Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2011, Vol. 6 Issue (2): 214-218   https://doi.org/10.1007/s11465-011-0130-5
  RESEARCH ARTICLE 本期目录
Patterned wafer bonding using ultraviolet adhesive
Patterned wafer bonding using ultraviolet adhesive
Rui ZHUO, Guanglan LIAO(), Wenliang LIU, Lei NIE, Tielin SHI
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(250 KB)   HTML
Abstract

The process of patterned wafer bonding using ultraviolet (UV) adhesive as the intermediate layer was studied. By presetting the UV adhesive guide-layer, controlling the thickness of the intermediate layer (1– 1.5 μm), appropriate pre-drying temperature (60°C), and predrying time (6 min), we obtained the intermediate layer bonding of patterned quartz/quartz. Experimental results indicate that patterned wafer bonding using UV adhesive is achieved under room temperature. The process also has advantages of easy operation, low cost, and no plugging or leakage in the patterned area after bonding. Using the process, a microfluidic chip for red blood cell counting was designed and fabricated. Patterned wafer bonding using UV adhesive will have great potential in the fabrication of microfluidic chips.

Key wordsultraviolet (UV) adhesive    intermediate layer    patterned wafer bonding
收稿日期: 2010-08-26      出版日期: 2011-06-05
Corresponding Author(s): LIAO Guanglan,Email:guanglan.liao@mail.hust.edu.cn   
 引用本文:   
. Patterned wafer bonding using ultraviolet adhesive[J]. Frontiers of Mechanical Engineering, 2011, 6(2): 214-218.
Rui ZHUO, Guanglan LIAO, Wenliang LIU, Lei NIE, Tielin SHI. Patterned wafer bonding using ultraviolet adhesive. Front Mech Eng, 2011, 6(2): 214-218.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-011-0130-5
https://academic.hep.com.cn/fme/CN/Y2011/V6/I2/214
Fig.1  
No.Process contentTime/min
1Cleaned by acetone in supersonic cleaner5
2Flushed in the deionized water2-3
3SPM solution (H2SO4∶H2O2 = 2∶1), 120°C15
4Flushed in the deionized water2-3
5Blow-dried with a nitrogen gun2-3
6Baked on a hot plate at 200°C10-20
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Inomata N, Maruyama H, Kato T, Arai F. Microfluidic chip with world–to–chip interface for temperature detection in micro–nanoscale. International Symposium on Micro–Nano Mechatronics and Human Science (MHS) , 2009
2 Marko V, Sabine W, Michael M, Iris B, Thomas G, Holger S, Ernst-Bernhard K, Gabi G. Development of a novel, low–viscosity UV–curable polymer system for UV–nanoimprint lithography. Microelectronic Engineering , 2007, 84(5-8): 984–988
3 Cakmak E, Dragoi V, Capsuto E, McEwen C, Pabo E. Adhesive wafer bonding with photosensitive polymers for MEMS fabrication. Microsystem Technologies , 2010, 16(5): 799–808
doi: 10.1007/s00542-009-0977-0
4 Lin C H, LeeG B. Micromachined flow cytometers with embedded etched optic fibers for optical detection. Journal of Micromechanics and Microengineering , 2003, (13): 447–453
5 Rogers T, Aitken N. Wafer bonding processes for the manufacture of microsystems. In: Proc ASME – Int Conf Integr Commer Micro Nanosystems. MicroNano , 2008, 687–692
6 Pemg B, Wu C, Shen Y, Lin Y. Microfluidic chip fabrication using hot embossing and thermal bonding of cop. Polymers for Advanced Technologies , 2010, 21(7): 457–466
doi: 10.1002/pat.1447
7 Huang Z L, Sanders J C, Dunsmor C, Ahmadzadeh H, Landers J P. A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis , 2001, 22(18): 3924–3929
doi: 10.1002/1522-2683(200110)22:18<3924::AID-ELPS3924>3.0.CO;2-4 pmid:11700722
8 Huang Z L, Munro N, Hühmer A F R, Landers J P. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips. Analytical Chemistry , 1999, 71(23): 5309–5314
doi: 10.1021/ac990740u pmid:10596211
9 Chiem N, Lockyear–Shultz L, Anderson P. Room temperature bonding of micromachined glass devices for capillary electrophoresis. Sensors and Actuators. B, Chemical , 2000, 63(3): 147–152
doi: 10.1016/S0925-4005(00)00351-8
10 Schlautmann S, Besselink G A J, Prabhu R, Schasfoort R B M. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers. Journal of Micromechanics and Microengineering , 2003, 13(4): S81–S84
doi: 10.1088/0960-1317/13/4/313
11 Schlautmann S, Wensink H, Schasfoort R B M, Elwenspoek M, Berg A V D. Powder–blasting technology as an alternative tool for micro-fabrication of CE–chips with integrated conductivity sensors. Micromech Microeng , 2001, 11(4): 386–389
doi: 10.1088/0960-1317/11/4/318
12 Kopf-Sill A R. Commercializing lab-on-chip technology Proc Micro Total Analysis. μTAS Enschede, The Netherlands , 2000: 233–238
13 Niklaus F, Enoksson P, K?lvesten E, Stemme G. Void-free full wafer adhesive bonding. 13th Int Workshop on Micro Electro Mechanical Systems . MEMS, Miyazaki, Japan, 2000: 247–252
14 Ho L F, Chollet F. Standardized bio–opto–fluidic chip technology using channel only process. Microelectronic Engineering , 2008, 85(5-6): 1306–1310
15 Maloney J, Sridharan S, Gardner R, Mason K. Effect of process variables on glass frit wafer bonding in MEMS wafer level packaging. Materials Research Society Symposium Proceedings , 2009, 1139: 133–139
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed