.exphem.2005.06.024 pmid:16219538
79 Suck G, Branch DR, Keating A. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line. Int J Radiat Biol 2006; 82(5): 355-361
doi: 10.1080/09553000600649653 pmid:16782653
80 Zhang C, Zhang J, Niu J, Zhang J, Tian Z. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 2008; 42(1): 128-136
doi: 10.1016/j.cyto.2008.01.003 pmid:18280748
81 García-Lora A, Martinez M, Pedrinaci S, Garrido F. Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line. Cancer Immunol Immunother 2003; 52(1): 59-64
pmid:12536241
82 Pedrinaci S, Algarra I, Garrido F. Protein-bound polysaccharide (PSK) induces cytotoxic activity in the NKL human natural killer cell line. Int J Clin Lab Res 1999; 29(4): 135-140
doi: 10.1007/s005990050079 pmid:10784373
83 Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 2009; 21(5): 525-530
doi: 10.1016/j.coi.2009.07.015 pmid:19717293
84 Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P, Whiteside TL. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood 1998; 91(10): 3850-3861
pmid:9573023
85 Konstantinidis KV, Alici E, Aints A, Christensson B, Ljunggren HG, Dilber MS. Targeting IL-2 to the endoplasmic reticulum confines autocrine growth stimulation to NK-92 cells. Exp Hematol 2005; 33(2): 159-164
doi: 10.1016/j.exphem.2004.11.003 pmid:15676209
86 Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, Aguila HL, Caligiuri MA. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002; 100(10): 3633-3638
doi: 10.1182/blood-2001-12-0293 pmid:12393617
87 Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood 2001; 97(1): 14-32
doi: 10.1182/blood.V97.1.14 pmid:11133738
88 He YG, Mayhew E, Mellon J, Niederkorn JY. Expression and possible function of IL-2 and IL-15 receptors on human uveal melanoma cells. Invest Ophthalmol Vis Sci 2004; 45(12): 4240-4246
doi: 10.1167/iovs.04-0599 pmid:15557426
89 Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14(2): 105-110
pmid:11239443
90 Rodella L, Zamai L, Rezzani R, Artico M, Peri G, Falconi M, Facchini A, Pelusi G, Vitale M. Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br J Haematol 2001; 115(2): 442-450
doi: 10.1046/j.1365-2141.2001.03055.x pmid:11703348
91 Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 2004; 89(3): 338-347
pmid:15020274
92 Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy 2008; 10(3): 265-274
doi: 10.1080/14653240801965156 pmid:18418772
93 Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells: implication in NK cell-based adoptive cellular immunotherapy. Oncol Rep 2004; 11(5): 1097-1106
pmid:15069553
94 Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, Nagase F, Kurosawa Y. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987; 149(3): 960-968
doi: 10.1016/0006-291X(87)90502-X pmid:3122749
95 Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024-10028
doi: 10.1073/pnas.86.24.10024 pmid:2513569
96 Eshhar Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 1997; 45(3-4): 131-136
doi: 10.1007/s002620050415 pmid:9435856
97 Uherek C, Groner B, Wels W. Chimeric antigen receptors for the retargeting of cytotoxic effector cells. J Hematother Stem Cell Res 2001; 10(4): 523-534
doi: 10.1089/15258160152509136 pmid:11522235
98 Roberts MR, Qin L, Zhang D, Smith DH, Tran AC, Dull TJ, Groopman JE, Capon DJ, Byrn RA, Finer MH. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 1994; 84(9): 2878-2889
pmid:7949163
99 Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol 1995; 155(2): 1000-1009
pmid:7608531
100 Müller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 2008; 57(3): 411-423
doi: 10.1007/s00262-007-0383-3 pmid:17717662
101 Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schonfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS. NK cells engineered to express a GD(2) -specific antigen receptor display built-in ADCC-like activity against tumor cells of neuroectodermal origin. J Cell Mol Med 2011May20. [Epub ahead of print]
doi: 10.1111/j.1582-4934.2011.01343.x pmid:21595822
102 Demirtzoglou FJ, Papadopoulos S, Zografos G. Cytolytic and cytotoxic activity of a human natural killer cell line genetically modified to specifically recognize HER-2/neu overexpressing tumor cells. Immunopharmacol Immunotoxicol 2006; 28(4): 571-590
doi: 10.1080/08923970601066971 pmid:17190735
103 Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 2002; 100(4): 1265-1273
pmid:12149207
104 Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res 2009; 33(9): 1255-1259
doi: 10.1016/j.leukres.2008.11.024 pmid:19147228
105 Tam YK, Martinson JA, Doligosa K, Klingemann HG. Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 2003; 5(3): 259-272
doi: 10.1080/14653240310001523 pmid:12850795
106 Klingemann HG, Miyagawa B. Purging of malignant cells from blood after short ex vivo incubation with NK-92 cells. Blood 1996; 87(11): 4913-4914
pmid:8639869
107 Liu XC, Liang H, Tian Z, Ruan YS, Zhang L, Chen Y. Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochemistry (Mosc) 2007; 72(7): 716-727
doi: 10.1134/S000629790707005X pmid:17680763
[1] Baokai Dou, Shichun Li, Luyao Wei, Lixin Wang, Shiguo Zhu, Zhengtao Wang, Zunji Ke, Kaixian Chen, Zhifei Wang. Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition[J]. Front. Med., 2021, 15(1): 79-90.
[2] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[3] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[4] Meijuan Zheng, Haoyu Sun, Zhigang Tian. Natural killer cells in liver diseases[J]. Front. Med., 2018, 12(3): 269-279.
[5] Min Yu, Zonghai Li. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches[J]. Front. Med., 2017, 11(4): 509-521.
[6] Hui QIU, Hui ZHANG, Zuohua FENG. 4-1BBL expressed by eukaryotic cells activates immune cells and suppresses the progression of murine tumor[J]. Front Med Chin, 2009, 3(1): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed