Kinematic calibration of precise 6-DOF stewart platform-type positioning systems for radio telescope applications
Kinematic calibration of precise 6-DOF stewart platform-type positioning systems for radio telescope applications
Juan Carlos JáUREGUI1(), Eusebio E. HERNáNDEZ2, Marco CECCARELLI3, Carlos LóPEZ-CAJúN4, Alejandro GARCíA5
1. División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Quéretaro Quéretaro, Qro. Mexico; 2. National Polytechnic Institute, IPN, Section of Graduate Studies and Research, ESIME-UPT, México D.F., Mexico; 3. Laboratory of Robotics and Mechatronics University of Cassino, Italy; 4. Universidad Autónoma de Quéretaro Querétaro, Qro. México; 5. CIATEQ, A.C. Aguascalientes, Ags. México
The pose accuracy of a parallel robot is a function of the mobile platform posture. Thus, there is no a single value of the robot’s accuracy. In this paper, two novel methods for estimating the accuracy of parallel robots are presented. In the first method, the pose accuracy estimation is calculated by considering the propagation of each error, i.e., error variations are considered as a function of the actuator’s stroke. In the second method, it is considered that each actuator has a constant error at any stroke. Both methods can predict pose accuracy of precise robots at design stages, and/or can reduce calibration time of existing robots. An example of a six degree-of-freedom parallel manipulator is included to show the application of the proposed methods.
Corresponding Author(s):
JáUREGUI Juan Carlos,Email:jc.jauregui@uaq.mx
引用本文:
. Kinematic calibration of precise 6-DOF stewart platform-type positioning systems for radio telescope applications[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 252-260.
Juan Carlos JáUREGUI, Eusebio E. HERNáNDEZ, Marco CECCARELLI, Carlos LóPEZ-CAJúN, Alejandro GARCíA. Kinematic calibration of precise 6-DOF stewart platform-type positioning systems for radio telescope applications. Front Mech Eng, 2013, 8(3): 252-260.
Masory O, Wang J. On the accuracy of a stewart platform-part I: The effect of manufacturing tolerances. In: IEEE Int. Conf. on Robotics and Automation, Atlanta , 1993, 725–731
3
Merlet J P. Parallel Robots: Open Problems. In: ASME Conference DECT , 2002
4
Castillo E, Takeda Y. Improving path accuracy of a crank-type 6-DOF parallel mechanism by stiction compensation. Mechanism and Machine Theory , 2008, 43(1): 104–114 doi: 10.1016/j.mechmachtheory.2006.12.002
5
Zhuang H, Roth Z. Method for kinematic calibration of stewart platforms. Journal of Robotic Systems , 1993, 10(3): 391–405 doi: 10.1002/rob.4620100306
Soons J A. Error Analysis of a hexapod machine tool. In: 3rd International Conference and Exhibition on Laser Metrology and Machine Performance, Lamdamap , 1997, 347–358
8
Rudder F F. Thermal expansion of long slender rods with forced convection cooling along the rod length. Report NISTIR , 1997, 5975: 46
9
Gupta K. Measure of positional error for a rigid body. Journal of Mechanical Design, ASME , 1997, 119(3): 346–348 doi: 10.1115/1.2826354
10
Parenti-Castelli V. Di Gregorio R., Lenarcic J. Sensitivity to geometric parameter variation of a 3 DOF fully-parallel manipulator. In: 3rd International Conference on Advanced Mechatronics JSME , 1998, 364–369
11
Oiwa T, Tamaki M. Study on abbe's principle in parallel kinematics. In: 2nd Chemnitz Parallel Kinematics Seminar, Chemnitz , 354–352 , 2000.
12
Cui H, Zhu Z, Gan Z, Brogangrdh T. Kinematic analysis and error modeling of TAU parallel robot. Robotics and Integrated Manufacturing , 2005, 21(6): 497–505 doi: 10.1016/j.rcim.2004.07.018
13
Brogangrdh T. Device for relative movement of two elements. United States Patent 6425303 , 2002.
14
Oiwa T. Error compensation system for joints, links and machine frame of parallel kinematics machines. International Journal of Robotics Research , 2005, 24(12): 1087–1102 doi: 10.1177/0278364905060149
15
Yu A, Bonev I, Zsombor P. Geometric approach to the accuracy of a class of 3-DOF planar parallel robots. Mechanism and Machine Theory , 2008, 43(3): 364–375 doi: 10.1016/j.mechmachtheory.2007.03.002
16
Briota S, Bonev I. Accuracy analysis of 3-DOF planar parallel robots. Mechanism and Machine Theory , 2008, 43(4): 445–458 doi: 10.1016/j.mechmachtheory.2007.04.002
17
Chebbia A, Affia Z, Romdhaneb L. Prediction of the pose errors produced by joints clearance for a 3-UPU parallel robot. Mechanism and Machine Theory , 2009, 44(9): 1768–1783 doi: 10.1016/j.mechmachtheory.2009.03.006
18
Pashkevich A, Chablat D, Wenger P. Kinematic Calibration of orthoglide-type mechanism from observation of parallel leg motions. Mechatronics , 2009, 19(4): 478–488 doi: 10.1016/j.mechatronics.2008.11.008
19
Ren X, Feng Z, Su C A. New calibration method for parallel kinematic machine tools using orientation constraint. International Journal of Machine Tools & Manufacture , 2009, 49(9): 708–721 doi: 10.1016/j.ijmachtools.2009.03.004
20
Hernandez-Martinez E, Ceccarelli M, Carbone G, Lopez-Cajun C, Jauregui-Correa J C. Characterization of a cable-based parallel mechanism for measurement purposes. Mechanism Based Design of Structures and Machines an International Journal , 2010, 38(1): 25–49 doi: 10.1080/15397730903386101
21
Angeles J. On the Nature of the Cartesian Stifiness Matrix. Ingenieria Mecanica Tecnologia y Desarrollo , 2010, 3(5): 163–170
22
Bohm J, Hefele J, Fritsch D. Towards on-line pose measurement for robots. In: Pattern Recognition, 23rd DAGM Symposium, LCNS-2191 , 2003, 298–303
23
Minor M, Merrel R. Instrumentation and algorithms for posture estimation in compliant framed modular mobile robots. International Journal of Robotics Research , 2007, 26(5): 491–512 doi: 10.1177/0278364907077899
24
Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation , 1990, 6(3): 281–290 doi: 10.1109/70.56660