Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Front. Mech. Eng.  2010, Vol. 5 Issue (1): 52-60   https://doi.org/10.1007/s11465-009-0087-9
  Research articles 本期目录
Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements
Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements
Zhengyi JIANG,
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong NSW 2522, Australia;
 全文: PDF(337 KB)  
Abstract:In this paper, a three-dimensional finite element modelling of the ribbed strip rolling is carried out, coupling the use of an extremely thin array of elements that is equivalent to the calculation of the additional shear deformation work rate occurred by the velocity discontinuity in the roll bite. The formulation of the finite element modelling by adding a rib inclined contact surface boundary condition is derived, and the performance of the proposed method is conducted. The simulated rib height, forward slip, and the pulling down of rib height have been compared with the measured values and are in good agreement. The equivalent strain rate of the rib was obtained in the simulation. The effect of the rib inclined angle on pulling down of rib height has also been discussed, which is helpful in optimizing the design of the rib inclined angle.
Key wordsrib inclined contact boundary condition    ribbed strip    extremely thin elements    pulling down of rib height    finite element modelling
出版日期: 2010-03-05
 引用本文:   
. Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements[J]. Front. Mech. Eng., 2010, 5(1): 52-60.
Zhengyi JIANG, . Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements. Front. Mech. Eng., 2010, 5(1): 52-60.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-009-0087-9
https://academic.hep.com.cn/fme/CN/Y2010/V5/I1/52
Jiang Z Y. Forming Theory and Practice of the Strip with Ribs and the InternalSpiral-Ribbed Tube. Beijing: Metallurgical Industry Press, 1998
Masude S, Hirazawa T, Taniguchi I. Development of hot-rolled strip with longitudinal ribsand application to the spiral pipe. NipponKokan Technical Report, 1985, 107: 31―37 (in Chinese)
Jiang Z Y, Liu X H, Wang G D, Zhang Q. Experimentalstudy on bond between internal spiral-ribbed pipe and concrete. Welded Pipe and Tube, 1995, 18(2): 17―19 (in Chinese
Liu X H. Rigid-Plastic FEM and Its Application in Steel Rolling. Beijing: Metallurgical Industry Press, 1994 (in Chinese
Jiang Z Y, Liu X L, Liu X H, Wang G D. Analysisof ribbed-strip rolling by rigid-viscoplastic FEM. International Journal of Mechanical Science, 2000, 42: 693―703

doi: 10.1016/S0020-7403(99)00017-X
Jiang Z Y, Tieu A K. A method to analyze the rollingof strip with ribs by 3-D rigid visco-plastic finite element method. Journal of Materials Processing Technology, 2001, 117(1–2): 146―152

doi: 10.1016/S0924-0136(01)01087-1
Xiong S W, Rodrigues J M C, Martins P A F. Three-dimensional modelling of the vertical-horizontalrolling process. Finite Elements in Analysisand Design, 2003, 39(11): 1023―1037

doi: 10.1016/S0168-874X(02)00154-3
Hartley P, Sturgess C E N, Liu C, Rowe G W. Experimentaland theoretical studies of workpiece deformation, stress, and strainduring flat rolling. International MaterialsReviews, 1989, 34(1): 19―34
Liu C, Hartley P, Sturgess C E N, Rowe G W. Finite-elementmodelling of deformation and spread in slab rolling. International Journal of Mechanical Science, 1987, 29(4): 271―283

doi: 10.1016/0020-7403(87)90040-3
Hartley P, Wen S W, Pillinger I, Sturgess C E N, Petty D. Finite element modellingof section rolling. Ironmaking & Steelmaking, 1993, 20(4): 261―263
Wen S W, Hartley P, Pillinger I, Sturgess C E N. Finite element analysis of four-roll pass cold rolling. In: Proceedings of the Institution of MechanicalEngineers Part B-J. Engineering Manufacture, 1992, 206(B2): 133―141
Wen S W, Hartley P, Pillinger I, Sturgess C E N. Roll pass evaluation for three-dimensional section rolling usinga simplified finite element method. In:Proceedings of the Institution of Mechanical Engineers Part B-J. EngineeringManufacture, 1997, 211(B2): 143―158
Liu C, Hartley P, Sturgess C E N, Rowe G W. Analysisof stress and strain distributions in slab rolling using an elastic-plasticfinite element method. International Journalfor Numerical Methods in Engineering, 1988, 25: 55―66

doi: 10.1002/nme.1620250107
Osakada K, Nakano J, Mori K. Finite element method for rigid-plastic analysis of metalforming—formulation for finite deformation. International Journal of Mechanical Science, 1982, 24(8): 459―468

doi: 10.1016/0020-7403(82)90056-X
Mori K, Osakada K, Oda T. Simulation of plane-strain rolling by the rigid-plasticfinite element method. International Journalof Mechanical Science, 1982, 24(9): 519―527

