Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2018, Vol. 13 Issue (2): 179-210   https://doi.org/10.1007/s11465-018-0464-3
  本期目录
Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives
Jianyong YAO()
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(1266 KB)   HTML
Abstract

Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

Key wordshydraulic servo system    adaptive control    robust control    nonlinear friction    disturbance compensation    repetitive control    noise alleviation    constraint control
收稿日期: 2017-03-23      出版日期: 2018-03-16
Corresponding Author(s): Jianyong YAO   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2018, 13(2): 179-210.
Jianyong YAO. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives. Front. Mech. Eng., 2018, 13(2): 179-210.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-018-0464-3
https://academic.hep.com.cn/fme/CN/Y2018/V13/I2/179
Fig.1  
Fig.2  
Frequency/Hz Max velocity/(°·s−1) Controller Max error/(° ) Phase lag
5 31.4 VFPI 0.100 0.5°
FBL 0.030 Invisible
10 62.8 VFPI
FBL
0.200
0.026
12.2°
Invisible
15 94.2 VFPI
FBL
0.300
0.036
16.8°
Invisible
20 125.6 VFPI
FBL
0.400
0.050
22°
Invisible
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Indices Me m s
PID 0.0896 0.0532 0.0274
FLC 0.0637 0.0198 0.0125
ARC 0.0136 0.0035 0.0026
APC 0.0089 0.0016 0.0012
Tab.2  
Fig.13  
Indices Me m s
ARC 0.2899 0.0935 0.0623
APC 0.1084 0.0517 0.0244
Tab.3  
Fig.14  
Indices Me m s
PIVF 0.0903 0.0531 0.0274
FLC 0.0663 0.0200 0.0132
AC 0.0123 0.0030 0.0024
ALuGre 0.0081 0.0019 0.0015
Tab.4  
Fig.15  
Fig.16  
Indices Me m s
PIVF 0.0213 0.0044 0.0047
FLC 0.0414 0.0050 0.0092
AC 0.0125 0.0013 0.0016
ALuGre 0.0041 0.0008 0.0006
Tab.5  
Fig.17  
Fig.18  
Fig.19  
Indices Me m s
PI 0.0501 0.0097 0.0072
OFRC 0.0383 0.0517 0.0065
Tab.6  
Fig.20  
Indices Me m s
PI 0.0321 0.0019 0.0033
OFRC 0.0152 0.0008 0.0012
Tab.7  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
1 Merritt H E. Hydraulic Control Systems. New York: Wiley, 1967
2 Yao B, Bu F, Reedy J, et al.Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79–91
https://doi.org/10.1109/3516.828592
3 Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995
4 Armstrong-Hélouvry B, Dupont P, Canudas de Wit C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, 30(7): 1083–1138
https://doi.org/10.1016/0005-1098(94)90209-7
5 Canudas de Wit C, Olsson H, Astrom K J, et al.A new model for control of systems with friction. IEEE Transactions on Automatic Control, 1995, 40(3): 419–425
https://doi.org/10.1109/9.376053
6 Swevers J, Al-Bender F, Ganseman C G, et al.An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 2000, 45(4): 675–686
https://doi.org/10.1109/9.847103
7 Yao J, Jiao Z, Ma D, et al.High-accuracy tracking control of hydraulic rotary actuators with modelling uncertainties. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 633–641
https://doi.org/10.1109/TMECH.2013.2252360
8 Yao J, Deng W, Jiao Z.RISE-based adaptive control of hydraulic systems with asymptotic tracking. IEEE Transactions on Automation Science and Engineering, 2017, 14(3): 1524–1531
https://doi.org/10.1109/TASE.2015.2434393
9 Lischinsky P, Canudas de Wit C, Morel G. Friction compensation for an industrial hydraulic robot. IEEE Control Systems Magazine, 1999, 19 (1): 25–32
https://doi.org/10.1109/37.745763
10 Swaroop D, Hedrick J K, Yip P P, et al.Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1893–1899
https://doi.org/10.1109/TAC.2000.880994
11 Yip P P, Hedrick J K. Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems. International Journal of Control, 1998, 71(5): 959–979
https://doi.org/10.1080/002071798221650
12 Farrell J A, Polycarpou M, Sharma M, et al.Command filtered backstepping. IEEE Transactions on Automatic Control, 2009, 54(6): 1391–1395
https://doi.org/10.1109/TAC.2009.2015562
13 Dong W, Farrell J A, Polycarpou M M, et al.Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566–580
https://doi.org/10.1109/TCST.2011.2121907
14 Guan C, Pan S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Engineering Practice, 2008, 16(11): 1275–1284
https://doi.org/10.1016/j.conengprac.2008.02.002
15 Guan C, Pan S. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Transactions on Control Systems Technology, 2008, 16(3): 434–445
https://doi.org/10.1109/TCST.2007.908195
16 Mintsa H A, Venugopal R, Kenne J P, et al.Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1092–1099
https://doi.org/10.1109/TCST.2011.2158101
17 Yao J, Yang G, Jiao Z. High dynamic feedback linearization control of hydraulic actuators with backstepping. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2015, 229: 728–737
https://doi.org/10.1177/0959651815581555
18 Yao J, Jiao Z, Yao B, et al.Nonlinear adaptive robust force control of hydraulic load simulator. Chinese Journal of Aeronautics, 2012, 25(5): 766–775
https://doi.org/10.1016/S1000-9361(11)60443-3
19 Yang G, Yao J, Le G, et al.Adaptive integral robust control of hydraulic systems with asymptotic tracking. Mechatronics, 2016, 40: 78–86
https://doi.org/10.1016/j.mechatronics.2016.10.007
20 Deng W, Yao J. Adaptive integral robust control and application to electromechanical servo systems. ISA Transactions, 2017, 67: 256–265
https://doi.org/10.1016/j.isatra.2017.01.024
21 Yang G, Yao J, Le G, et al.Asymptotic output tracking control of electro-hydraulic systems with unmatched disturbances. IET Control Theory & Applications, 2016, 10(18): 2543–2551
https://doi.org/10.1049/iet-cta.2016.0702
22 Yao B, Xu L. On the design of adaptive robust repetitive controllers. In: Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition. New York: ASME, 2001, 1–9
23 Yao J, Jiao Z, Ma D. A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2752–2760
https://doi.org/10.1109/TMECH.2015.2409893
24 Yao J, Deng W, Jiao Z. Adaptive control of hydraulic actuators with LuGre model based friction compensation. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6469–6477
https://doi.org/10.1109/TIE.2015.2423660
25 Xu L, Yao B. Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation. International Journal of Control, 2008, 81(2): 167–176
https://doi.org/10.1080/00207170701390132
26 Tan Y, Kanellakopoulos I. Adaptive nonlinear friction compensation with parametric uncertainties. In: Proceedings of the 1999 American Control Conference. San Diego: IEEE, 1999, 2511–2515
https://doi.org/10.1109/ACC.1999.786505
27 Zheng Q, Gao L, Gao Z. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In: Proceedings of 2007 46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007, 3501–3506
https://doi.org/10.1109/CDC.2007.4434676
28 Yao J, Jiao Z, Ma D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6285–6293
https://doi.org/10.1109/TIE.2014.2304912
29 Tee K P, Ge S S, Tay E H. Barrier Lyapunov function for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918–927
https://doi.org/10.1016/j.automatica.2008.11.017
30 Ngo K B, Mahony R, Jiang Z P. Integrator backstepping using barrier functions for systems with multiple state constraints. In: Proceedings of 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. Seville: IEEE, 2005, 8306–8312
https://doi.org/10.1109/CDC.2005.1583507
31 Deng W, Yao J, Jiao Z. Adaptive backstepping motion control of hydraulic actuators with velocity and acceleration constraints. In: Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Yantai: IEEE, 2014, 219–224
https://doi.org/10.1109/CGNCC.2014.7007238
32 Sadegh N, Horowitz R. Stability and robustness analysis of a class of adaptive controllers for robot manipulators. International Journal of Robotics Research, 1990, 9(3): 74–92
https://doi.org/10.1177/027836499000900305
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed