Supplementary material

Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental

subarachnoid hemorrhage in rats

Running Title: MCT1 in white matter injury after SAH

Experiment 2: The effect of rotarod study on SOX10+ITPR2+ oligodendrocyte and MCT1

Experiment 3: The roles of miRNA-29b and miRNA-124 in regulating MCT1

Figure S1. Experimental design. Experimental designs for the three different experiments: Experiment 1, time course and cellular localization of MCT1 and its effects on myelin damage and repair after SAH. Experiment 2, effect of rotarod training on SOX10+ ITPR2+ oligodendrocytes and MCT1. Experiment 3, roles of miRNA-29b and miRNA-124 in regulating MCT1.

Figure S2. The transfection efficiency of plasmid and antagomir in the corpus callosum region. A. The transfection efficiency of plasmids in the corpus callosum region. Plasmid MCT1 have YFP label (yellow) and nuclei were fluorescently labeled with DAPI (blue). The yellow fluorescence signal was observed in corpus callosum region. Scale bar = $50 \mu m$. B. The transfection efficiency of antagomir in the corpus callosum region. Antagomir have Cy5 labels (yellow) and nuclei were fluorescently labeled with DAPI (blue). The yellow fluorescence signal was observed in corpus callosum region. Antagomir have Cy5 labels (yellow) and nuclei were fluorescently labeled with DAPI (blue). The yellow fluorescence signal was observed in corpus callosum region both in the antagomir-NC group, the antagomir-29b-39 group and the antagomir-124-3p group. Scale bar = $50 \mu m$. C. The quantitative graph of the transfection efficiency. Data are presented as mean \pm SD. n = 3 per group.

Figure S3. A. Relative expression level of miR-29b-3p in the corpus callosum of SD rats in the sham and SAH groups. **B.** Relative expression level of miR-124-3p in the corpus callosum of SD rats in the sham and SAH groups. Data are presented as mean $\pm SD$. n = 6 per group. $**P \leq 0.01$, $****P \leq 0.0001$.

Group	Mortality Rate	Excluded
Experiment 1		
Part 1		
sham	0% (0/10)	0
SAH(3h,6h,12h,24h,48h)	21.88% (14/64)	6
Part 2		
sham	0% (0/18)	0
SAH	18.18% (4/22)	2
SAH+Vector	10% (2/20)	1
SAH+Over-MCT1	14.29% (3/21)	0
Experiment 2		
sham	0% (0/20)	0
sham+training	0% (0/20)	0
SAH	20.83% (5/24)	2
SAH+training	13.64% (3/22)	2
Experiment 3		
sham	0% (0/12)	0
SAH	14.29% (3/21)	1
SAH+antagomir-NC	25% (2/8)	0
SAH+antagomir-29b-3p	14.29% (1/7)	0
SAH+antagomir-124-3p	14.29% (1/7)	1
Total	12.84% (38/296)	15
sham	0% (0/80)	0
SAH	17.59% (38/216)	15

Table S1 The total mortality and exclusion rates of experimental rats

Table S2 MCT1 overexpression plasmid

Final sequence:

ATGCCACCTGCGATTGGCGGGCCAGTGGGGGTACACCCCCCAGATGGAGGCTGGGGCTGG GCGGTGGTAGTTGGAGCCTTCATTTCTATTGGCTTCTCCTATGCATTTCCCAAATCCATCAC TGTCTTCTTTAAAGAGATTGAAATTATATTCAGTGCAACGACCAGTGAAGTGTCATGGATA TCGTCCATCATGCTGGCTGTCATGTATGCCGGAGGTCCTATCAGCAGTATCTTGGTGAATA AATATGGCAGCCGTCCAGTAATGATTGCTGGTGGCTGCCTGTCTGGCTGTGGCTTGATTGC AGCTTCTTTCTGTAACACGGTGCAGGAACTTTACTTCTGCATTGGTGTCATTGGAGGTCTT GGGCTTGCTTTCAACTTGAACCCAGCTCTGACTATGATTGGCAAGTATTTCTACAAGAAGC GACCATTGGCCAATGGCCTGGCTATGGCAGGCAGGCCAGTGTTCCTCTCTACCCTGGCTCC ACTTAATCAGGCTTTCTTTGGTATTTTTGGCTGGAGAGGAAGCTTCCTAATTCTTGGGGGGC CTCCTCCTCAACTGTTGTGTGGAGCTGGATCCCTGATGCGACCAATAGGGCCTCAGCAAGGC AAGGTGGAAAAACTCAAGTCCAAAGAGTCTCTCCAGGAAGCTGGGAAGTCTGATGCAAA TACAGATCTCATTGGAGGAAGTCCCAAAGGAGAAAAGCTGTCAGTCTTCCAAACAGTTAA TAAATTCCTGGACTTGTCCCTGTTTACCCATAGAGGCTTTTTGCTGTACCTGTCTGGAAAT GCATTTTTCCAGTGAGAAGTCAGCCTTCCTCCTTTCCATTTTGGCTTTTGTTGATATGGTGG CCAGACCGTCCATGGGTCTTGCAGCCAACACCAGGTGGATCAGACCTCGAGTCCAGTACT TTTTTGCTGCTTCTGTTGTTGCGAATGGAGTGTGCCATTTGCTGGCACCTTTGTCTACGACC ATTGTTTGAGACGTTGATGGACCTCGTTGGACCCCAGAGGTTCTCCAGTGCTGTGGGCTTG GTGACCATTGTGGAATGTTGTCCTGTCCTCGTGGGACCACCACTTTTAGGCCGCCTCAATG ACATGTATGGAGACTA

CAAATACACATACTGGGCTTGTGGCGTGATCCTCATCATCGCAGGCCTCTACCTCTTCATT GGTATGGGCATCAATTATCGACTTGTGGCCAAAGAACAGAAAGCGGAAGAAAAGAAGAG GGACGGTAAAGAGGACGAGACCAGCACTGATGTTGATGAGAAGCCCAAGAAGAACAATGA AAGAAACACAGTCGCCAGCGCCACTGCAGAACAGCTCTGGAGACCCCGCGGAGGAGGAG AGCCCAGTC

Clone ID: ORa00732D ORF Clones (Accession No.): NM_012716.2 (ORF Sequence)

Antibody		AB_2756669	AB_570666	AB_306298	AB_94882
ID					
Antibody	MCT1	Anti-MCT1	Olig-2 antibody	Anti-	Anti-Alzheimer
name	Antibody	(SLC16A1)	AF	Neurofilament,	Precursor
		Antibody	555 Conjugate	Heavy, 200 kD	Protein A4, a.a.
				Antibody	66-81 of
					APP {N-
					terminus}
Target	MCT1	MCT1	Olig-2	200 kD	Alzheimer
antigen	human,	(SLC16A1)	human,	Neurofilament	Precursor
	mouse	human,	mouse, rat	Heavy-Neuronal	Protein A4
		mouse, rat		Marker	human,
				human, mouse, rat	mouse, rat
Vendor	Proteintech	Alomone	Millipore	Abcam	Millipore
		Labs			
Cat	20139-1-AP	AMT-011	ab9610-af555	ab8135	MAB348
number					
Proper	(Proteintech	(Alomone	(Millipore Cat#	(Abcam Cat#	(Millipore Cat#
Citation	Cat#	Labs Cat#	ab9610-af555,	ab8135,	MAB348,
	20139-1-AP)	AMT-011,	RRID:AB_5706	RRID:AB_306298)	RRID:AB_9488
		RRID:AB_27	66)		2)
		56669)			
Reference	Reference(3)	Reference(2)	Reference(64)	Reference(3)	Reference(20)
Clonality	Polyclonal	Polyclonal	Polyclonal	Polyclonal	Monoclonal
	antibody	antibody	antibody	antibody	antibody
Clone ID					Clone 22C11
Host	Rabbit	Rabbit	Rabbit	Rabbit	Mouse
Organism					
Comment	WB,IP,IHC,I	IF, IFC, IHC,	IF	IHC,ICC,IF,WB	IHC,IF,WB
S	F	WB			
Applicate	WB=1:1000	IF=1:200	IF=1:150	IF=1:500	IF=1:250
dilution					

Table S3 Resource Identifiers for antibodies

Antibody ID	AB_305869	AB_2564642	AB_11091087	
Antibody	Myelin Basic	Neurofilament	ITPR2	SOX10 Antibody
name	Protein	H (NF-H),	antibody	[SOX10/991]
	Monoclonal	Nonphosphoryl		
	Antibody	ated antibody		
Target	Myelin Basic	Neurofilament	Rabbit ITPR2	SOX10 Mouse,
antigen	Protein	H NF-H	human, mouse,	human
	human,	human, mouse,	rat	
	mouse, rabbit,	rat,		
	rat			
Vendor	Abcam	BioLegend	Bioss	Abcam
Cat number	ab7349	801701	bs-4243R	ab212843
Proper	(Abcam Cat#	(BioLegend	(Bioss Cat# bs-	(Abcam Cat#
Citation	ab7349,	Cat# 801701,	4243R,	ab212843
	RRID:AB_30	RRID:AB_256	RRID:AB_110	
	5869)	4642)	91087)	
Reference	Reference(24)	Reference(11)	Reference()	Reference(1)
Clonality	Monoclonal	Monoclonal	Polyclonal	Monoclonal
	antibody	antibody	antibody	antibody
Clone ID	Clone 12	Clone SMI 32		SOX10/991
Host	Rat	Mouse	Rabbit	Mouse
Organism				
Comments	WB,ELISA,	IHC-	ELISA,IHC-P,	WB,IHC-P
	RIA,IHC,IF	P,WB,ICC	IHC-F,ICC,IF	ICC/IF,Flow Cyt
A 1	WD 1 1000	WD 1 1000	IE 1 500	IF 1 500
Applicate	WB=1:1000	WB=1:1000	IF=1:500	IF=1:500
dilution	IF=1:300	IF=1:300		

Table S4 Resource Identifiers for antibodies

	Description	Hours after	in vivo or	Test used	Stat-value	One- or
		SAH or	in vitro			two-
		Sham				tailed P
		surgery				value?
Fig. 1A	Relative	3h-48h	in vivo	One-way	F(5,54)=3.154,	Two-
	protein level			ANOVA	P=0.0357, 95%	tailed
	of MCT 1				CI=0.02105 to	
					0.8159	
					(sham vs. SAH 48h)	
					$\eta^2 = 0.2261$	
Fig. 1B	Mean density	48h	in vivo	t-test	P=0.0004, t = 5.292,	Two-
	of MCT 1				df = 10, 95% CI= -	tailed
					0.5995 to -0.2443	
					(sham vs. SAH 48h)	
Fig. 2A	Relative	48h	in vivo	One-way	F(3,20)=37.98,	Two-
	protein level			ANOVA	P=0.0002, 95%	tailed
	of MCT 1				CI=0.2804 to	
					0.6883	
					(sham vs. SAH);	
					P=0.0003,95% CI=-	
					0.7923 to -0.3843	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	
					1)	
					$\eta^2 = 0.8505$	
Fig. 2C	Relative	48h	in vivo	One-way	F(3,20)=25.52,	Two-
	fluorescent			ANOVA	P=0.0002,	tailed
	intensity of				95% CI=0.2786 to	
	MCT 1				0.6475 (sham vs.	
					SAH); P=0.0002,	
					95% CI=-0.5267 to	
					-0.1577	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	

Table S5 Statistical table

					1)	
					$\eta^2 = 0.7926$	
Fig. 2E	Number of β-	48h	in vivo	One-way	F(3,20)=26.37,	Two-
	APP per mm ²			ANOVA	P=0.0001, 95%	tailed
					CI=-291.6 to -141.4	
					(sham vs. SAH);	
					P=0.0479, 95%	
					CI=0.5554 to 150.8	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	
					1)	
					$\eta^2 = 0.7982$	
Fig. 3A	Relative	48h	in vivo	One-way	F(3,20)=13.82,	Two-
	protein level			ANOVA	P=0.0002, 95%	tailed
	of MBP				CI=0.2036 to	
					0.6633	
					(sham vs. SAH);	
					P=0.0169, 95%	
					CI=-0.5019 to -	
					0.04209	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	
					1)	
					$\eta^2 = 0.6747$	
Fig. 3B	Relative	48h	in vivo	One-way	F(3,20)=14.18,	Two-
	protein level			ANOVA	P=0.0008, 95%	tailed
	of SMI 32				CI=-2.096 to -	
					0.7349	
					(sham vs. SAH);	
					P=0.0399, 95%	
					CI=0.02673 to	
					1.388	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	
					1)	

					$\eta^2 = 0.6802$	
Fig. 3D	SMI32/MBP	48h	in vivo	One-way	F(3,20)=12.69,	Two-
	ratio			ANOVA	P=0.0001, 95%	tailed
					CI=-4.058 to -1.308	
					(sham vs. SAH);	
					P=0.0498, 95%	
					CI=0.001149 to	
					2.751	
					(SAH+ Vector vs.	
					SAH+ Over -MCT	
					1)	
					$\eta^2 = 0.6555$	
Fig. 4A	Rotarod test	pre-35d	in vivo	Two-way	F(3,40)=367.8,	Two-
				repeated	P=0.002, 95% CI=-	tailed
				ANOVA	46.53 to -10.74	
					(Bonferroni's test,	
					day 21, SAH+	
					Vector vs. SAH+	
					Over-MCT 1);	
					P=0.0479, 95%	
					CI=-35.9 to -0.1017	
					(Bonferroni' s test,	
					day 28, SAH+	
					Vector vs. SAH+	
					Over-MCT 1);	
					P=0.003, 95% CI=-	
					45.72 to -9.92	
					(Bonferroni's test,	
					day 35, SAH+	
					Vector vs. SAH+	
					Over-MCT 1)	
					partial $\eta^2 = 0.7841$	
Fig. 4B	Adhesive	pre-35d	in vivo	Two-way	F(3,40)=118.8,	Two-
	removal test			repeated	P=0.0457, 95%	tailed
				ANOVA	CI=0.03406 to	

					5.966	
					(Bonferroni's test,	
					day 21, SAH+	
					Vector vs. SAH+	
					Over-MCT 1);	
					P=0.005, 95%	
					CI=1.489 to 7.42	
					(Bonferroni's test,	
					day 28, SAH+	
					Vector vs. SAH+	
					Over-MCT 1);	
					P=0.0457, 95%	
					CI=0.03406 to	
					5.966 (Bonferroni's	
					test, day 35, SAH+	
					Vector vs. SAH+	
					Over-MCT 1)	
					partial $\eta^2 = 0.6836$	
Fig. 4C	Morris water	29d-33d	in vivo	Two-way	F(3,200)=57.45,	Two-
_	maze learning			ANOVA	P=0.0301, 95%	tailed
	test				CI=0.2842 to 9.061	
					(Bonferroni's test,	
					SAH+ Vector vs.	
					SAH+ Over-MCT	
					1)	
					partial $\eta^2 = 0.4629$	
Fig. 4E	Morris water	34d	in vivo	One-way	F(3,40)=7.878,	Two-
_	maze memory			ANOVA	P=0.0046, 95%	tailed
	test				CI=1.807 to 12.28	
					(sham vs. SAH);	
					P=0.0464, 95%	
					CI=-10.49 to -	
					0.06147	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	

					1)	
					$\eta^2 = 0.3714$	
Fig. 4F	Morris water	34d	in vivo	One-way	F(3,40)=0.3952,	Two-
	maze			ANOVA	P=0.9803, 95%	tailed
	swimming				CI=-5.688 to 4.259	
	speed				(sham vs. SAH);	
					P=0.7914, 95%	
					CI=-3.243 to 6.663	
					(SAH+ Vector vs.	
					SAH+ Over-MCT	
					1)	
					$\eta^2 = 0.0288$	
Fig. 5B	%ITPR2+ out	48h	in vivo	Two-way	F(1,12)=19.85,	Two-
	of			ANOVA	P=0.0008, 95%	tailed
	SOX10+				CI=-12.12 to -	
					0.01835	
					(Bonferroni's test,	
					sham vs.	
					sham+ training);	
					P=0.0494, 95%	
					CI=-12.12 to -	
					0.01835	
					(SAH vs. SAH+	
					training)	
					partial $\eta^2 = 0.6234$	
Fig. 5D	Relative	7d	in vivo	One-way	F(3,20)=12.5,	Two-
	protein level			ANOVA	P=0.0436, 95%	tailed
	of MCT 1				CI=-1.027 to -	
					0.01199	
					(sham vs. sham+	
					training);	
					P=0.0003, 95%	
					CI=-1.425 to -	
					0.4104 (SAH vs.	
					SAH+	

					training	
					$\eta^2 = 0.6521$	
Fig. 5F	%MCT1+ out	7d	in vivo	Two-way	F(1,20)=19.57,	Two-
	of			ANOVA	P=0.0244, 95%	tailed
	SOX10+				CI=-13.4 to -0.711	
					(Bonferroni's test,	
					sham vs.	
					sham+ training);	
					P=0.0413, 95%	
					CI=-12.89 to -	
					0.2052	
					(SAH vs. SAH+	
					training)	
					partial $\eta^2 = 0.4947$	
Fig. 6A	Correlation in	35d	in vivo	Pearson	r=0.6475,	Two-
	sham group			Product	**P=0.0027;	tailed
	between			linear	Y = 2.896*X +	
	Rotarod test			regression	129.6;	
	and %MCT1+			analyses	95% CI=0.2738 to	
	out of				0.8513	
	SOX10+					
Fig. 6B	Correlation in	35d	in vivo	Pearson	r=0.6668,	Two-
	SAH group			Product	**P=0.0025;	tailed
	between			linear	Y = 3.089*X + 78;	
	Rotarod test			regression	95% CI=0.2903 to	
	and %MCT1+			analyses	0.8645	
	out of					
	SOX10+					
Fig. 6C	Correlation in	35d	in vivo	Pearson	r=-0.5521,	Two-
	sham group			Product	*P=0.0142;	tailed
	between			linear	Y = -0.1736*X +	
	Adhesive			regression	10.32;	
	removal test			analyses	95% CI=-0.8046 to	
	and %MCT1+				-0.1307	
	out of					

	SOX10+						
Fig. 6D	Correlation in	35d		in vivo	Pearson	r=-0.4722,	Two-
	SAH group				Product	*P=0.0478;	tailed
	between				linear	Y = -0.2772*X +	
	Adhesive				regression	16.25;	
	removal test				analyses	95% CI=-0.7695 to	
	and %MCT1+					-0.00689	
	out of						
	SOX10+						
Fig. 7A	Relative	24h	and	in vivo	One-way	F(2,15)=26.84,	Two-
	expression of	48h			ANOVA	P=0.0002, 95%	tailed
	miR-29b-3p					CI=-7.197 to -3.541	
						(sham vs. SAH 48h)	
						$\eta^2 = 0.7816$	
Fig. 7B	Relative	24h	and	in vivo	One-way	F(2,15)=9.486,	Two-
	expression of	48h			ANOVA	P=0.0053, 95%	tailed
	miR-124-3p					CI=-2.403 to -	
						0.4524	
						(sham vs. SAH 48h)	
						$\eta^2 = 0.5584$	
Fig. 7C	Relative	48h		in vivo	One-way	F(4,35)=12.81,	Two-
	protein level				ANOVA	P=0.0074, 95%	tailed
	of MCT 1					CI=0.09376 to	
						0.8052	
						(sham vs. SAH);	
						P=0.0060, 95%	
						CI=-0.815 to -	
						0.1036	
						(SAH+ antagomir-	
						NC vs.	
						SAH+antagomir-	
						29b-3p); P=0.0003,	
						95% CI=-0.9395 to	
						-0.2281(SAH+	
						antagomir-NC vs.	

						SAH+antagomir-	
						124-3p)	
						$\eta^2 = 0.5941$	
Fig. 7E	Relative	48h		in vivo	One-way	F(4,25)=6.714,	Two-
	fluorescent				ANOVA	P=0.0410, 95%	tailed
	intensity					CI=0.01481 to	
	of MCT 1					0.9742	
						(sham vs. SAH);	
						P=0.0066, 95%	
						CI=-1.102 to -	
						0.1424	
						(SAH+ antagomir-	
						NC vs.	
						SAH+antagomir-	
						29b-3p); P=0.0462,	
						95% CI=-0.9653 to	
						-0.00597(SAH+	
						antagomir-NC vs.	
						SAH+antagomir-	
						124-3p)	
						$\eta^2 = 0.5178$	
Fig. S3A	Relative	24h	and	in vivo	One-way	F(2,15)=33.4,	Two-
	expression of	48h			ANOVA	P=0.0001, 95%	tailed
	miR-29b-3p					CI=-3.458 to -1.866	
						(sham vs. SAH 48h)	
						$\eta^2 = 0.8166$	
Fig. S3B	Relative	24h	and	in vivo	One-way	F(2,15)=7.967,	Two-
	expression of	48h			ANOVA	P=0.0027, 95%	tailed
	miR-124-3p					CI=-1.433 to -	
						0.3304	
						(sham vs. SAH 48h)	
						$\eta^2 = 0.5151$	