doi: 10.1016/0020-7403(82)90044-3
Kobayashi S, Oh S, Altan I T. Metal Forming and the Finite Element Method. New York: Oxford University Press, 1989
Chenot J L, Montmitonnet P, Buessler P, Fau F. Finite elementcomputation of spread in hot flat and shape rolling with a steadystate approach. Engineering Computations(Swansea, Wales), 1991, 8(3): 245―255
Nikaido H, Naoi T, Shibata K, Kondo T, Osaka K, Mori K. Numericalsimulation of width spread of “dog-bone” slab in non-steadyhorizontal rolling. Japanese Society TechnologyPlasticity, 1984, 25(277): 129―135
Huisman H J, Huetink J. Combined Eulerian-Langrangianthree-dimensional finite-element analysis of edge-rolling. Journal of Mechanical Working Tech, 1985, 21: 333―353

doi: 10.1016/0378-3804(85)90005-1
Xiong S W, Liu X H, Wang G D, Zhang Q. Simulationof vertical-horizontal rolling process during width reduction by fullthree-dimensional rigid-plastic finite element method. Journal of Materials Engineering and Performance, 1997, 6(6): 757―765

doi: 10.1007/s11665-997-0078-0
Jiang Z Y, Xiong S W, Liu X H, Wang G D, Zhang Q. 3-D rigid-plastic FEM analysis of therolling of a strip with local residual deformation. Journal of Materials Processing Technology, 1998, 79(1―3): 109―112
Leffers T. Amodel for rolling deformation with grain subdivision. Part I: The initial stage. International Journal of Plasticity, 2001, 17(4): 469―489

doi: 10.1016/S0749-6419(00)00059-0
Leffers T. Amodel for rolling deformation with grain subdivision. Part II: Thesubsequent stage. International Journalof Plasticity, 2001, 17(4): 491―511

doi: 10.1016/S0749-6419(00)00060-7
Diard O, Leclercq S, Rousselier G, Cailletaud G. Evaluationof finite element based analysis of 3D multicrystalline aggregatesplasticity: Application to crystal plasticity model identificationand the study of stress and strain fields near grain boundaries. International Journal of Plasticity, 2005, 21(4): 691―722

doi: 10.1016/j.ijplas.2004.05.017
Matin P H, Smith L M. Practical limitations tothe influence of through-thickness normal stress on sheet metal formability. International Journal of Plasticity, 2005, 21(4): 671―690

doi: 10.1016/j.ijplas.2004.05.002
Roos A, Chaboche J L. Multiscale modeling of titaniumaluminides. International Journal of Plasticity, 2004, 20(4―5): 811―830

doi: 10.1016/j.ijplas.2003.08.005
Bucher A, Gorke U J, Kreibig R. A material model for elasto-plastic deformations consideringa substructure. International Journal ofPlasticity, 2004, 20(4―5): 619―642

doi: 10.1016/S0749-6419(03)00080-9
Zhao P, Heinrich J C, Poirier D R. Fixed mesh front-tracking methodology for finite elementsimulations. International Journal forNumerical Methods in Engineering, 2004, 61: 928―948

doi: 10.1002/nme.1098
Martin J B. Plasticity: Fundamentals and General Results. USA: The MIT Press, 1975
Stupkiewicz S, Mróz Z. Phenomenological model ofreal contact area evolution with account for bulk plastic deformationin metal forming. International Journalof Plasticity, 2003, 19(3): 323―344

doi: 10.1016/S0749-6419(01)00037-7
Stupkiewicz S, Korelc J, Dutko M, Rodic T. Shape sensitivityanalysis of large deformation frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 2002, 191(33): 3555―3581

doi: 10.1016/S0045-7825(02)00295-5
Pauk V, Zastrau B. Rolling contact problem involvingsurface roughness. Mechanics Research Communication, 2003, 30(1): 45―51

doi: 10.1016/S0093-6413(02)00355-5
Svahn F, Kassman-Rudolphi Å, Wallén E. The influence of surfaceroughness on friction and wear of machine element coatings. Wear, 2003, 254(11): 1092―1098

doi: 10.1016/S0043-1648(03)00341-7
Sutcliffe M P F, Le H R, Farrugia D. Simulation of transfer layer formation in strip drawingof stainless steel. Wear, 2003, 254(5―6): 523―531
Le H R, Sutcliffe M P F. Finite element modellingof the evolution of surface pits in metal forming processes. Journal of Materials Processing Technology, 2004, 145(3): 391―396

doi: 10.1016/j.jmatprotec.2003.09.007
Lenard J G. Friction and forward slip in cold strip rolling. Tribology Transactions, 1992, 35(3): 423―428

doi: 10.1080/10402009208982138
Tieu A K, Liu Y J. Friction variation in thecold-rolling process. Tribology International, 2004, 37(2): 177―183

doi: 10.1016/S0301-679X(03)00048-3
Su C, Wei Y J, Anand L. An elastic–plastic interface constitutive model:application to adhesive joints. InternationalJournal of Plasticity, 2004, 20(12): 2063―2081

doi: 10.1016/j.ijplas.2003.12.008
Jiang Z Y, Tieu A K, Lu C, Sun W H, Zhang X M, Liu X H, Wang G D, Zhao X L. Three-dimensional thermo-mechanical finite element simulationof the ribbed strip rolling with friction variation. Finite Elements in Analysis and Design, 2004, 40: 1139―1155

doi: 10.1016/j.finel.2003.08.004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed