Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions
Juan Carlos HERNANDEZ-CASTANEDA1, Boon Keng LOK1, Hongyu ZHENG2()
1. Singapore Institute of Manufacturing Technology, Singapore 138634, Singapore 2. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China
This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles (Cu NPs) on polyethylene terephthalate polymer film. These materials are commonly used in manufacturing functional printed electronics for large-area applications. Here, optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions. Direct diode (808 nm), Nd:YAG (1064 nm and second harmonic of 532 nm), and ytterbium fiber (1070 nm) lasers are explored. Optimal parameters for sintering the Cu NPs are identified for each laser system, which targets low resistivity and high processing speed. Finally, the quality of the sintered tracks is quantified, and the laser sintering mechanisms observed under different wavelengths are analyzed. Practical considerations are discussed to improve the laser sintering process of Cu NPs.
. [J]. Frontiers of Mechanical Engineering, 2020, 15(2): 303-318.
Juan Carlos HERNANDEZ-CASTANEDA, Boon Keng LOK, Hongyu ZHENG. Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions. Front. Mech. Eng., 2020, 15(2): 303-318.
S H Ko, H Pan, C P Grigoropoulos, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18(34): 345202 https://doi.org/10.1088/0957-4484/18/34/345202
2
P Buffat, J P Borel. Size effect on the melting temperature of gold particles. Physical Review A, 1976, 13(6): 2287–2298 https://doi.org/10.1103/PhysRevA.13.2287
3
N R Bieri, J Chung, S E Haferl, et al.Microstructuring by printing and laser curing of nanoparticle solutions. Applied Physics Letters, 2003, 82(20): 3529–3531 https://doi.org/10.1063/1.1575502
4
T Y Kim, J Y Hwang, S J. MoonLaser curing of the silver/copper nanoparticle ink via optical property measurement and calculation.Japanese Journal of Applied Physics, 2010, 49(5S1): 05EA09(1-6)
5
N R Bieri, J Chung, D Poulikakos, et al.An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks. Applied Physics A, 2005, 80(7): 1485–1495 https://doi.org/10.1007/s00339-004-3195-8
6
M K Kim, H Kang, K Kang, et al.. Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates. In: Proceedings of the 10th IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010 https://doi.org/10.1109/NANO.2010.5697913
7
J Chung, N R Bieri, S Ko, et al.In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Applied Physics A, 2004, 79(4–6): 1259–1261 https://doi.org/10.1007/s00339-004-2731-x
8
S H Ko, H Pan, C P Grigoropoulos, et al.Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Applied Physics Letters, 2007, 90(14): 141103–141105 https://doi.org/10.1063/1.2719162
9
N R Bieri, J Chung, D Poulikakos, et al. Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices and Microstructures, 2004, 35(3–6): 437–444 https://doi.org/10.1016/j.spmi.2003.09.006
10
T Y Choi, D Poulikakos, C P Grigoropoulos. Fountain-pen-based laser microstructuring with gold nanoparticle inks. Applied Physics Letters, 2004, 85(1): 13–15 https://doi.org/10.1063/1.1767281
11
J Chung, S Ko, N R Bieri, et al.Conductor microstructures by laser curing of printed gold nanoparticle ink. Applied Physics Letters, 2004, 84(5): 801–803 https://doi.org/10.1063/1.1644907
12
S H Ko, J Chung, H Pan, et al.Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sensors and Actuators A: Physical, 2007, 134(1): 161–168 https://doi.org/10.1016/j.sna.2006.04.036
13
S H Ko, Pan K, Hwang D J, et al.. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. Journal of Applied Physics, 2007, 102: 093102 https://doi.org/10.1063/1.2802302
14
H Alemohammad, O Aminfar, E Toyserkani. Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition. Journal of Micromechanics and Microengineering, 2008, 18(11): 115015 https://doi.org/10.1088/0960-1317/18/11/115015
15
T Kumpulainen, J Pekkanen. Utilization of 515 nm pulsed fiber laser for low temperature nanoparticle sintering. In: Proceedings of the 27th International Congress on Applications of Lasers & Electro-Optics. Temecula: Laser Institute of America, 2008 https://doi.org/10.2351/1.5061351
16
Y Son, T W Lim, J Yeo, et al.. Fabrication of nano-scale conductors by selective femtosecond laser sintering of metal nanoparticles. In: Proceedings of the 10th IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010 https://doi.org/10.1109/NANO.2010.5697903
17
T Kumpulainen, J Pekkanen, J Valkama, et al.Low temperature nanoparticle sintering with continuous wave and pulse lasers. Optics & Laser Technology, 2011, 43(3): 570–576 https://doi.org/10.1016/j.optlastec.2010.08.002
18
R Lesyuk, W Jillek, Y Bobitski, et al.Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectronic Engineering, 2011, 88(3): 318–321 https://doi.org/10.1016/j.mee.2010.11.037
19
T Niizeki, K Maekawa, M Mita, et al.. Laser sintering of Ag nanopaste film and its application to bond-pad formation. In: Proceedings of the 58th Electronic Components and Technology Conference. Lake Buena Vista: IEEE, 2008, 1745–1750 https://doi.org/10.1109/ECTC.2008.4550216
20
M K Kim, J Y Hwang, H Kang, et al.. Laser sintering of the printed silver ink. In: Proceedings of the 2009 IEEE International Symposium on Assembly and Manufacturing. Suwon: IEEE, 2009, 155–158 https://doi.org/10.1109/ISAM.2009.5376912
21
P Laakso, S Ruotsalainen, E Halonen, et al.. Sintering of printed nanoparticle structures using laser treatment. In: Proceedings of the 28th International Congress on Applications of Lasers & Electro-Optics. Orlando, 2009
22
M Aminuzzaman, A Watanabe, T Miyashita. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film. Journal of Nanoparticle Research, 2010, 12(3): 931–938 https://doi.org/10.1007/s11051-009-9643-9
23
Y Tsutsui, K Yamasaki, K Maekawa, et al.. Size effect of Ag nanoparticles on laser sintering and wire bondability. In: Proceedings of the 60th Electronic Components and Technology Conference (ECTC 2010). Las Vegas: IEEE, 2010, 1870–1876 https://doi.org/10.1109/ECTC.2010.5490705
24
Y H Yoon, S M Yi, J R Yim, et al.Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films. Microelectronic Engineering, 2010, 87(11): 2230–2233 https://doi.org/10.1016/j.mee.2010.02.008
25
B Kang, J Kno, M Yang. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate. Journal of Micromechanics and Microengineering, 2011, 21(7): 075017 https://doi.org/10.1088/0960-1317/21/7/075017
26
B Kang, S Ko, J Kim, et al.Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Optics Express, 2011, 19(3): 2573–2579 https://doi.org/10.1364/OE.19.002573
27
M G Kim, M G Kanatzidis, A Facchetti, et al.Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Materials, 2011, 10(5): 382–388 https://doi.org/10.1038/nmat3011
28
D G Lee, D K Kim, Y J Moon, et al.Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Thin Solid Films, 2013, 546: 443–447 https://doi.org/10.1016/j.tsf.2013.05.103
29
J Niittynen, R Abbel, M Mäntysalo, et al.Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 2014, 556: 452–459 https://doi.org/10.1016/j.tsf.2014.02.001
30
G Qin, A Watanabe. Conductive network structure formed by laser sintering of silver nanoparticles. Journal of Nanoparticle Research, 2014, 16(11): 2684 https://doi.org/10.1007/s11051-014-2684-8
31
K C Yung, T S Plura. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles. Applied Physics A, 2010, 101(2): 393–397 https://doi.org/10.1007/s00339-010-5867-x
32
M Joo, B Lee, S Jeong, et al.Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films, 2012, 520(7): 2878–2883 https://doi.org/10.1016/j.tsf.2011.11.078
33
J Lee, B Lee, S Jeong, et al.Microstructure and electrical property of laser-sintered Cu complex ink. Applied Surface Science, 2014, 307: 42–45 https://doi.org/10.1016/j.apsusc.2014.03.127
34
J Lee, B Lee, S Jeong, et al.Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering. Thin Solid Films, 2014, 564: 264–268 https://doi.org/10.1016/j.tsf.2014.06.005
35
J H Yu, K T Kang, J Y Hwang, et al.Rapid sintering of copper nano ink using a laser in air. International Journal of Precision Engineering and Manufacturing, 2014, 15(6): 1051–1054 https://doi.org/10.1007/s12541-014-0435-5
36
Intrinsiq Materials. Screen print copper paste for PV metalisation. Available at Intrinsiq Materials website on September 15, 2019
37
A Soltani, B Khorramdel Vahed, A Mardoukhi, et al.Laser sintering of copper nanoparticles on top of silicon substrates. Nanotechnology, 2016, 27(3): 035203 https://doi.org/10.1088/0957-4484/27/3/035203
38
J Kwon, H Cho, H Eom, et al.Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Applied Materials & Interfaces, 2016, 8(18): 11575–11582 https://doi.org/10.1021/acsami.5b12714
N K Roy, O G Dibua, W Jou, et al.A comprehensive study of the sintering of copper nanoparticles using femtosecond, nanosecond, and continuous wave lasers. Journal of Micro and Nano-Manufacturing, 2017, 6(1): 010903 https://doi.org/10.1115/1.4038455
41
N K Roy, O G Dibua, C S Foong, et al.Preliminary results on the fabrication of interconnect structures using microscale selective laser sintering. In: Proceedings of ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. San Francisco: ASME, 2017, IPACK2017-74173, V001T01A001 https://doi.org/10.1115/IPACK2017-74173
42
N K Roy, W Jou, H Feng, et al.Laser sintering of copper nanoparticles: A simplified model for fluence estimation and validation. In: Proceedings of the 12th International Manufacturing Science and Engineering Conference. Los Angeles: ASME, 2017, MSEC2017-2975, V002T01A032 https://doi.org/10.1115/MSEC2017-2975
43
R H Perry. Perry’s Chemical Engineers’ Handbook. 7th ed. New York: McGraw-Hill, 1997
44
I Shyjumon, M Gopinadhan, O Ivanova, et al.Structural deformation, melting point and lattice parameter studies of size selected silver clusters. European Physical Journal D, 2006, 37(3): 409–415 https://doi.org/10.1140/epjd/e2005-00319-x
45
Y Son, J Yeo, H Moon, et al.Nanoscale electronics: Digital fabrication by direct femtosecond laser processing of metal nanoparticles. Advanced Materials, 2011, 23(28): 3176–3181 https://doi.org/10.1002/adma.201100717
46
Y Lawrence Yao, H Chen, W Zhang. Time scale effects in laser material removal: A review. International Journal of Advanced Manufacturing Technology, 2005, 26(5–6): 598–608 https://doi.org/10.1007/s00170-003-2026-y
47
M Hu, G V Hartland. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. Journal of Physical Chemistry B, 2002, 106(28): 7029–7033 https://doi.org/10.1021/jp020581+
48
J S Kang, H S Kim, J Ryu, et al.Inkjet printed electronics using copper nanoparticle ink. Journal of Materials Science Materials in Electronics, 2010, 21(11): 1213–1220 https://doi.org/10.1007/s10854-009-0049-3
49
W A MacDonald. Engineered films for display technologies. Journal of Materials Chemistry, 2004, 14(1): 4–10 https://doi.org/10.1039/b310846p
50
D Bäuerle. Laser Processing and Chemistry. Berlin: Springer, 2011, 739–781
51
H Min, B Lee, S Jeong, et al.Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate. Optics and Lasers in Engineering, 2016, 80: 12–16 https://doi.org/10.1016/j.optlaseng.2015.12.007