Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Front. Mech. Eng.  2010, Vol. 5 Issue (1): 19-32   https://doi.org/10.1007/s11465-009-0082-1
  Research articles 本期目录
Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation
Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation
Jun WANG1, 2,
1.School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney NSW 2052, Australia; 2.2010-03-15 9:37:44;
 全文: PDF(438 KB)  
Abstract:An experimental study of the depth of cut in multipass abrasive waterjet (AWJ) cutting of alumina ceramics with controlled nozzle oscillation is presented. It is found that this cutting technique can significantly increase the depth of cut by an average of 50.8% as compared to single pass cutting without nozzle oscillation under the corresponding cutting conditions and within the same cutting time. Predictive models for the depth of cut are then developed. The modelling process starts with single pass cutting using a dimensional analysis technique and the particle erosion theories applied to alumina ceramics, before progressing to the development of the models for multipass cutting. The models are finally assessed both qualitatively and quantitatively with experimental data. It is shown that the model predictions are in good agreement with the experimental data with the average deviations of about 1%.
Key wordsabrasive waterjet    engineering ceramics    depth of cut    cutting performance    nozzle oscillation    machining
出版日期: 2010-03-05
 引用本文:   
. Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation[J]. Front. Mech. Eng., 2010, 5(1): 19-32.
Jun WANG. Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation. Front. Mech. Eng., 2010, 5(1): 19-32.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-009-0082-1
https://academic.hep.com.cn/fme/CN/Y2010/V5/I1/19
van Luttervelt C A. On the selection of manufacturing methods illustrated by an overviewof separation techniques for sheet materials. Ann CIRP, 1989, 38(2): 587―607

doi: 10.1016/S0007-8506(07)61127-5
Momber A W, Kovacevic R. Principles of Abrasive WaterjetMachining. London: Springer-Verlag, 1998
Wang J. AbrasiveWaterjet Machining of Engineering Materials.Uetikon-Zuerich (Switzerland): Trans Tech Publications, 2003
Wang J, Kuriyagawa T, Huang C Z. An experimental study to enhance the cutting performancein abrasive waterjet machining. Mach SciTech, 2003, 7: 191―207

doi: 10.1081/MST-120022777
Siores E, Wong W C K, Chen L, Wager J G. Enhancingabrasive waterjet cutting of ceramics by head oscillation techniques. Ann CIRP, 1996, 45(1): 215―218

doi: 10.1016/S0007-8506(07)63073-X
Wang J. Predictivedepth of jet penetration models for abrasive waterjet cutting of aluminaceramics. Int J Mech Sci, 2007, 49: 306―316

doi: 10.1016/j.ijmecsci.2006.09.005
Hashish M. Deephole drilling in metals using abrasive waterjets. In: Proceedings of the 13th International Conference on Jetting Technology. Sardinia, 1996, 691―707
Hashish M. Precisioncutting of thick materials with AWJ. In: Proceedings of the 17th International Conference on Water Jetting,Mainz, 2004, 33―45
Wang J. Abrasivewaterjet machining of polymer matrix composites: Cutting performance,erosive analysis and predictive models. Int J Adv Manuf Technol, 1999, 15: 757―768

doi: 10.1007/s001700050129
Lemma E, Chen L, Siores E, Wang J. Optimisingthe AWJ cutting process of ductile materials using nozzle oscillationtechnique. Int J Mach Tools Manuf, 2002, 42: 781―789

doi: 10.1016/S0890-6955(02)00017-2
Hashish M, du Plessis M P. Prediction equations relatinghigh velocity jet cutting performance to standoff distance and multipasses. J Eng Ind, 1979, 101: 311―318
Wang J, Xu S. Enhancing the AWJ cuttingperformance by multipass machining with controlled nozzle oscillation. Key Eng Mater, 2005, 291―292: 453―458

doi: 10.4028/www.scientific.net/KEM.291-292.453
Wang J, Zhong Y. Enhancing the depth of cutin abrasive waterjet cutting of alumina ceramics using multipass operationswith nozzle oscillation. Mach Sci Tech, 2009, 13(1): 76―91

doi: 10.1080/10910340902776085
Hashish M. Amodelling study of metal cutting with abrasive waterjets. J Eng Mater Technol, 1984, 106: 88―100

doi: 10.1115/1.3225682
Hashish M. Amodel for abrasive-waterjet (AWJ) machining. J Eng Mater Technol, 1989, 111: 154―162

doi: 10.1115/1.3226448
Wilkins R J, Graham E. An erosion model for waterjetcutting. J Eng Ind, 1993, 115: 57―61
Deam R T, Lemma E, Ahmed D H. Modelling of the abrasive water jet cutting process. Wear, 2004, 257: 877―891

doi: 10.1016/j.wear.2004.04.002
Chen L, Siores E, Wong W C K. Kerf characteristics in abrasive waterjet cutting ofceramic materials. Int J Mach Tools Manuf, 1996, 36: 1201―1206

doi: 10.1016/0890-6955(95)00108-5
Wang J, Guo D M. A predictive depth of penetrationmodel for abrasive waterjet cutting of polymer matrix composites. J Mater Process Tech, 2002, 121: 390―394

doi: 10.1016/S0924-0136(01)01246-8
El-Domiaty A A, Abdel-Rahman A A. Fracture mechanics-basedmodel of abrasive watejet cutting for brittle materials. Int J Adv Manuf Technol, 1997, 13: 181―192

doi: 10.1007/BF01305869
Paul S, Hoogstrate A M, van Luttervelt C A, Kales J J. Energy partitioning in elastro-plastic impact by sharp abrasive particlesin the abrasive water jet machining of brittle materials. J Mater Process Tech, 1998, 73: 200―205

doi: 10.1016/S0924-0136(97)00229-X
Nguyen T, Shanmugam D K, Wang J. Effect of liquid properties on the stability of an abrasivewaterjet. Int J Mach Tools Manuf, 2008, 48: 1138―1147

doi: 10.1016/j.ijmachtools.2008.01.009
Shanmugam D K, Nguyen T, Wang J. A study of delamination on graphite/epoxy compositesin abrasive waterjet machining. CompositesPart A, 2008, 39: 923―929

doi: 10.1016/j.compositesa.2008.04.001
Yang L, Song J, Hu B. Neural network parametric modelling of abrasive waterjetcutting quality. Int J Abrasive Technology, 2007, 1: 198―207

doi: 10.1504/IJAT.2007.015384
Saxena A, Paul S. Numerical modelling of kerfgeometry in abrasive water jet machining. Int J Abrasive Technology, 2007, 1: 208―230

doi: 10.1504/IJAT.2007.015385
Isaacson E d S Q, Isaacson M d S Q. Dimensional Methods in Engineeringand Physics: Reference Sets and the Possibilities of Their Extension. London: EdwardArnold, 1975
Wang J, Liu H. Profile cutting on aluminaceramics by abrasive waterjet. II. Cutting performance models. Proc IMechE Part C: J Mech Eng Sci, 2006, 220: 715―725
Wang J. Afocused review on enhancing the abrasive waterjet cutting performanceby using controlled nozzle oscillation. Key Engineering Materials, 2009, 404: 33―44

doi: 10.4028/www.scientific.net/KEM.404.33
Evans A G. Impact damage in ceramics. In: Hasselman D P H, Lange F F, eds. Fracture Mechanics of Ceramics. New York, 1979, 3: 303―331
Ritter J E. Erosion damage in structural ceramics. Mater Sci Eng, 1985, 71: 195―201

doi: 10.1016/0025-5416(85)90230-7
Hutchings I M. Tribology: Friction and Wear of Engineering Materials. London: Edward Arnold, 1992
Zeng J, Kim T J. An erosion model of polycrystallineceramics in abrasive waterjet cutting. Wear, 1996, 193: 207―217

doi: 10.1016/0043-1648(95)06721-3
Barenblatt G I. Dimensional Analysis. New York: Gordon and Breach, 1987
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed