Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2015, Vol. 10 Issue (3): 301-305   https://doi.org/10.1007/s11465-015-0344-z
  本期目录
Non-thermal plasma for exhaust gases treatment
Elvia ALVA R.1,2,Marquidia PACHECO P.1,*(),Fernando GÓMEZ B.3,Joel PACHECO P.1,Arturo COLÍN C.2,Víctor SÁNCHEZ-MENDIETA2,Ricardo VALDIVIA B.1,Alfredo SANTANA D.3,José HUERTAS C.3,Hilda FRÍAS P.1
1. Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, México
2. Universidad Autónoma del Estado de México, Toluca 50000, México
3. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Toluca 50110, México
 全文: PDF(692 KB)   HTML
Abstract

This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%–3% degradation may be interesting to reduce the emission of greenhouse gases.

Key wordsplasma treatment    NOx    CO    CO2    particulate matter    vehicle
收稿日期: 2015-03-11      出版日期: 2015-09-28
Corresponding Author(s): Marquidia PACHECO P.   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2015, 10(3): 301-305.
Elvia ALVA R.,Marquidia PACHECO P.,Fernando GÓMEZ B.,Joel PACHECO P.,Arturo COLÍN C.,Víctor SÁNCHEZ-MENDIETA,Ricardo VALDIVIA B.,Alfredo SANTANA D.,José HUERTAS C.,Hilda FRÍAS P.. Non-thermal plasma for exhaust gases treatment. Front. Mech. Eng., 2015, 10(3): 301-305.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-015-0344-z
https://academic.hep.com.cn/fme/CN/Y2015/V10/I3/301
Technology Pollutant Effects Application
Catalytic oxidation Particle, HC, and CO HC: 90% reduction Useful as a retrofit, inexpensive
CO: 88% reduction
Particles: 15% reduction
Particle filter Particle, HC, and CO HC: 58%−82% reduction Retrofit and new vehicle technology
CO: 90% reduction
Particles: 92% reduction
NOx adsorbers NOx NOx: 78%−90% reduction Lightweight and heavy vehicles
Catalytic reduction NOx NOx: 80%−85% reduction Possible to incorporate into heavy vehicles
Poisoning problems: Requires periodic maintenance
Three-way catalytic converter CO, NOx, HC HC: 90% reduction New vehicle technology
CO: 80% reduction
NOx: 85% reduction
Poisoning problems with sulfur
Non-thermal plasma NOx, SOx, HC, CO, and CO2 HC: 95% reduction Possible to apply in light and heavy vehicles and as retrofit
CO and CO2: 80% reduction
NOx: 98% reduction
SOx: 90% reduction
Compact, stable, similar to the costs of catalytic converters
Research process
Tab.1  
Fig.1  
Equipment Specification
Gas analyzerHoriba PG-250 RangeNOx: 0−2500 ppm. ChemiluminescenceSO2: 0−3000 ppm. Non-dispersive infrared absorptionCO2: 0−20%. Non-dispersive infrared absorptionCO: 0−5000 ppm. Non-dispersive infrared absorptionO2: 0−25%. Galvanic cell.Repeatability:±0.5%
Fluke 983particle counter 6 size channels: 0.3, 0.5, 1.0, 2.0, 5.0, and 10.0 μmFlow rate 2.83 L/min controlled by internal pumpCounting efficiency 50% at 0.3 μm; 100% for particles>0.45 μmRelative humidity±7%, 20% to 90% non-condensing
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Climent  M D, Aznar  P, Climent  V,  Conocer la química del medio ambiente. La atmósfera. Valencia: Publicaciones de la Universidad Politécnica de Valencia, 1992, 30–133 (in Spanish) 
2 Secretaria del medio ambiente. Inventario de Contaminantes Tóxicos de la Zona Metropolitana del Valle de México. 2006, 67–92
3 Kogelschatz  U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1–46
https://doi.org/10.1023/A:1022470901385
4 Kašpar  J, Fonasiero  P, Hickey  N. Automotive c<?Pub Caret?>atalytic converters: Current status and some perspectives. Catalysis Today, 2003, 77(4): 419–449
https://doi.org/10.1016/S0920-5861(02)00384-X
5 Van Mierlo  J, Maggetto  G, Lataire  P. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management, 2006, 47(17): 2748–2760
https://doi.org/10.1016/j.enconman.2006.02.004
6 Twigg  M V. Progress and future challenges in controlling automotive exhaust gas emissions. Applied Catalysis B: Environmental, 2007, 70(1−4): 2–15
https://doi.org/10.1016/j.apcatb.2006.02.029
7 Theodore  L, Buonicore  A J. Air Pollution Control Equipment: Selection, Design, Operation and Maintenance. Berlin: Springer, 1994
8 Bahamonde  A. Eliminación de NOx en Gases de Combustión, Reducción Catalítica Selective. Reporte Técnico, Instituto de Catálisis y Petroquímica, 2004, Madrid, 13–21 (in Spanish )
9 Pacheco  M, Alva  E, Valdivia  R,  Removal of main exhaust gases of vehicles by a double dielectric barrier discharge. Journal of Physics: Conference Series, 2012, 370: 012023
https://doi.org/10.1088/1742-6596/370/1/012023
10 Fridman  A. Plasma Chemistry. Cambridge: Cambridge University Press, 2008, 23–63
11 Valdivia-Barrientos  R, Pacheco-Sotelo  J, Pacheco-Pacheco  M,  Analysis and electrical modeling of a cylindrical DBD configuration at different operating frequencies. Plasma Sources Science & Technology, 2006, 15(2): 237–245
https://doi.org/10.1088/0963-0252/15/2/008
12 Estrada  N. Estudio de un reactor de doble barrera dieléctrica y su aplicación en el tratamiento de efluentes gaseosos. Dissertation for the Doctoral Degree. Toluca: Instituto Tecnológico de Toluca, 2010 (in Spanish)
13 Pacheco-Pacheco  M, Pacheco-Sotelo  J, Moreno-Saavedra  H,  DBD-corona discharge for degradation of toxic gases. Plasma Sources Science & Technology, 2007, 9(6): 82–85
14 Jiang  N, Lu  N, Shang  K,  Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. Journal of Hazardous Materials, 2013, 262: 387–393
https://doi.org/10.1016/j.jhazmat.2013.08.072 pmid: 24061216
15 Plaksin  V Y, Penkov  O V, Lee  H J. Application of the DBD in the cleaning of diesel engine exhausts. Journal of the Korean Physical Society, 2008, 53(5): 2607–2611
https://doi.org/10.3938/jkps.53.2607
16 Pesansky  J D, Majiros  N A, Sorense  M C,  The effect of three-way catalyst selection on component pressure drop and system performance. SAE International, 2009, 2009(1): 1072
17 Okubo  M, Arita  N, Kuroki  T,  Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chemistry and Plasma Processing, 2008, 28(2): 173–187
https://doi.org/10.1007/s11090-008-9121-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed