The process of patterned wafer bonding using ultraviolet (UV) adhesive as the intermediate layer was studied. By presetting the UV adhesive guide-layer, controlling the thickness of the intermediate layer (1– 1.5 μm), appropriate pre-drying temperature (60°C), and predrying time (6 min), we obtained the intermediate layer bonding of patterned quartz/quartz. Experimental results indicate that patterned wafer bonding using UV adhesive is achieved under room temperature. The process also has advantages of easy operation, low cost, and no plugging or leakage in the patterned area after bonding. Using the process, a microfluidic chip for red blood cell counting was designed and fabricated. Patterned wafer bonding using UV adhesive will have great potential in the fabrication of microfluidic chips.
Inomata N, Maruyama H, Kato T, Arai F. Microfluidic chip with world–to–chip interface for temperature detection in micro–nanoscale. International Symposium on Micro–Nano Mechatronics and Human Science (MHS) , 2009
2
Marko V, Sabine W, Michael M, Iris B, Thomas G, Holger S, Ernst-Bernhard K, Gabi G. Development of a novel, low–viscosity UV–curable polymer system for UV–nanoimprint lithography. Microelectronic Engineering , 2007, 84(5-8): 984–988
3
Cakmak E, Dragoi V, Capsuto E, McEwen C, Pabo E. Adhesive wafer bonding with photosensitive polymers for MEMS fabrication. Microsystem Technologies , 2010, 16(5): 799–808 doi: 10.1007/s00542-009-0977-0
4
Lin C H, LeeG B. Micromachined flow cytometers with embedded etched optic fibers for optical detection. Journal of Micromechanics and Microengineering , 2003, (13): 447–453
5
Rogers T, Aitken N. Wafer bonding processes for the manufacture of microsystems. In: Proc ASME – Int Conf Integr Commer Micro Nanosystems. MicroNano , 2008, 687–692
6
Pemg B, Wu C, Shen Y, Lin Y. Microfluidic chip fabrication using hot embossing and thermal bonding of cop. Polymers for Advanced Technologies , 2010, 21(7): 457–466 doi: 10.1002/pat.1447
Huang Z L, Munro N, Hühmer A F R, Landers J P. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips. Analytical Chemistry , 1999, 71(23): 5309–5314 doi: 10.1021/ac990740u pmid:10596211
9
Chiem N, Lockyear–Shultz L, Anderson P. Room temperature bonding of micromachined glass devices for capillary electrophoresis. Sensors and Actuators. B, Chemical , 2000, 63(3): 147–152 doi: 10.1016/S0925-4005(00)00351-8
10
Schlautmann S, Besselink G A J, Prabhu R, Schasfoort R B M. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers. Journal of Micromechanics and Microengineering , 2003, 13(4): S81–S84 doi: 10.1088/0960-1317/13/4/313
11
Schlautmann S, Wensink H, Schasfoort R B M, Elwenspoek M, Berg A V D. Powder–blasting technology as an alternative tool for micro-fabrication of CE–chips with integrated conductivity sensors. Micromech Microeng , 2001, 11(4): 386–389 doi: 10.1088/0960-1317/11/4/318
12
Kopf-Sill A R. Commercializing lab-on-chip technology Proc Micro Total Analysis. μTAS Enschede, The Netherlands , 2000: 233–238
13
Niklaus F, Enoksson P, K?lvesten E, Stemme G. Void-free full wafer adhesive bonding. 13th Int Workshop on Micro Electro Mechanical Systems . MEMS, Miyazaki, Japan, 2000: 247–252
14
Ho L F, Chollet F. Standardized bio–opto–fluidic chip technology using channel only process. Microelectronic Engineering , 2008, 85(5-6): 1306–1310
15
Maloney J, Sridharan S, Gardner R, Mason K. Effect of process variables on glass frit wafer bonding in MEMS wafer level packaging. Materials Research Society Symposium Proceedings , 2009, 1139: 133–139