Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2022, Vol. 17 Issue (1): 3   https://doi.org/10.1007/s11465-021-0659-x
  本期目录
Ultrasound-guided prostate percutaneous intervention robot system and calibration by informative particle swarm optimization
Jiawen YAN, Bo PAN(), Yili FU
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(3534 KB)   HTML
Abstract

Applying a robot system in ultrasound-guided percutaneous intervention is an effective approach for prostate cancer diagnosis and treatment. The limited space for robot manipulation restricts structure volume and motion. In this paper, an 8-degree-of-freedom robot system is proposed for ultrasound probe manipulation, needle positioning, and needle insertion. A novel parallel structure is employed in the robot system for space saving, structural rigidity, and collision avoidance. The particle swarm optimization method based on informative value is proposed for kinematic parameter identification to calibrate the parallel structure accurately. The method identifies parameters in the modified kinematic model stepwise according to parameter discernibility. Verification experiments prove that the robot system can realize motions needed in targeting. By applying the calibration method, a reasonable, reliable forward kinematic model is built, and the average errors can be limited to 0.963 and 1.846 mm for insertion point and target point, respectively.

Key wordsultrasound image guidance    prostate percutaneous intervention    parallel robot    kinematics identification    particle swarm optimization    informative value
收稿日期: 2021-05-16      出版日期: 2022-01-28
Corresponding Author(s): Bo PAN   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2022, 17(1): 3.
Jiawen YAN, Bo PAN, Yili FU. Ultrasound-guided prostate percutaneous intervention robot system and calibration by informative particle swarm optimization. Front. Mech. Eng., 2022, 17(1): 3.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-021-0659-x
https://academic.hep.com.cn/fme/CN/Y2022/V17/I1/3
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Error parameter Maximum informative value
δθ1 269.1
δθ2 269.1
δd1 9.1
δd2 1.6
δr 4.9
δx (Constant) 1.0
δy (Constant) 1.0
Tab.1  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Method δθ1/rad δθ2/rad δr/mm δd1/mm δd2/mm δx/mm δy/mm Average error/mm
Initial value 0 0 0 0 0 0 0 2.778
InfoPSO −0.012 −0.015 1.466 0.966 −0.009 0.355 −1.752 1.499
Traditional PSO −0.011 −0.017 59.296 35.221 12.157 0.251 −1.777 1.395
Tab.2  
Method δθ1/rad δθ2/rad δr/mm δd1/mm δd2/mm δx/mm δy/mm Average error/mm
Initial value 0 0 0 0 0 0 0 1.543
InfoPSO 0.002 −0.007 2.193 1.395 0.001 0.426 0.130 0.975
Traditional PSO 0.002 −0.008 48.382 28.037 10.239 0.351 0.112 0.899
Tab.3  
Fig.16  
Fig.17  
Value source zt/mm zb/mm δxt/mm δyt/mm δxb/mm δyb/mm Average error/mm
Designed value −25.000 −130.000 0 0 0 0 3.198
Identified Value −27.150 −134.850 0.084 0.073 0.028 0.034 1.594
Tab.4  
Stage information δθ1/rad δθ2/rad r/mm d1/mm d2/mm δx/mm δy/mm z/mm
Top stage −0.012 −0.015 66+1.466 30+0.966 45−0.009 0.4381 −1.6791 −27.150
Bottom stage 0.002 −0.007 66+2.193 30+1.395 45+0.001 0.4535 0.1635 −134.850
Tab.5  
Fig.18  
Fig.19  
Parameter Component Informative value
δα1 x [ 16(d1+ 2d2)( 2(d12 r2)cosθ1+ r2cos(2θ1 θ2))( 2d13+4d12 d2 d1r2 2d2r 2)cosθ2 2d12r 1cos(θ1 θ2)2+r2(cos( θ1θ2)1 )d12sinθ1\Bigggr]16 si n2(θ1 θ 22) /(2d12 (1 co s( θ1θ2))322+ r 2 (cos( θ1θ2)1 )d12)
y si n2(θ1 θ 22)[152d12rcosθ11 co s( θ1θ2)2+ r2( co s( θ1θ2)1 )d12+(d1+ 2d2)( 2(d12 r2)sinθ1 +r2sin(2θ1 θ2)+(r22d12 )sinθ2)]15/ (2d12 (1 co s( θ1θ2))322+ r 2 (cos( θ1θ2)1 )d12)
δα2 x sin2(θ1 θ 22)[15(d1+ 2d2)( (2d12 r2)cosθ1 r2cos(θ1 2θ2))+(2 d 13+ 4d12 d2 2d1r 24d2r2)cosθ2 +2 d 12r 1cos(θ1 θ2)2+r2(cos( θ1θ2)1 )d12sinθ2] 15/(2d12 (1 co s( θ1θ2))322+ r 2 (cos( θ1θ2)1 )d12)
y si n2(θ1 θ 22)[152d12rcosθ21 co s( θ1θ2)·2 +r2(cos( θ1θ2)1 )d12 +(d1+ 2d2)· ((2 d 12 r2)sinθ1+ r2sin(θ1 2θ2)+2 ( r2d12 )sinθ2)]15 /(2d12 (1 co s( θ1θ2))322+ r 2 (cos( θ1θ2)1 )d12)
δl1 x ( d1 3+ d2r2 d2r2cos?( θ1θ2))( sin? θ 1sin? θ2)/(d131 cos?(θ1 θ 2)2+r2(cos? (θ1θ2) 1)d12 )
y ( d13+d2r 2d2r2cos(θ1 θ2))( co sθ1 c osθ2) /( d 13 1cos(θ1 θ2)2+ r2(cos(θ1 θ2) 1) d12)
δl2 x 2+ r2(cos(θ1 θ2) 1) d12(sinθ1 si nθ2)/1 c os(θ1 θ2)
y 2+ r2(cos(θ1 θ2) 1) d12( c osθ1+cosθ2)/1 c os(θ1 θ2)
δr x 12(cosθ1+cosθ2+ (d1+2d2)r1 c os(θ1 θ2)( si nθ1+ s inθ2) d12 2+ r2(cos(θ1 θ2) 1) d12)
y 12(sinθ1+sinθ2+ (d1+2d2)r1 c os(θ1 θ2)( cosθ1 co sθ2)2d14+r2d12 (cos( θ1θ2)1 ))
δx x 1
y 0
δy x 0
y 1
  
1 R L Siegel, K D Miller, A Jemal. Cancer statistics. CA: A Cancer Journal for Clinicians, 2020, 70( 1): 7– 30
https://doi.org/10.3322/caac.21590
2 H B Carter. American Urological Association (AUA) Guideline on prostate cancer detection: process and rationale. BJU International, 2013, 112( 5): 543– 547
https://doi.org/10.1111/bju.12318
3 S Jiang, Y P Yang, Z Y Yang, Z Zhang, S Liu. Design and experiments of ultrasound image-guided multi-DOF robot system for brachytherapy. Transactions of Tianjin University, 2017, 23( 5): 479– 487
https://doi.org/10.1007/s12209-017-0067-9
4 T L Thomas, V K Venkiteswaran, G K Ananthasuresh, S Misra. Surgical applications of compliant mechanisms: a review. Journal of Mechanisms and Robotics, 2021, 13( 2): 020801–
https://doi.org/10.1115/1.4049491
5 O Ukimura, N Hirahara, A Fujihara, T Yamada, T Iwata, K Kamoi, K Okihara, H Ito, T Nishimura, T Miki. Technique for a hybrid system of real-time transrectal ultrasound with preoperative magnetic resonance imaging in the guidance of targeted prostate biopsy. International Journal of Urology, 2010, 17( 10): 890– 893
https://doi.org/10.1111/j.1442-2042.2010.02617.x
6 A K Singh, J Kruecker, S Xu, N Glossop, P Guion, K Ullman, P L Choyke, B J Wood. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU International, 2008, 101( 7): 841– 845
https://doi.org/10.1111/j.1464-410X.2007.07348.x
7 C Poquet, P Mozer, M A Vitrani, G Morel. An endorectal ultrasound probe comanipulator with hybrid actuation combining brakes and motors. IEEE/ASME Transactions on Mechatronics, 2015, 20( 1): 186– 196
https://doi.org/10.1109/TMECH.2014.2314859
8 S Lim, C Jun, D Chang, D Petrisor, M Han, D Stoianovici. Robotic transrectal ultrasound guided prostate biopsy. IEEE Transactions on Biomedical Engineering, 2019, 66( 9): 2527– 2537
https://doi.org/10.1109/TBME.2019.2891240
9 M Schlüter, C Fürweger, A Schlaefer. Optimizing robot motion for robotic ultrasound-guided radiation therapy. Physics in Medicine and Biology, 2019, 64( 19): 195012–
https://doi.org/10.1088/1361-6560/ab3bfb
10 X B Yu, W He, H Y Li, J Sun. Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51( 11): 6994– 7007
https://doi.org/10.1109/TSMC.2019.2963072
11 L Y Kong, G L Chen, H Wang, G Y Huang, D Zhang. Kinematic calibration of a 3-PRRU parallel manipulator based on the complete, minimal and continuous error model. Robotics and Computer-Integrated Manufacturing, 2021, 71 : 102158–
https://doi.org/10.1016/j.rcim.2021.102158
12 Z B Li, S Li, X Luo. An overview of calibration technology of industrial robots. IEEE/CAA Journal of Automatica Sinica, 2021, 8( 1): 23– 36
https://doi.org/10.1109/JAS.2020.1003381
13 H F Quintero, L A Mejia, M Diaz-Rodriguez. End-effector positioning due to joint clearances: a comparison among three planar 2-DOF parallel manipulators. Journal of Mechanical Science and Technology, 2019, 33( 7): 3497– 3507
https://doi.org/10.1007/s12206-019-0644-z
14 Z H Jiang, W G Zhou, H Li, Y Mo, W C Ni, Q Huang. A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Transactions on Industrial Electronics, 2018, 65( 4): 3337– 3345
https://doi.org/10.1109/TIE.2017.2748058
15 Y H Gan, J J Duan, X Z Dai. A calibration method of robot kinematic parameters by drawstring displacement sensor. International Journal of Advanced Robotic Systems, 2019, 16( 5): 1– 9
https://doi.org/10.1177/1729881419883072
16 J Li, L D Yu, J Q Sun, H J Xia. A kinematic model for parallel-joint coordinate measuring machine. Journal of Mechanisms and Robotics, 2013, 5( 4): 044501–
https://doi.org/10.1115/1.4025121
17 T Huang, H T Liu, D G Chetwynd. Generalized Jacobian analysis of lower mobility manipulators. Mechanism and Machine Theory, 2011, 46( 6): 831– 844
https://doi.org/10.1016/j.mechmachtheory.2011.01.009
18 W J Tian, Z Q Shen, D P Lv, F W Yin. A systematic approach for accuracy design of lower-mobility parallel mechanism. Robotica, 2020, 38( 12): 2173– 2188
https://doi.org/10.1017/S0263574720000028
19 Z Y Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22( 11): 1330– 1334
https://doi.org/10.1109/34.888718
20 S H Liao, Q Zeng, K F Ehmann, J Cao. Parameter identification and nonparametric calibration of the tri-pyramid robot. IEEE/ASME Transactions on Mechatronics, 2020, 25( 5): 2309– 2317
https://doi.org/10.1109/TMECH.2020.3001021
21 D Daney, Y Papegay, B Madeline. Choosing measurement poses for robot calibration with the local convergence method and tabu search. The International Journal of Robotics Research, 2005, 24( 6): 501– 518
https://doi.org/10.1177/0278364905053185
22 C T Mao, Z W Chen, S Li, X Zhang. Separable nonlinear least squares algorithm for robust kinematic calibration of serial robots. Journal of Intelligent & Robotic Systems, 2021, 101( 1): 2–
https://doi.org/10.1007/s10846-020-01268-z
23 W Y Xu, H D Xu, F K Liu, Y Y Tang, Z Wu, X J Wang, J Wang, J Q Feng. Millimeter wave power monitoring in EAST ECRH system. IEEE Access: Practical Innovations, Open Solutions, 2016, 4 : 5809– 5817
https://doi.org/10.1109/ACCESS.2016.2611618
24 J Kennedy, R Eberhart. Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks. Perth: IEEE, 1995, 1942– 1948
https://doi.org/10.1109/ICNN.1995.488968
25 Y Qi, T Sun, Y M Song. Multi-objective optimization of parallel tracking mechanism considering parameter uncertainty. Journal of Mechanisms and Robotics, 2018, 10( 4): 041006–
https://doi.org/10.1115/1.4039771
26 F W Flocker, R H Bravo. On global convergence in design optimization using the particle swarm optimization technique. Journal of Mechanical Design, 2016, 138( 8): 081402–
https://doi.org/10.1115/1.4033727
27 Gao G B, Liu F, San H J, Wu X, Wang W. Hybrid optimal kinematic parameter identification for an industrial robot based on BPNN-PSO. Complexity, 2018, 4258676
28 Q Zhao, Y H Yue, Q Guan. A PSO-based ball-plate calibration for laser scanner. In: Proceedings of 2009 International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie: IEEE, 2009, 2 : 479– 481
https://doi.org/10.1109/ICMTMA.2009.620
29 Y X Zheng, Y Liao. Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization. Optik (Stuttgart), 2016, 127( 19): 7865– 7874
https://doi.org/10.1016/j.ijleo.2016.05.145
30 S Shankar Ganesh, A B Koteswara Rao. Error analysis and optimization of a 3-degree of freedom translational parallel kinematic machine. Frontiers of Mechanical Engineering, 2014, 9( 2): 120– 129
https://doi.org/10.1007/s11465-014-0300-3
31 N Qiu, C Park, Y K Gao, J G Fang, G Y Sun, N H Kim. Sensitivity-based parameter calibration and model validation under model error. Journal of Mechanical Design, 2018, 140( 1): 011403–
https://doi.org/10.1115/1.4038298
32 D Drignei, Z P Mourelatos, V Pandey, M Kokkolaras. Concurrent design optimization and calibration-based validation using local domains sized by bootstrapping. Journal of Mechanical Design, 2012, 134( 10): 100910–
https://doi.org/10.1115/1.4007572
33 M Verner, F F Xi, C Mechefske. Optimal calibration of parallel kinematic machines. Journal of Mechanical Design, 2005, 127( 1): 62– 69
https://doi.org/10.1115/1.1828461
34 S Xu, J Kruecker, B Turkbey, N Glossop, A K Singh, P Choyke, P Pinto, B J Wood. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Computer Aided Surgery, 2008, 13( 5): 255– 264
https://doi.org/10.3109/10929080802364645
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed