Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2015, Vol. 10 Issue (4): 326-343   https://doi.org/10.1007/s11465-015-0355-9
  本期目录
Static balancing of planar articulated robots
Giuseppe QUAGLIA,Zhe YIN()
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
 全文: PDF(2791 KB)   HTML
Abstract

Static balancing for a manipulator’s weight is necessary in terms of energy saving and performance improvement. This paper proposes a method to design balancing devices for articulated robots in industry, based on robotic dynamics. Full design details for the balancing system using springs are presented from two aspects: One is the optimization for the position of the balancing system; the other is the design of the spring parameters. As examples, two feasible balancing devices are proposed, based on different robotic structures: The first solution consists of linkages and springs; the other consists of pulleys, cross mechanisms and (hydro-) pneumatic springs. Then the two solutions are compared. Pneumatic, hydro-pneumatic and mechanical springs are discussed and their parameters are decided according to the requirements of torque compensation. Numerical results show that with the proper design using the methodology presented in this paper, an articulated robot can be statically balanced perfectly in all configurations. This paper therefore provides a design method of the balancing system for other similar structures.

Key wordsrobotics    static balancing    pneumatic spring    mechanical spring    torque compensation
收稿日期: 2015-04-28      出版日期: 2015-12-03
Corresponding Author(s): Zhe YIN   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2015, 10(4): 326-343.
Giuseppe QUAGLIA,Zhe YIN. Static balancing of planar articulated robots. Front. Mech. Eng., 2015, 10(4): 326-343.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-015-0355-9
https://academic.hep.com.cn/fme/CN/Y2015/V10/I4/326
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Physical parameter Value
m1/kg 100
m2/kg 40
l1/m 1.2
l2/m 1.0
r1/m 0.6
r2/m 0.5
b1/m 0.2
b2/m 0.2
Tab.1  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
mi Mass of Link i, kg
hi Height of gravity centre of Link i, m
Ee Elastic potential energy, J
Eg Gravitational potential energy, J
θi Rotational angle of Link i, rad
θ ˙ i Angular velocity of Link i, rad/s
θ ¨ i Angular acceleration of Link i, rad/s2
g Gravitational acceleration, 9.8 m/s2
bi Connecting link length, m
li Length of Link i, m
biF Arm of moment, m
ri Distance between the two points, m
Gi Gravity of Link i, N
Fi Spring force, N
ki Stiffness of spring i, N/m
Ci Torque from link mass and position, N·m
ai Spring length between fixes joint and connecting link i, m
αi Angle to locate the fixed joint for spring, rad
δi Shift angle, rad
CF Torque applied by balancing system, N·m
e Error
CM Torque applied by Motor i (M i), N·m
Ii Moment of inertia, referred to Joint Oi, kg·m2
A1 Effective area, m2
x1 Position of piston, m
Vaux Volume of auxiliary bladder, m3
V Volume of pneumatic spring, m3
P Pressure of pneumatic spring, Pa
Tab.2  
1 Link 1
2 Link 2
0 Initial condition, θ=0
FK Feasible variable force
c Torque
c% Torque error in percentage
F Feasible constant force
id Ideal
max Maximum
c%mean A mean value for torque error in percentage
Tab.3  
1 U.S. Energy Information Administration. Annual Energy Review 2011. 2012
2 Bruzzone  L, Bozzini  G. Energetic efficiency of a statically balanced hybrid industrial manipulator. In: Proceedings of 9th International Workshop on Research and Education in Mechatronics. Bergamo, 2008
3 Diken  H. Effect of mass balancing on the actuator torques of a manipulator. Mechanism and Machine Theory, 1995, 30(4): 495–500
https://doi.org/10.1016/0094-114X(94)00060-X
4 Bruzzone  L, Bozzini  G. Elastic balancing of a SCARA-link hybrid industrial manipulator. In: Proceedings of 28th IASTED International Conference on Modelling, Identification and Control (MIC 2009). Innsbruck, 2009
5 Hervé  J M. US Patent 4620829, 1985-05-23
6 Baradat  C, Arakelian  V, Briot  S,  Design and prototyping of a new balancing mechanism for spatial parallel manipulators. Journal of Mechanical Design, 2008, 130(7): 072305
https://doi.org/10.1115/1.2901057
7 Segla  S, Kalker-Kalkman  C M, Schwab  A L. Statically balancing of a robot mechanism with the aid of a genetic algorithm. Mechanism and Machine Theory, 1998, 33(1−2): 163–174
https://doi.org/10.1016/S0094-114X(97)00012-8
8 Rizk  R, Krut  S, Dombre  E. Design of a 3D gravity balanced orthosis for upper limb. In: Proceedings of IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 2447–2452
https://doi.org/10.1109/ROBOT.2008.4543580
9 Streit  D A, Shin  E. Equilibrators for planar linkages. Journal of Mechanical Design, 1993, 115(3): 604–610
https://doi.org/10.1115/1.2919233
10 Shin  E, Streit  D A. An energy efficient quadruped with two-stage equilibrator. Journal of Mechanical Design, 1993, 115(1): 156–163
https://doi.org/10.1115/1.2919313
11 Lens  T, Stryk  O. Investigation of safety in human-robot-interaction for a series elastic, tendon-driven robot arm. In: Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura: IEEE, 2012, 4309–4312
https://doi.org/10.1109/IROS.2012.6386236
12 Morita  T, Kuribara  F, Shiozawa  Y. A novel mechanism design for gravity compensation in three dimensional space. In: Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2003, 163–168
https://doi.org/10.1109/AIM.2003.1225089
13 Saravanan  R, Ramabalan  S, Badu  P D. Optimum static balancing of an industrial robot mechanism. Engineering Applications of Artificial Intelligence, 2008, 21(6): 824–834
https://doi.org/10.1016/j.engappai.2007.09.007
14 Hain  K. Spring Mechanisms. In: Chironis  N P, ed. Spring Design and Application. New York: McGraw-Hill, 1961, 268–275
15 Simionescu  I, Ciupitu  L. The static balancing of the industrial robot arms Part I: Discrete balancing. Mechanism and Machine Theory, 2000, 35(9): 1287–1298
https://doi.org/10.1016/S0094-114X(99)00067-1
16 Simionescu  I, Ciupitu  L. The static balancing of the industrial robot arms Part II: Continuous balancing. Mechanism and Machine Theory, 2000, 35(9): 1299–1311
https://doi.org/10.1016/S0094-114X(99)00068-3
17 Fattah  A, Agrawal  S <?Pub Caret?>K. Gravity-balancing of classes of industrial robots. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006, 2872–2877
https://doi.org/10.1109/ROBOT.2006.1642137
18 Agrawal  S K, Fattah  A. Gravity-balancing of spatial robotic manipulators. Mechanism and Machine Theory, 2004, 39(12): 1331–1344
https://doi.org/10.1016/j.mechmachtheory.2004.05.019
19 Balana  S K, Agrawal  S K, Fattah  A,  Gravity-balancing leg orthosis and its performance evaluation. IEEE Transactions on Robotics, 2006, 22(6): 1228–1239
https://doi.org/10.1109/TRO.2006.882928
20 Vermeulen  M, Wisse  M. Intrinsically safe robot arm: Adjustable static balancing and low power actuation. International Journal of Social Robotics, 2010, 2(3): 275–288
https://doi.org/10.1007/s12369-010-0048-9
21 Ulrich  N, Kumar  V. Passive mechanical gravity compensation for robot manipulators. In: Proceedings of IEEE international conference on robotics and automation. Sacramento: IEEE, 1991, 1536–1541
https://doi.org/10.1109/ROBOT.1991.131834
22 Herder  J L. Design of spring force compensation systems. Mechanism and Machine Theory, 1998, 33(1−3): 151–161
https://doi.org/10.1016/S0094-114X(97)00027-X
23 Tuijthof  G J M, Herder  J L. Design, actuation and control of an anthropomorphic robot arm. Mechanism and Machine Theory, 2000, 35(7): 945–962
https://doi.org/10.1016/S0094-114X(99)00051-8
24 Herder  J L. Energy-free systems: Theory, conception and design of statically balanced mechanisms. Dissertation for the Doctoral Degree. Delft: Delft University of Technology, 2001
25 Shin  E, Streit  D A. Spring equilibrator theory for static balancing of planar pantograph linkages. Mechanism and Machine Theory, 1991, 26(7): 645–657
https://doi.org/10.1016/0094-114X(91)90027-2
26 Gosselin  C M. Gravity compensation, static balancing and dynamic balancing of parallel mechanisms. In: Wang  L, Xi  J, eds. Smart Devices and Machines for Advanced Manufacturing. London: Springer, 2008, 27–48
27 Haddadin  S, Albu-Schäffer  A, Hirzinger  G. Requirements for safe robots: Measurements, analysis and new insights. International Journal of Robotics Research, 2009, 28(11−12): 1507–1527
https://doi.org/10.1177/0278364909343970
28 Walsh  G J, Streit  D A, Gilmore  B J. Spatial spring equilibrators theory. Mechanism and Machine Theory, 1991, 26(2): 155–170
https://doi.org/10.1016/0094-114X(91)90080-N
29 Streit  D A, Gilmore  B J. Perfect spring equilibrators for rotatable bodies. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1989, 111: 451–458
30 Wang  J, Gosselin  C M. Static balancing of spatial four-degree-of-freedom parallel mechanisms. Mechanism and Machine Theory, 2000, 35(4): 563–592
https://doi.org/10.1016/S0094-114X(99)00029-4
31 Wang  J, Gosselin  C M. Static balancing of spatial three-degree-of-freedom parallel mechanisms. Mechanism and Machine Theory, 1999, 34(3): 437–452
https://doi.org/10.1016/S0094-114X(98)00031-7
32 Russo  A, Sinatra  R, Xi  F. Static balancing of parallel robots. Mechanism and Machine Theory, 2005, 40(2): 191–202
https://doi.org/10.1016/j.mechmachtheory.2004.06.011
33 Lowen  G G, Tepper  F R, Berkof  R S. Balancing of linkages—An update. Mechanism and Machine Theory, 1983, 18(3): 213–220
https://doi.org/10.1016/0094-114X(83)90092-7
34 Yan  H, Soong  R C. Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed. Mechanism and Machine Theory, 2001, 36(9): 1051–1071
https://doi.org/10.1016/S0094-114X(01)00032-5
35 Tsai  L W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. New York: John Wiley & Sons, 1999
36 Quaglia  G, Yin  Z. Optimization of static balancing for an anthropomorphic robot. In: Proceedings of the 3rd IFToMM International Symposium on Robotics and Mechatronics. Singapore, 2013
37 Quaglia  G, Yin  Z. A balancing mechanism for an anthropomorphic robot. Advanced Materials Research, 2013, 774−776: 1397–1403
https://doi.org/10.4028/www.scientific.net/AMR.774-776.1397
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed