Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2014, Vol. 8 Issue (4) : 404-418    https://doi.org/10.1007/s11684-014-0379-2
REVIEW
Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets
Feng Wang,Chen Chen,Daowen Wang()
Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(634 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

microRNAs (miRNAs) are a class of conserved, short, non-coding RNAs that have important and potent capacities to regulate gene expression at the posttranscriptional level. In the past several years, the aberrant expressions of miRNAs in the cardiovascular system have been widely reported, and the crucial roles of some special miRNAs in heart development and pathophysiology of various cardiovascular diseases have been gradually recognized. Recently, it was discovered that miRNAs are presented in peripheral circulation abundantly and stably. This has raised the possibility of using circulating miRNAs as biomarkers for diseases. Furthermore, some studies demonstrated that circulating miRNAs may serve as novel extracellular communicators of cell-cell communication. These discoveries not only reveal the functions of circulating miRNAs in cardiovascular system but also inform the development of miRNAs therapeutic strategies. In this review, we discuss the potential roles of circulating miRNAs in a variety of cardiovascular diseases from biomarkers to therapeutic targets to clearly understand the roles of circulating miRNAs in cardiovascular system.

Keywords microRNA      cardiovascular disease      biomarkers      therapeutic target     
Corresponding Author(s): Daowen Wang   
Just Accepted Date: 06 November 2014   Online First Date: 01 December 2014    Issue Date: 18 December 2014
 Cite this article:   
Chen Chen,Daowen Wang,Feng Wang. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets[J]. Front. Med., 2014, 8(4): 404-418.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0379-2
https://academic.hep.com.cn/fmd/EN/Y2014/V8/I4/404
Fig.1  Possible interactions of miRNAs between the organs.
Diseases miRNA Patterns Models References
AMI miR-208 Increased ISO ratCAL ratHuman patients [76][68][68, 73]
miR-499 Increased Human patientsAMI mice [66, 69][73]
miR-1 Increased CAL ratHuman patients [77][78]
miR-133 Increased Human patients [66, 79, 81]
HF miR-423-5p Increased Human patients [70]
CAD miR-126,-17,-92a,-155, -145 Decreased Human patients [71]
miR-133a, -208a Increased Human patients [71, 81]
miR-135a Increased Human patients [90]
miR-147 Decreased Human patients [90]
Hypertension hcmv-miR-UL112 Increased Human patients [72]
VM miR-208b, -499 Increased Human patients [73]
Tab.1  Key miRNAs in cardiovascular diseases
1 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell2004; 116(2): 281–297
https://doi.org/10.1016/S0092-8674(04)00045-5 pmid: 14744438
2 Ambros V. The functions of animal microRNAs. Nature2004; 431(7006): 350–355
https://doi.org/10.1038/nature02871 pmid: 15372042
3 Papageorgiou N, Tousoulis D, Androulakis E, Siasos G, Briasoulis A, Vogiatzi G, Kampoli AM, Tsiamis E, Tentolouris C, Stefanadis C. The role of microRNAs in cardiovascular disease. Curr Med Chem2012; 19(16): 2605–2610
https://doi.org/10.2174/092986712800493048 pmid: 22489721
4 Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J2002; 21(17): 4663–4670
https://doi.org/10.1093/emboj/cdf476 pmid: 12198168
5 Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA2004; 10(12): 1957–1966
https://doi.org/10.1261/rna.7135204 pmid: 15525708
6 Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev2003; 17(24): 3011–3016
https://doi.org/10.1101/gad.1158803 pmid: 14681208
7 Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science2004; 303(5654): 95–98
https://doi.org/10.1126/science.1090599 pmid: 14631048
8 Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA2004; 10(2): 185–191
https://doi.org/10.1261/rna.5167604 pmid: 14730017
9 Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol2009; 10(2): 126–139
https://doi.org/10.1038/nrm2632 pmid: 19165215
10 Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell2006; 125(6): 1111–1124
https://doi.org/10.1016/j.cell.2006.04.031 pmid: 16777601
11 Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol2007; 17(3): 118–126
https://doi.org/10.1016/j.tcb.2006.12.007 pmid: 17197185
12 Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature2010; 466(7308): 835–840
https://doi.org/10.1038/nature09267 pmid: 20703300
13 Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res2011; 39(Database): D152–D157
https://doi.org/10.1093/nar/gkq1027 pmid: 21037258
14 Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell2005; 120(1): 21–24
https://doi.org/10.1016/j.cell.2004.12.031 pmid: 15652478
15 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell2005; 120(1): 15–20
https://doi.org/10.1016/j.cell.2004.12.035 pmid: 15652477
16 Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol2013; 75(1): 69–93
https://doi.org/10.1146/annurev-physiol-030212-183737 pmid: 23157557
17 Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest2013; 123(1): 11–18
https://doi.org/10.1172/JCI62876 pmid: 23281405
18 Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation2008; 117(4): e25–e146
https://doi.org/10.1161/CIRCULATIONAHA.107.187998 pmid: 18086926
19 Charakida M, Tousoulis D, Stefanadis C. Early atherosclerosis in childhood: diagnostic approaches and therapeutic strategies. Int J Cardiol2006; 109(2): 152–159
https://doi.org/10.1016/j.ijcard.2005.06.010 pmid: 16023230
20 Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J2011; 278(10): 1619–1633
https://doi.org/10.1111/j.1742-4658.2011.08090.x pmid: 21395978
21 Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation2010; 121(8): 1022–1032
https://doi.org/10.1161/CIRCULATIONAHA.109.889048 pmid: 20194875
22 van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov2012; 11(11): 860–872
https://doi.org/10.1038/nrd3864 pmid: 23080337
23 van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res2008; 103(9): 919–928
https://doi.org/10.1161/CIRCRESAHA.108.183426 pmid: 18948630
24 Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res2012; 110(3): 483–495
https://doi.org/10.1161/CIRCRESAHA.111.247452 pmid: 22302755
25 Fichtlscherer S, Zeiher AM, Dimmeler S, Sessa WC. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol2011; 31(11): 2383–2390
https://doi.org/10.1161/ATVBAHA.111.226696 pmid: 22011751
26 Li WY, Jin J, Chen J, Guo Y, Tang J, Tan S. Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens2014; 28(5): 288–291
https://doi.org/10.1038/jhh.2013.94 pmid: 24132136
27 Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, Musacchio E, Barbieri M, Mauro C, Mosca N, Solimene F, Mottola MT, Russo A, Rossi F, Paolisso G, D’Amico M. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail2013; 15(11): 1277–1288
https://doi.org/10.1093/eurjhf/hft088 pmid: 23736534
28 Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol2008; 141(5): 672–675
https://doi.org/10.1111/j.1365-2141.2008.07077.x pmid: 18318758
29 Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA2008; 105(30): 10513–10518
https://doi.org/10.1073/pnas.0804549105 pmid: 18663219
30 Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem2002; 48(10): 1647–1653
pmid: 12324479
31 El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, Godfrey TE. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem2004; 50(3): 564–573
https://doi.org/10.1373/clinchem.2003.028506 pmid: 14718398
32 Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res2008; 18(10): 997–1006
https://doi.org/10.1038/cr.2008.282 pmid: 18766170
33 Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem2010; 285(23): 17442–17452
https://doi.org/10.1074/jbc.M110.107821 pmid: 20353945
34 Valadi H, Ekstr?m K, Bossios A, Sj?strand M, Lee JJ, L?tvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol2007; 9(6): 654–659
https://doi.org/10.1038/ncb1596 pmid: 17486113
35 Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia2006; 20(5): 847–856
https://doi.org/10.1038/sj.leu.2404132 pmid: 16453000
36 Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol2002; 2(8): 569–579
pmid: 12154376
37 Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int2010; 78(9): 838–848
https://doi.org/10.1038/ki.2010.278 pmid: 20703216
38 Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE2010; 5(10): e13515
https://doi.org/10.1371/journal.pone.0013515 pmid: 20976003
39 Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem2013; 288: 10849–10859
https://doi.org/10.1074/jbc.M112.446831 pmid: 23439645
40 Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol2012; 14(3): 249–256
https://doi.org/10.1038/ncb2441 pmid: 22327366
41 Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol2003; 19(1): 397–422
https://doi.org/10.1146/annurev.cellbio.19.111301.153609 pmid: 14570575
42 Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Z?ller M. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res2010; 70(4): 1668–1678
https://doi.org/10.1158/0008-5472.CAN-09-2470 pmid: 20124479
43 Rana S, Yue S, Stadel D, Z?ller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol2012; 44(9): 1574–1584
https://doi.org/10.1016/j.biocel.2012.06.018 pmid: 22728313
44 van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev2013; 65(3): 331–335
https://doi.org/10.1016/j.addr.2012.06.011 pmid: 22750807
45 Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia2006; 20(9): 1487–1495
https://doi.org/10.1038/sj.leu.2404296 pmid: 16791265
46 Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schl?ndorff D. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med2000; 6(7): 769–775
https://doi.org/10.1038/77498 pmid: 10888925
47 Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci2010; 123(10): 1603–1611
https://doi.org/10.1242/jcs.064386 pmid: 20445011
48 Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood2009; 114(3): 723–732
https://doi.org/10.1182/blood-2009-02-205930 pmid: 19369228
49 Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Müller-Newen G, Soehnlein O, Weber C. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation2010; 122(5): 495–506
https://doi.org/10.1161/CIRCULATIONAHA.109.909473 pmid: 20644015
50 Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res2012; 93(4): 555–562
https://doi.org/10.1093/cvr/cvr266 pmid: 22028337
51 K?ppler B, Cohen C, Schl?ndorff D, Mack M. Differential mechanisms of microparticle transfer toB cells and monocytes: anti-inflammatory propertiesof microparticles. Eur J Immunol2006; 36(3): 648–660
https://doi.org/10.1002/eji.200535435 pmid: 16479543
52 Pula G, Perera S, Prokopi M, Sidibe A, Boulanger CM, Mayr M. Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics Clin Appl2008; 2(6): 882–891
https://doi.org/10.1002/prca.200800040 pmid: 21136886
53 Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell2010; 39(1): 133–144
https://doi.org/10.1016/j.molcel.2010.06.010 pmid: 20603081
54 Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE2010; 5(7): e11803
https://doi.org/10.1371/journal.pone.0011803 pmid: 20668554
55 Leroyer AS, Ebrahimian TG, Cochain C, Récalde A, Blanc-Brude O, Mees B, Vilar J, Tedgui A, Levy BI, Chimini G, Boulanger CM, Silvestre JS. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation2009; 119(21): 2808–2817
https://doi.org/10.1161/CIRCULATIONAHA.108.816710 pmid: 19451354
56 VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res2003; 59(2): 277–287
https://doi.org/10.1016/S0008-6363(03)00367-5 pmid: 12909311
57 Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res2012; 93(4): 633–644
https://doi.org/10.1093/cvr/cvs007 pmid: 22258631
58 Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res2010; 107(9): 1047–1057
https://doi.org/10.1161/CIRCRESAHA.110.226456 pmid: 21030722
59 Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol2002; 22(1): 101–107
https://doi.org/10.1161/hq0102.101525 pmid: 11788468
60 Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol2010; 6(1): 21–29
https://doi.org/10.1038/nrrheum.2009.229 pmid: 19949432
61 Holmgren L, Bergsmedh A, Spetz AL. Horizontal transfer of DNA by the uptake of apoptotic bodies. Vox Sang2002; 83(Suppl 1): 305–306
https://doi.org/10.1111/j.1423-0410.2002.tb05323.x pmid: 12617158
62 Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, K?ppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal2009; 2(100): ra81
https://doi.org/10.1126/scisignal.2000610 pmid: 19996457
63 Janas T, Janas T, Yarus M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res2006; 34(7): 2128–2136
https://doi.org/10.1093/nar/gkl220 pmid: 16641318
64 Kim SI, Shin D, Choi TH, Lee JC, Cheon GJ, Kim KY, Park M, Kim M. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther2007; 15(6): 1145–1152
pmid: 17440441
65 Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol2011; 13(4): 423–433
https://doi.org/10.1038/ncb2210 pmid: 21423178
66 Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA2011; 108(12): 5003–5008
https://doi.org/10.1073/pnas.1019055108 pmid: 21383194
67 Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res2011; 39(16): 7223–7233
https://doi.org/10.1093/nar/gkr254 pmid: 21609964
68 Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol2012; 9(8): 1066–1075
https://doi.org/10.4161/rna.21083 pmid: 22858679
69 Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res2010; 38(20): 7248–7259
https://doi.org/10.1093/nar/gkq601 pmid: 20615901
70 D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J2010; 31(22): 2765–2773
https://doi.org/10.1093/eurheartj/ehq167 pmid: 20534597
71 Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A, Pasterkamp G, Doevendans PA, Hoes AW, Sluijter JP. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med2012; 4(11): 1176–1185
https://doi.org/10.1002/emmm.201201749 pmid: 23023917
72 Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J2010; 31(6): 659–666
https://doi.org/10.1093/eurheartj/ehq013 pmid: 20159880
73 Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem2010; 56(7): 1183–1185
https://doi.org/10.1373/clinchem.2010.144121 pmid: 20395621
74 Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM. MiR423-5p as a circulating biomarker for heart failure. Circ Res2010; 106(6): 1035–1039
https://doi.org/10.1161/CIRCRESAHA.110.218297 pmid: 20185794
75 Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, R?xe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating microRNAs in patients with coronary artery disease. Circ Res2010; 107(5): 677–684
https://doi.org/10.1161/CIRCRESAHA.109.215566 pmid: 20595655
76 Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation2011; 124(2): 175–184
https://doi.org/10.1161/CIRCULATIONAHA.110.012237 pmid: 21690488
77 Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet2010; 3(6): 499–506
https://doi.org/10.1161/CIRCGENETICS.110.957415 pmid: 20921333
78 White HD, Chew DP. Acute myocardial infarction. Lancet2008; 372(9638): 570–584
https://doi.org/10.1016/S0140-6736(08)61237-4 pmid: 18707987
79 van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science2007; 316(5824): 575–579
https://doi.org/10.1126/science.1139089 pmid: 17379774
80 Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem2009; 55(11): 1944–1949
https://doi.org/10.1373/clinchem.2009.125310 pmid: 19696117
81 Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond)2010; 119(2): 87–95
https://doi.org/10.1042/CS20090645 pmid: 20218970
82 Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun2010; 391(1): 73–77
https://doi.org/10.1016/j.bbrc.2009.11.005 pmid: 19896465
83 De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating microRNAs. Circulation2011; 124(18): 1936–1944
https://doi.org/10.1161/CIRCULATIONAHA.111.037572 pmid: 21969012
84 Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet2011; 4(4): 446–454
https://doi.org/10.1161/CIRCGENETICS.110.958975 pmid: 21642241
85 Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med2013; 11: 222
pmid: 24053180
86 Bo?tjan?i? E, Zidar N, ?tajer D, Glava? D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology2010; 115(3): 163–169
https://doi.org/10.1159/000268088 pmid: 20029200
87 van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell2009; 17(5): 662–673
https://doi.org/10.1016/j.devcel.2009.10.013 pmid: 19922871
88 Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet2006; 38(2): 228–233
https://doi.org/10.1038/ng1725 pmid: 16380711
89 Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci2012; 8(6): 811–818
https://doi.org/10.7150/ijbs.4439 pmid: 22719221
90 Long G, Wang F, Duan Q, Yang S, Chen F, Gong W, Yang X, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE2012; 7(12): e50926
https://doi.org/10.1371/journal.pone.0050926 pmid: 23236408
91 Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS ONE2014; 9(9): e105734
https://doi.org/10.1371/journal.pone.0105734 pmid: 25184815
92 Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol2012; 60(4): 290–299
https://doi.org/10.1016/j.jacc.2012.03.056 pmid: 22813605
93 Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J2011; 75(2): 336–340
https://doi.org/10.1253/circj.CJ-10-0457 pmid: 21157109
94 Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res2010; 107(6): 810–817
https://doi.org/10.1161/CIRCRESAHA.110.226357 pmid: 20651284
95 Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel TJ, Biessen EA. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun2010; 394(3): 792–797
https://doi.org/10.1016/j.bbrc.2010.03.075 pmid: 20230787
96 Yang LX, Liu G, Zhu GF, Liu H, Guo RW, Qi F, Zou JH. MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. J Renin Angiotensin Aldosterone Syst2014; 15: 109–116
pmid: 24737641
97 Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, Fabricio AS, Squarcina E, Gion M, Palatini P, Semplicini A. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens2011; 24(2): 241–246
https://doi.org/10.1038/ajh.2010.211 pmid: 20966899
98 Gan CS, Wang CW, Tan KS. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res2012; 11(1): 147–152
https://doi.org/10.4238/2012.January.27.1 pmid: 22370881
99 Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol2013; 13(1): 178
https://doi.org/10.1186/1471-2377-13-178 pmid: 24237608
100 Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol2008; 10(12): 1470–1476
https://doi.org/10.1038/ncb1800 pmid: 19011622
101 Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest2013; 123(5): 2143–2154
https://doi.org/10.1172/JCI64365 pmid: 23619365
102 Yang Y, Rodriguez JE, Kitsis RN. A microRNA links prolactin to peripartum cardiomyopathy. J Clin Invest2013; 123(5): 1925–1927
https://doi.org/10.1172/JCI69286 pmid: 23619357
103 Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, Chang J, Peng T, Fan GC. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol2014; 74: 139–150
https://doi.org/10.1016/j.yjmcc.2014.05.001 pmid: 24825548
104 Iguchi H, Kosaka N, Ochiya T. Secretory microRNAs as a versatile communication tool. Commun Integr Biol2010; 3(5): 478–481
https://doi.org/10.4161/cib.3.5.12693 pmid: 21057646
105 Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T, Middeldorp JM. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA2010; 107(14): 6328–6333
https://doi.org/10.1073/pnas.0914843107 pmid: 20304794
106 Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood2012; 119(3): 756–766
https://doi.org/10.1182/blood-2011-02-338004 pmid: 22031862
107 McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem2011; 57(6): 833–840
https://doi.org/10.1373/clinchem.2010.157198 pmid: 21487102
108 van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA2006; 103(48): 18255–18260
https://doi.org/10.1073/pnas.0608791103 pmid: 17108080
109 Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation2007; 116(3): 258–267
https://doi.org/10.1161/CIRCULATIONAHA.107.687947 pmid: 17606841
110 Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature2008; 456(7224): 980–984
https://doi.org/10.1038/nature07511 pmid: 19043405
111 van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA2008; 105(35): 13027–13032
https://doi.org/10.1073/pnas.0805038105 pmid: 18723672
112 Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell2008; 15(2): 261–271
https://doi.org/10.1016/j.devcel.2008.07.002 pmid: 18694565
113 Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med2013; 368(18): 1685–1694
https://doi.org/10.1056/NEJMoa1209026 pmid: 23534542
114 Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation2011; 124(14): 1537–1547
https://doi.org/10.1161/CIRCULATIONAHA.111.030932 pmid: 21900086
115 Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell2012; 149(3): 671–683
https://doi.org/10.1016/j.cell.2012.03.029 pmid: 22541436
116 Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res2012; 110(1): 71–81
https://doi.org/10.1161/CIRCRESAHA.111.244442 pmid: 22052914
[1] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[2] Weiqi Rong, Yang Zhang, Lei Yang, Lin Feng, Baojun Wei, Fan Wu, Liming Wang, Yanning Gao, Shujun Cheng, Jianxiong Wu, Ting Xiao. Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma[J]. Front. Med., 2019, 13(2): 250-258.
[3] Kyung Im Kim, Sohyun Jeong, Nayoung Han, Jung Mi Oh, Kook-Hwan Oh, In-Wha Kim. Identification of differentially expressed miRNAs associated with chronic kidney disease–mineral bone disorder[J]. Front. Med., 2017, 11(3): 378-385.
[4] Hongli Yin,Tianyi Liu,Ying Zhang,Baofeng Yang. Caveolin proteins: a molecular insight into disease[J]. Front. Med., 2016, 10(4): 397-404.
[5] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[6] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[7] Rong Zhang, Di Wang, Zhuying Xia, Chao Chen, Peng Cheng, Hui Xie, Xianghang Luo. The role of microRNAs in adipocyte differentiation[J]. Front Med, 2013, 7(2): 223-230.
[8] Ji Qi, David Mu. MicroRNAs and lung cancers: from pathogenesis to clinical implications[J]. Front Med, 2012, 6(2): 134-155.
[9] Chong Liu, Dingfeng Su. Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases[J]. Front Med, 2012, 6(1): 35-40.
[10] Zhonghua Sun. Multislice computed tomography angiography in the diagnosis of cardiovascular disease: 3D visualizations[J]. Front Med, 2011, 5(3): 254-270.
[11] Jun-Jie XIAO MD, Yi-Han CHEN MD, PhD, . Prevalence of cardiovascular diseases in China[J]. Front. Med., 2010, 4(1): 16-20.
[12] Gang LI MD , Xiaojia XIONG MM , . MicroRNAs and hepatitis viruses[J]. Front. Med., 2009, 3(3): 265-270.
[13] TANG Dale. Crk-associated substrate, vascular smooth muscle and hypertension[J]. Front. Med., 2008, 2(4): 323-331.
[14] GAO Yu, TIAN Ying, SHEN Xiaoming. Current techniques for assessing developmental neurotoxicity of pesticides[J]. Front. Med., 2008, 2(4): 337-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed